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Abstract

We study permutations of the set [n] = {1,2,...,n} written in
cycle notation, for which each cycle forms an increasing or decreasing
interval of positive integers. More generally, permutations whose
cycle elements form arithmetic progressions are considered. We also
investigate the class of generalised interval permutations, where each
cycle can be rearranged in increasing order to form an interval of
consecutive positive integers..

1 Interval Permutations

The partitions of the set [n] = {1,2,...,n} into k£ nonempty subsets of
consecutive integers are enumerated by (}_]) since this is the number
of ways of inserting & — 1 separators between the sequence of numbers
1,2,...,n, 1 < k <n. We will obtain analogous results for permutations
of [n], written in the cycle notation. Taking different orderings of the ele-
ments of the cycles into account gives several different analogues of the set
partition case.

Firstly, a permutation p of [n] will be called an interval permutation if
every cycle of p consists of one increasing or decreasing sequence of consec-
utive integers.

Even though the standard notation places the least member of a cy-
cle in the first position, we adopt the convention to reckon only with the
permutations in which the members of a cycle have been shifted so as to
exhibit the maximal number of pairs of consecutive integers. An interval
permutation is the unique member of its cycle class in which every v-cycle
consists of v increasing or decreasing consecutive integers. Later in Section
5 we will also study the class of generalised interval permutations, where
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each cycle can be rearranged in increasing order to form an interval of
consecutive integers.

Denote the set of interval permutations of [n] with k cycles (also -
permutations below) by R(n, k), and let 7(n, k) = |R(n, k)|. Alsolet r(n) =
r(n,1) + r(n,2)+ <+ + r(n,n).

Example 1 : We have r(4,2) = 5, the enumerated permutations being
(12)(34), (1)(234), (1)(432), (321)(4), (123)(4).
Observe that (1)(432) = (1)(243) in standard cycle notation.

Theorem 2 The numbers r(n, k) satisfy the recurrence

r(n,k) = r(n—-Lk-1)+r(n—-1,k)+r(n—38,k-1) (1)

r(0,0) = 1,7(1, )=r(2,1)=1 r(n,0) = (0, k) =0, n,k > 0;
r(n,1) = 2,n2>3.

Proof. There are two ways to find an element p € R(n, k):

() insert the singleton (n) into any ¢ € R(n—1,k—1), giving r(n—1,k—1)
permutations.

(#i) put the integer n into a ¢ € R(n — 1, k) as follows:

(a) if (n — 2,n — 1) € g, then put n either before or after n — 1 to make p
in 2 possible ways;

(b) if (r — 2,n — 1) ¢ g, then put n immediately before or after n — 1
(depending on whether n — 1 lies in a v—cycle, v > 2, with decreasing or
increasing sequence), or into the cycle (n — 1), to make p in exactly one
way. In (a) the number of permutations is 2r(n — 3,k — 1) since there are
r(n — 3,k — 1) ways to form the required part of R(n — 1,k) by inserting
the cycle (n — 2,n — 1) into each permutation in R(n — 3,k ~1). Thus in
(b) there are r(n — 1,k) — r(n — 3,k — 1) possibilities. Therefore the total
number of permutations from (i) is
2r(n—3,k—1)+r(n—-1,k)-r(n-3,k—1)=r(n-1,k)+r(n-3,k-1).
Hence altogether the main result follows. The starting values follow from
the definition, except possibly the last. Note that for n > 2 the only
members of R(n,1) are (1,2,...,n) and its reversal (n,n—1,...,1). Hence
r(n,1) = 2.

Let Gx(x) = 3 r(n,k)z™. Then (1) translates to Gx(z) = 2Gr-1(z)+

n>0
G (z) + 23Gk-1(z), that is,
z+z°

Gk(x)- “1-z

Gr-1(z), Go(z) =1,
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which may be iterated to give

3 r(n,k)a" = (“ﬁﬁf)k- 2)

n>0

By summing (2) over k we also obtain

Zr(n)z" ===l 3)

3 —.
=0 °+2rx -1

The explicit forms below follow from (2) by a routine procedure.

L(n—k)/2| .
K\ fn—25-1
r(n, k) = Z (J)( k_JI )

=0

Corollary 1

where | N| is the greatest integer < N. Hence
l(n-k)/2] ,
K\ /n—25-1
=2 2 (])( ior )

Asymptotic estimates for 7(n) as well as a different symbolic approach
to obtaining the generating functions (2) and (3) will be given in Section
3.

2 Interval Permutations without Unit Cycles

Denote the set of interval k—permutations of [n] without unit cycles by
U(n, k), and let u(n, k) = |U(n, k)|. Also let u(n) = u(n,1)+u(n,2)+-- -+
u(n, [n/2]).

The following recurrence is obtained by modifying the derivation of (1).
Elements of U(n, k) in which n belongs to a 2-cycle are enumerated by
u(n — 2,k — 1), and those in which n belongs to a t—cycle, t > 2, are
enumerated by u(n —1,k) + u(n - 3,k — 1).

Theorem 3 The numbers u(n, k) satisfy the recurrence
u(n, k) =u(n-1,k)+u(n-2,k—1)+u(n-3,k—1), n>3,k>1, (4)
u(0,0) =1, u(1,1) =0; u(2,1) =1, u(n,1) =2ifn > 3.
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Corollary 2 The generating functions for u(n,k) and u(n) are

L (2 +ad\*
Zu(n,k)m —( 1—:1:) ,

n>0

l-z
E u(n)x”:—Tg.
=0 l—z—-z°—-=x

The expliéit formulas below follow from routine coefficient extraction,
and the generating function for the m—generalized Fibonacci numbers (6]

namely -
(m) n —
?-;OF" S Py S —T
Corollary 3
n—-2k .
K\(n-j7—-k-1).
w=3 (57157

=0

( -Zﬂik TG A T G
u(n) = j k-1 =fan n

k>0 j=0
where Ff(.s) is the nth Tribonacci number.

Remark 4 The standard sequence of Tribonacci numbers begins with
0,1,1,2,4,7,13,24,44,..., that is,

F =0, F® = F{) =1, F® = F& + F2 + F2.

On the other hand the sequence u(n), n 2 1, begins as
0,1,2,3,6,11,20,37,68,..., which is just T(n + 1), where T(n), n > 0, is
given by 0,1,0,1,2,3,6,11,20,37,68,. ...

Notice that T(n) satisfies the same recurrence as the numbers F® but with

the initial values
T(0) =0, T(1) =1, T(2) = 0 (see (2] and [5]).

3 Bijections and Asymptotic Estimates
The sequence of the number of interval permutations
r(n),n > 0:1,1,2,5,11,24,53,..., is given in [8, A052980] as a non-

combinatorial representation of the generating function in (3), while in the
Encyclpedia of Combinatorial Structures ([7, ECS 1053]) it appears under
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the title, ‘a simple regular expression’. In terms of regular expression syn-
tax, these simple regular expressions are of the type ((a|bbb)Z*)*, where
for any set of letters z, the notation z* denotes a sequence of zero or more
phrases z.

We show a bijection between interval permutations, these simple regular
expressions, and also, with a certain class of bi-coloured compositions. We
will call a composition of n bi-coloured if every part j > 1 can occur in a
standard colour, but all parts j > 3 are also available in a second colour.
We will use j to denote a part of the standard colour and j’ to denote a
part of the second colour.

For the bijection, begin with a interval permutation with cycles arranged
from left to right in terms of the size of the smallest element of the cycle.
We form a bi-coloured composition of n by summing the lengths of the
cycles of the interval permutation, where an increasing cycle of length j
correspond to a part j and a decreasing cycle of length j corresponds to
a part j'. Then for the regular expressions, each part j is mapped to
aZZ...Z where there are j — 1 letters Z and each part j' > 3 is mapped
to bbbZZ...Z, with j' — 3 letters Z.

For example, if we start with the interval permutation
T = (4321)(567)(8)(13,12,11,10,9) whose cycles have been ordered in
terms of the least elements of each cycle, then our bijection produces the
bi-coloured composition 4’ + 3+ 1+ 5’. Then applying our translation rules,
we obtain the regular expression (bbbZ)(aZ Z)(a)(bbbZ Z), or removing the
superflous brackets, we can write this as bbbZaZ ZabbbZ Z.

In the other direction, let us start with the regular expression | =
aaZ ZbbbbbbZZaZ. We introduce brackets to help determine the sizes of
the components.

So I = (a)(aZ Z)(bbb)(bbbZ Z}(aZ). This maps to the bi-coloured com-
position 1+ 3 + 3’ + 5’ + 2. Assigning, in order, the numbers 1 up to n
into cycles with lengths corresponding to the composition parts, gives the
interval permutation (1)(234)(765)(12,11, 10,9, 8)(13, 14).

The bijection with bi-coloured compositions allows us to give a simple
derivation of the generating functions for interval permutations via the
symbolic method. Firstly the generating function for parts of a bi-coloured
composition, is
z+ 23
1-z’

a:+a:2+22xj =
j23

A bi-coloured composition with exactly k parts is a sequence of k such parts
with generating function

s = (512"

n20
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and any bi-coloured composition is just a sequence of parts, with generating
function

S = I T PR

3.1 Asymptotic estimates

The dominant singularity of this rational generatmg function is a simple
pole at the smallest positive root p of 1 — 2z — 23 = 0. We find p =
0.4533976515 and via singularity analysis, (3],

r(n) ~ Ap™", (5)

where A = Sriz8o ~ 0.4607198419 and p~! & 2.2055694304.

For example 7(25) = 178424817 whereas the asymptotic estimate glves
178424816.99998. A consideration of the two complex zeroes of 1—2z—z3 =
0 shows that in general the error in (5) is exponentially small, namely
0(0.68™).

Intcrval permutations without unit cycles correspond to bi-coloured
compositions with no parts of size 1. The parts generating function is

now 2 3
x2+2zzj=x +z
. l—-2z

j23

and hence we recover Corallary 2.2, via the symbolic method. Asymptoti-
cally
u(n) ~ Br™7, (6)

where B =~ 0.2821918053 and 7~} ~ 1.8392867552, where 7 is the positive
zeroof 1 —z —z2 —2% =0.

3.2 The number of cycles in interval permutations

To count cycles in interval permutations we use an auxilliary variable .
The bivariate generating function is

1

Rl(z,u) = l—u(w—zz—ﬁs—).

l1-x

The generating function for the cumulated number of cycles over all interval
permutations of [n] is then

aRl(a:, u) (1-z) (2 + )
|u—l = (1 -2z — 1'3)2 )
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Via singularity analysis, the coefficient a(n) of ™ in this satisfies

(-9 (@ +1)n _,

a(n) ~

p (302 +2)°
Dividing by 7(n) shows that the mean number of cycles in a random
2
permutation of n elements is asymptotically Bn where B = 7 112 ~

0.4607198419.
Similarly, the bivariate generating function for the number of unit cycles
in interval permutations is

1
1 —uz + a2+ 2&2°

l-x

R2(z,u) =

The generating function for the cumulated number of unit cycles over all
interval permutations of [n] is then

(1-z)(z—2?)

wu=l  (1-2z-23)%"

OR2(z,u)
Ou

Extracting the coefficient of z" via singularity analysis and dividing by
r(n) gives the mean number of unit cycles in a random permutation of n
elements is asymptotically Dn where D = %!_'.;Lz = 0.20888929435.

As a consequence of the asymptotic results for cycles and unit cy-
cles above, we see that as n — oo the proportion of cycles in a interval
permutation that are unit cycles tends to the constant ,—Jlﬁ_% = p, where
p =~ 0.4533976515 as shown previously.

4 AP Permutations

In this section we extend interval permutations to arithmetic progression
(AP) permutations after the set partitions scenario (see [1]). Let CP(n,d)
denote the set of permutations of [n] in which the members of each cycle
form an increasing (or decreasing) AP with common difference +d (some
fixed d > 0), unit cycles are ignored, but the identity permutation is as-

sumed to have d = n.
Let cp(n, d) = |CP(n,d)| and ep(n) = |Cp(n)|, where CP(n) = |J, CP(n, d).

Proposition 1
cp(n,d) = r(g + 1)"r(g)*™", (7)

where n = gd + v, 0 < v < d and r(N) is given by (3).
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Proof. We apply the result of Section 1 namely, the permutations of [m]
into cycles of increasing/decreasing consecutive integers are enumerated by
r(m). Note that any such permutation, when viewed as an AP, has common
difference(s) d = 1.

To enumerate the elements of CP(n,d) we first partition [n] into a
complete set of residue classes modulo d. Asumme that R(};) is the class
with least element j and size Aj, 1 < j < d. Then there are r(;) per-
mutations of R();) into arithmetic cycles with common difference(s) *d.
Consequently, each element of CP(n,d) is obtained by combining the sub-
partitions across the R();), one at a time from each R(};), in cartesian
product fashion. Thus cp(n,d) = r(A1)r(A2)---r(Ag). Note that when the
R();) are arranged in the increasing order of least elements the A; form a
unique nonincreasing partition A; + - -+ + Ag of n given by A; = ¢+ 1 if
j € v, and \j = qotherwise, where n = gd +»,1 < v < d. Hence the
result.

If we sum (7) over d, 1 < d < n, and delete the n — 1 excess copies of
the identity permutation, we obtain the next result.

Corollary 4

cp(n) = Yo rlg+1)r(@t ~n+1. (8)

d=1
n=qd+v, 1<v<d

Table 1 shows the numbers cp(n,d) for n = 1,2,...,10. Note that the
last column is given by cp(n) = 37, ep(n, d)—n+1, where cp(n, n) counts
the identity permutation and cp(n,d) = 0 when d > n.

Let CP(n,d,1) denote the subset of CP(n,d) without unit cycles, so
that 1 < d < |n/2]. Since the interval permutations of v without unit

cycles are enumerated by F,f"_f_)l — F, we obtain

Corollary 5 The number cp(n,d, 1) of elements of CP(n,d) without unit
cycles is given by

- 3 v 3 d—v
eplnd, 1) = (FRy - FR) (F-FP)
n=qd+v,1<v<d.

Hence we obtain

Corollary 6 The number cp(n,1) of AP permulations of [n] without unit
cycles, in which the cycles of each permutation have the same absolute
common difference, is given by
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_ Ln/2] v dew
o= 3 (FL-FR) (FR-F)T. o

d=1
n=qd+v, 1<v<d

Table 1: The numbers cp(n, d) of AP permutations,d >0, n=1,... ,10

n\d 1 2 3 4 S5 6 7 8 9 10| cp(n)
1 1 1
2 2 1 2
3 5 2 1 6
4 11 4 2 1 15
5 24 10 4 2 1 37
6 53 25 8 4 2 1 88
7 117 585 20 8 4 2 1 201
8 258 121 S50 16 8 4 2 1 453
9 569 264 125 40 16 8 4 2 1 1021
10 | 1255 576 275 100 32 16 8 4 2 1 | 2260

Remark: We note some Observations from Table 1. If n is even, then
cp(n,n/2) = 2%, n > 0,

but since cp(n,n) = 1 for each n it is convenient to include the case n = 0.
If n is odd, we have

cp(n, (n +1)/2) = 207D72,

Hence

cp(n, [n; 1J) = 9oln/2] (10)
More generally, there are |(n + 2)/2] occurrences of powers of 2 on cach

row:
n

n+1 . — .
ep(n, | =5—] +4) =227, j=0,1,..., 5] (11)

To see this, if d = | 234 | + j, where j =0, 1,...,| 2] is fixed, then each
of the numbers i for i = 1,2,... 3] — j can either appear as a unit cycle
or in a 2-cycle (4,i + d). No other pairs of i values are possible as cycles,
so cp(n, d) = 2l7/21-3,

Note that (10) implies that cp(n, n—i) becomes stationary from i = N/2
along a right-downward diagonal for each even number N,0 < N < n.
That is:
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Ifd= g is an integer, then cp(n +j,n+j—d)=2%3=0,1,.... (12)

Similarly, for column d = |(n + 1)/2] — 1 we find that for odd n > 3,
ep(n, |n/2]) = 5x2L*/21-1 and for even n > 6, cp(n,n/2—1) = 25 x 2723,
In the odd case, the factor 5 arises from the possible arrangements of
{1,1+ d,1 + 2d} as one-, two- or three-cycles. In the even case, the fac-
tor 52 arises from the possible arrangements of {1,1 + d,1 + 2d} and of
{2,2 + d,2 + 2d} as one-, two- or three-cycles.

The following general result includes all the cases of ¢p(n, d) computed
above, and in fact, represents a compact rule for obtaining all the entries
in Table 1.

Theorem 5 Let m > 0, do > 0, be fized integers, and let cm = cp(m, 1) =
r(m) (co =1). Then

cp(md + do,d) = ¢, ct7%, d=do,do+1,do+2,..., (13)
Alternatively,
n—dyp

m

) = o, cp=domEN/m | = mj +do, 5 > do.

cp(n,

Proof. This is essentially a restatement of (7) with the notation ¢, =

ep(m, 1) = r(m).
Theorem 5 implies the following class of congruences.

Corollary 7
cp(md + do,d) = 0 (mod r(m)r(m +1)), m>2,0<dp < d.
In particular, for each integer d > 0, we have
cp(md,d) =0 (mod r(m)), m > 2.
We can also get elementary bounds for the magnitude of cp(n,d) by

using the earlier asymptotic results for 7(n). Since r(g)¢ < cp(n,d) <
(g + 1)¢, we have as n — o0,

—da|n A d —aln
Adpmdln/d) < op(n, d) < (;) pdln/d]

which implies
And
d —n ki -n
(Ap)*p™" < cp(n,d) < (p) [
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5 Generalised Interval Permutations

Define a generalized interval permutation (G-interval permutation) as one
in which the increasing rearrangement of each cycle forms an interval
[a,b] = {a,a+1,...,b},1 <a<b

Example (1243)(5)(6978) is a G-interval permutation since the respective
sets of elements of cycles are (1, 4], [5, 5], [6,9], but (1283)(45)(697) is not
a G-interval permutation since the first cycle gives (1238) # [1,8]. We
introduce the notation

GP(n) = { G-interval permutations of n},

GP(n,k) = {G-interval k-permutations of n}.

|GP(n)| = gp(n), |GP(n, k)| = gp(n, k).

A recurrence formula can be obtained for gp(n, k) by enlarging the scope
of derivation of (1). Things simplify considerably.

Besides the gp(n—1, k—1) permutations with the 1-cycle (n), an element
of GP(n,k) is obtained from a member of GP(n — 1,k) in which n — 1
lies in a j-cycle, j > 0, by inserting n into j possible positions. Since
there are (j — 1)! distinct j-cycles, it follows that the total number of
G-interval k-permutations of [n — 1] in which n — 1 belongs to a j-cycle
is exactly (j — 1)lygp(n — 1 - 5,k = 1) = jlgp(n — 1 — j,k — 1). Hence
gp(n,k) =gp(n—1,k—1)+ 3 5, jlgp(n —j — 1,k - 1).

Theorem 6

n—k
gp(0,0) =1, gp(n,k) =) jlgp(n—j—1,k—1). (14)
j=0
Corollary 8
gp(0) =1, gp(n)=_ jlgp(n—j—1). (15)
=0

5.1 G-interval Permutations without Unit Cycles

Denote the set of G-interval k—permutations of [n] without unit cycles
by GU(n, k), and let gu(n,k) = |GU(n,k)|. Also let gu(n) = gu(n,1) +
gu(n,2) +--- + gu(n, |n/2)).
We can use a similar procedure to those of Section 2 to obtain:
gu(n, k) = gu(n — 2,k — 1) + 3" ;5o jlgu(n — j — 1,k - 1).
Theorem 7 Forn > 2,k > 1,
n—2k+1
gu(n,1) = (n-1), gu(n,k)= Y jlgu(n—j-1,k-1), k>2. (16)

j=1
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Corollary 9 The sum iu(n) = Y iu(n, k) is given by
k21

T 4 n-3
gu(n) = (n—-1)1+ Y jlgun—j-1), n22 17)
=1
Proof. We have
n—2k+1
gu(m)=(n-1+Y, > jlguln—j-1k=-1)
k>2  j=1
n-3
=(n-11+Y ) gun—j-Lk=1)
j=1  k>2

The sequence gu(n), n > 1, begins as
0,1,2,7,28,137,798, 5443, 42688, 378733, 3749250, . . .

(This sequence is not yet in Sloane [8]).

5.2 G-interval AP Permutations

Let GCP(n,d) = denote the set of permutations of [n] in which the in-
creasing rearrangement of each cycle forms an AP with common differ-
ence d (some fixed d > 0), unit cycles are ignored, but the identity per-
mutation is assumed to have d = n. Let gep(n,d) = |GCP(n,d)| and
gep(n) = |GCp(n)|, where GCP(n) = |J, GCP(n,d).

The following results follow from straightforward adaptations of similar
ones established in Section 4.

Proposition 2
gep(n,d) = gp(g + 1)*gp(a)*™", (18)

where n = gd + v, 0 < v < d and gp(N) is given by (8).

Corollary 10

gep(n)= Y. gplg+1)gp(e)"V —n+1. (19)

d=1
n=qd+v, 1<v<d
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Table 2: The numbers gcp(n,d) of G-interval AP permutations, d > 0,
n=1,...,10

n\d 1 2 3 4 5 6 7 8 9 10| gep(n)
1 1 1
2 2 1 2
3 5 2 1 6
4 15 4 2 1 19
5 54 10 4 2 1 67
6 235 25 8 4 2 1 270
7 1237 75 20 8 4 2 1 1341
8 7790 225 50 16 8 4 2 1 8089
9 57581 810 125 40 16 8 4 2 1 58579
10 | 489231 2916 375 100 32 16 8 4 2 1 | 492676

Table 2 shows the numbers gep(n,d) for n = 1,2,...,10; the last column
is given by gep(n) = >_j_, gep(n,d) — n + 1, where gep(n,n) counts the
identity permutation and gcp(n,d) = 0 when d > n.

Remark: The observations on Table 1 remain valid for Table 2.

Let GCP(n,d,1) denote the subset of GCP(n,d) without unit cycles,
so that 1 < d < |n/2]. Since there is no special formula for gu(n) the
formula for gep(n,d, 1) = |GCP(n,d, 1)| takes the form of (18).

6 A symbolic Approach to generalised
interval permutations

A cycle of k consecutive numbers can be arranged in (k — 1)! different
ways. Therefore a generalised interval permutation corresponds to a multi-
coloured composition of n in which a part of size k can appear in (k — 1)!
different colours. It follows that the generating function for G-interval
permutations is

. 1
N e v

n>0

Note that this a purely formal power series which diverges for all z #
0. Similarly the generating function for generalised interval permutations
without unit cycles is

n_ 1
D_gu(n)a" = 1= Y inolk - Dk’

n>0
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In view of the divergent nature of these formal power series, we cannot
apply singularity analysis to find asymptotic estimates. Instead, there is a
Theorem of Bender which applies in such cases (see e.g. [4]):

Theorem 8 Let A(z) =Y, an2" and B(z) = Y, 5o bn2" be two power
series with B(z) = F(z, A(z)) where F(z,y) is analytic near (0,0). Assume
that a,—1 = o(a,) and for somer >0

Z |akan—k| = O(an—s).

r<ksn—r
Then
ba= D dkan_k+O(anr)
0<k<r—1
where

o
di = [Zk]'égF(Z,y)b:A(z)-

For gp(n) we apply this Theorem with A(z) = Y ;5,(k — 1)!z* and
F(z,y) = '1_1_,, The conditions of the theorem are easily verified for any
r > 0. Taking r = 4 we find

0 _ 1 _ 2 3 4
ayF(z’y)|y=A(2) = A=AGP 1+ 22+ 52° + 142° + O(2%).

Hence
gp(n) = (n = 1)1 + 2(n — 2)! + 5(n — 3)! + 14(n — 4)! + O(n — 5)!
=(n—-1)! (1+%+£§+%+O(n"“)).

For gu(n) we take A(z) = Y ;»>o(k — 1)!z* and find in the same way
that -

gu(n) = (n = 1)1 + 2(n - 3)! + 4(n — 4)! + O(n — 5)!

=(n-1) (1+%+%g+0(n‘4)).

The bivariate generating function for generalised interval permutations
with u marking cycles is

1
Gl(z,u) := n, k) u* = .
(z,u) n%ogp( ) l_quZI(k_ 1) ¥
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The generating function for the cumulated number of cycles over all G-
interval permutations of [n] is then

9G1(zx, u)l _ Zkgl(k - 1)lzk .
u o=t (1 — Lk - 1)!1‘k)2

Via Bender’s theorem, together with the previous asymptotic estimate
for gp(n), we deduce that the average number of cycles in a G-interval

permutation is 5 & 28
2,9 4 -4
1+n+n2+n3+0(n ).

Similarly, the bivariate generating function with » marking unit cycles
in G-interval permutations is
1
1—uz =) so(k— 1)k

From this, the generating function for the cumulated number of unit cycles
over all G-interval permutations of [n] is

G2(z,u) :=

0G2(xz, u)l _ z .
ou u=l (1 _ Zkzl(k _ 1)!$k)2

A further application of Bender’s theorem, leads to the result that the
average number of unit cycles in a G-interval permutation of [n] is

2 4 16 »
;+$+n—3+0(n )-

Remark 9 Since there are (n — 1)! n-cycles, all of which belong to the
set of G-interval permutations on [n], we conclude from the more precise
estimates above, that almost all G-interval permutations on [n] consist of
a single n-cycle. The same conclusion applies to G-interval permutations
without unit cycles.
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