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Abstract

In this paper, we use a simple method to derive different recurrence
relations on the recursive sequence order-k and their sums, which are
more general than that given in literature [J.Feng, More Identities on
the Tribonacci Numbers, Ars Combinatoria, 100(2011), 73-78]. By using
the generating matrices, we get more identities on the recursive sequence
order-k and their sums, which are more general than that given in litera-
ture [E.Kihg, Tribonacci Sequences with Certain Indices and Their Sums,
Ars Combinatoria, 86(2008), 13-22 |

1 Introduction

The recursive sequence order-k is like the Fibonacci, Tribonacci, Tetranacci,...
sequences. The sequence starts with k predetermined terms and each term
afterwards is sum of the preceding k terms, that is,

k

L= La 1)

1=1

where Lo =0, L, =1, L, =2°=1, Ly =2' = 2,... . Ly, = 253,
If we take k = 2 in equation (1), {L,} sequence is be Fibonacci sequence.If
we take k = 3 in equation (1), {L,} sequence is be Tribonacci sequence.
Terms of negative subscript {L,} sequence are calculated by

k-1
Ln = L4k — ZLn+i
i=1
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2 The Recursive Sequence Order-k With Cer-
tain Indices And Their Sums

Define generating matrix U and V;, as shown, respectively

11 11
10 00
v=|01 00
00 ...10]/,,
( k-2 1 W
Ln+1 ZLn—i see ZLn—i Ln
=0 =0
k-1 2
L, ZLn—i ces an—i L,
i=1 =l
V. = k 3
" Ln-l ZLn—i e ZLn—i Ln—2
i=2 i=2
'2k—3. k '
Ln—k+2 Z Ln—i (R Z Ln—t' Ln—k+1
L i=k—1 i=k-1 Jexk

Theorem 1 Ifn >0, then V, =U"

Proof. By direct computation, we have V;, = UV,_; from which it follows that
Va = U™"1V;. By the definations of matrix U and Vj,, one can see that V; = U
and thus proof is seen. m

Let forn >0

Sh = iL"

=0
forn<0

n
Sn= Y L

i==1

where L, nth term of the recursive sequence order-k.
Define Y and Z,, as following;
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I- 1 00 00
1 11 11
010 00
Y=10 0 1 00
(000 ... 10 J (k+1)x (k+1)
[ 1 00 0 0]
Sn
Sn—l
Zy = Sn—2 Va
| Sn—k+1 J (k1) x (k+1)

k
Lemma 2 Ifn >k, then S, =1 + an_,'

=1
Proof. Inductiononn m
Theorem 3 Ifn >0, then Y = Z,

Proof. Using Lemma 2 and direct computation, we have Z, = Y Z,_, from
which it follows that Z, = Y"~1Z,. By direct computations, Z;, = Y from
which the conclusion follows. m

By the defination of matrix Zn, we write Zyym = Zp 2, = ZmZ, for all
n,m > 0. From a matrix multplication we have the following Corollary without
proof.

Corollary 4 Forn,m > 0,

k-2 1
Sn+m = Sn + San+l + 85, —IZLn—i +...+ Sm—lc+2ZLn—i + Sm—k+an
i=0 =0

The roots of characteristic equation of the recursive sequence order-k, z* —

k=1
Y z* =0, are A1, A2, Mgy i
i=0

Spikerman and Joyner mentioned binet’s formula and roots of the recursive
sequence of order k. Acoordingly, we know that the roots of characteristic
equation of the recursive sequence order-k is different.

Define the diagonal matrix K and W as shown;

1 0 0 ... 0

0 A 0 ... O
K=|(0 0 X ... 0
00 0 ... X (k4+1)x (k+1)

259



1 0 0

- k—

= S

W= : : :

0
At
Ak
1

(k+1)x (k+1)

One can check that YW = W K. Since the roots A;, Az, As,...,Ax are distinct,

it follows that det W # 0.

k-2

1

Theorem 5 Ifn >0, then Sp = 25 (Lnp1 + ZL,,_,- +ot ZL,._.- +L,—1)

=0

=0

Proof. Since YW = WK and det W # 0, we write W™!YW = K. Thus
the matrix Y is similar to the matrix K. Then Y*W =W K™. By Theorem 3,
we write Z,W =WK™. Equating (2.1)th elements of the equation theorem is

proven. m
Define N and P, as shown;

20
10
0 1

—Sn—k+1
—Sn—k
~Sn—k-1

Sn+1
Sn

P, = Sn—1

Snek+1  —Sn-2k+1

[ I I )

-1

0

0

0 (k+1)x(k+1)

—'Sn—l _Sn

_Sn—z _Sﬂ-’l

—on-3 —Sn-2

—Sn-k-1 —Sn—k (k+1)x (k+1)

Lemma 6 The sequence {S,} satisfies the following recursion for n > k

Sﬂ = 2Sn—] - Sn—-k-l

where S =0, $1 =1, §2=2, S3=4,...,5,-1 = k-2,

Theorem 7 Ifn>k+1, then N* = P,.

Proof. From Lemma 6, we write P, = NP,_;. By a simple inductive argument,
we write P, = N"P,. By the definations of matrix N and P,, one can see that

P, = N and thus proof is seen. ®
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and W}i) be a (k + 1) x (k + 1) matrix obtained from W, by replacing the jth

Define the Vandermonde matrix W) and diagonal matrix K as follows:

Ak 0 0 0
0 X 0 0
Ky=| : P
0 0 A0
0 0 0 1 (k+1)x(k+1)
A )k A
AR k-t AT
W= : : :
A1 A2 A1
1 1 11 (k+1)x(k-+1)
Let m; be a k x 1 matrix such that
m = [ ApTHEFL gn—ibkdL gmoibkbD o meitkdl ]T

column of W by m;.

det Wi¥

Theorem 8 Forn >k +1, bij = 55y where By, = [bi;].

Proof. One can see that NW, = W K. Since Ay, Ao, A3,...,Ax are different and
W) is a Vandermonde matrix, W is invertible. Thus we write Wl'lN W) = K,
and so N*W, = W, K7. By the Theorem 7, P,W, = W) K{. Thus we have the

following equations system:

z\fb,‘l -+ /\’;_lbgz + ...+ /\lbi(k—l) + by = /\?—i+k+l

z\gbil + A’;"b,-z + .o+ Azb,-(k_l) + by = /\;—i+k+l

Akbit + A big + oo Aibiroiy + bix = AR TR

bit +big + .+ bie—1y) b =11

where B,, = [b;;]. By Cramer solution of the above system. the proof is seen.
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3 More Recurrence Identities On The Recursive
Sequence Order-k

Suppose we want an identitiy of the form (w, h ,n are positive integers and
s20)

k
Lw(n+h)+s = zxiLw(n+1-i) (2)
i=1
we write an augmented matrix Aj;
Lyn Lw(n—l) EE Lw(n+1—k) Lw(n+h)+a
Lw(n+l) Lyn ven Lw(n+2—k) Lw(u+h+l)+s
AL =| Let+ny Loy o Lynts—k) Luwn+h+2)+s
Lw(n+k—1) Lw(n+k—2) v Lyn Lw(n+h+k—1)+s

and we calculate coefficients z; (1 < < k).
For example; in (2), we take k = 3, that is for Tribonacci numbers. If w = 3,
h=2,s=1, (2) becomes

Li(nt2)+1 = 81L3n — 63L3(n-1) + 13L3(n-2)

and in (2), we take k = 5, that is for Pentanacci numbers. fw=6 h=1
s =0, (2) becomes

Lgn41) = 57Lgn + 42Lg(n—1) + 22Lg(n-2) + TLg(n-3) + Lg(n-q)

4 Applications

In this section, we mention from applications of second and third section. In
second section, for k = 3, it done by E. Kili¢. In third section, for k = 3, it done
by J.Feng except for determinantal representations. In this section, we touch
on determinantal representations for k = 3.

Generalized Tribonacci sequence is defined by

Tuwnt+1)+s = Z1Twn+s + T2Twn-1)+s + Z3Tw(n-2)+s (3)

where w,n are positive integers and s > 0.
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Theorem 9 Constructed the n x n matriz:

( Ttw+s m T(t+2)w+a
1 Tw+ts T(t+1)w+s x3

Ttw-;-a —Z2
M (n) = 1= @
1 e 7.l T3
—Z9
1 I

wherem = 1}30_'_3—7‘(,“)",_,_8. Accordingly we have lM}”(n)l = Tu(ntt=1)+s-

Proof. In defination of M,‘.l) we taken = 1. Then Mq(.l) = [Tiw+s) thus IM.}I) I =

T'tw-i-s m
l Ttw+a

thus !M,‘."l = T(et1)wss- Suppose that for n = 4, |M§,"(z‘)| = Tirictywts be
correct. We show this equality is correct for n =i 4 1.

Tewss. In defination of M{" we take n = 2. Then M) =

[ Tiwss m T’(t+2)w+a
1 Tiwts T(t+1)w+s z3

1 Ttw+a —Z2
MPGE+1)= 1 2t
1 E N . . x3
1 )

By using expansion of a determinant, IM,‘-I)(i + 1)' is calculated. m

Theorem 10 Consiructed the n x n matriz:

[ Ttws+s -—m T(t+2)w+a
1 T'tw+a T(t+1)w+a z3
—Tiwys T2
2 el -
M (n) = L= )
1z
» X9
| 1z |

wherem = CZ",%,,_,_,—T(,_,_I)",.,_,. Accordingly we have per(]l/fj(?)(n)) = Tu(ntt=1)+s-

Proof. Proof can done according to proof of Theorem 11 m
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Example 11 Ifw=3,h=1,5=0, k=3, (2) becomes
T3(nt+1) = T1T3n + 22T3(n-1) + Z3T3(n-2)
the augmented matriz A} can be transformed to
T3 Ty T3 Tp 2 0 -1 13 1 00 7
Aj=|Te Ts To To |=|13 2 0 8 [~|0 10 =5
To Ts T3 Tie 81 13 2 504 001 1

Thus we have identity
Ts(n+1) = TTan — 5T3(n-1) + T3(n-2)
If we sett =1 in (4) and (5) for n = 3, the determinant of

2 -9 81
1 2 13
01 2
are the Tribonacci number Ty and permanent of
2 9 81
1 2 13
01 -2

are the Tribonacci number Ty.
If we set t =0 in (4) and (5) for n = 4, the determinant of

0 -2 13 0

1 0 2 1

0 1 0 5
|_ 0o 0 1 7]

are the Tribonacci number Ty and permanent of

[0 2 13 0 ]

10 2 1

01 0 -5
00 1 7 ]

are the Tribonacci number Ty.
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