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Abstract

We give two Frankl-like results of set systems with restrictions on
set difference sizes and set symmetric difference sizes modulo prime
powers. Based on the similar method, we also give a bound on codes
satisfying the properties of Hamming distance modulo prime powers.
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1 Introduction

Let X be a set with n elements, say X = {1,2,...,n} and let F denote a
family of subsets of X. Wecall a family F of subsets of X an antichain or a
Sperner family if no member of F properly contains any other. Throughout
the paper let p be a primne and g = p* be a prime power.

In 1973, Delsarte [4] presented a classical result which is about the
families with given symmetric difference sizes between subsets.

Theorem 1.1. Suppose for any distinct two members F, F' of F, the
size of symmetric difference |[FAF'| belongs to a set comprising s distinct
positive integers. Then |F| < 3 oc.c, (7)

Subsequently, Blokhuis [3] and Frankl [6] proved a “modular version”
of Delsarte’s theorem respectively.

Theorem 1.2. Let F C 2X and p be a prime. Suppose for any distinct
two members F, F' of F, p t |[FAF'|, and the number of distinct sizes
of symmetric difference |FAF'| (mod p) does not exceed s. Then F <

i (3)-

In addition, Frankl [6] obtained the similar result for set systems with
given difference sizes between subsets in his same paper.
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Theorem 1.3. Let F be a Sperner family. Suppose for any two distinct
members F, F' € F, |F\F'| (mod p) is equal to at most s nonzero residues
of modulo p. Then |F| <Y [ (3)-

Let Z = {0,1,...,2 — 1}, The Hamming distance d(a,b) between two
words a = (ay,...,a,) and b = (by,...,b,) in Z™ is the number of coor-
dinates i, 1 < i < n with a; # b;. The weight of a word a = (ay,...,an)
is its Hamming distance from 0 = (0,...,0), i.e., the number of nonzero
coordinates. A z-ary code of length n is a subset C C Z™. Actually the
Hamming distance or simply the distance between two sets A and B is
d(A,B) = |AAB|. Accordingly a 2-ary code of length n corresponds to a
family of subsets of X.

The following result on codes is a classical inequality of Delsarte in [4, 5].

Theorem 1.4. Let C be a z-ary code of length n. If the set of Ham-
ming distances d(a,b) that occur between distinct codewords a, b in C has
cardinality s, then [C| < Yi_o(z = 1)'(7).

Twelve years later Frankl [7] gave the modular generalization of Del-
sarte’s inequality, which .was further strengthened by Babai et al. [2] in
1995. Moreover, Babai et al. proved the result of codes modulo prime
powers at the same time.

Theorem 1.5. Let C be a z-ary code of length n. Suppose that the Ham-
ming distance between any:two distinct members of C is never divisible by
a prime power q. Then |C| < Y14 (2 - 1)'(7).

In this paper we will first give a result about set systems with restric-
tions on the set difference sizes modulo prime powers. Actually for the
family with given set symmetric difference sizes between sets, we can give
an uniform bound.

Theorem 1.6. Let £ = {1,2,...,s}, where 1,2,...,s are in the residual
class of modulo q(s < q). Suppose F is a family of subsets of X such that
|F\ F'| € £ (mod q) for any two distinct members F, F' of F. Then

A<3-(5)

Analogously we consider codes and strengthen Theorem 1.5 with special
Hamming distances.

Theorem 1.7. Let C be o z-ary code of length n and £ = {1,2,...,s}
be a subset of residue class modulo q(s < q). Suppose that the Hamming
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distance modulo q between any two distinct words of C belongs to L. Then

o1 3= (7).

i=0

2 Proof of Theorems 1.6

We begin with some helpful definitions and notations, which are also intro-
duced in [1].

The (p-adic) valuation val(t) of an integer ¢ is defined to be the expo-
nent j such that p’ divides ¢, but p?*! does not. There are some useful
properties of the valuation:

<ooa.ndval ooxift—
(gl val t'?x = (a.l)
m { al( ), val(u)} (ultrametrlc inequality);
It val(t) < val(u) then val(t +'4) = val(t) (a consequence of the ultra-
metric inequality);

(v) vaitpy anpauality);
Definition 2.1. A polynomial f with integer coefficients separates a set
ACZ fromaset BCZ if

max val(f(z)) < min val(f(z)).

If A= {u}, we say that f separates p from B.

Note that the above definition is not symmetric in A and B.

We call a polynomial f(z) in variables z;, 1 < i < n, multilinear if
the power of each variable z; in each term is at most one. Clearly, if each
variable z; takes only the value 0 or 1, then any polynomial in variables
Zi, 1 < ¢ < n, can be regarded as a multilinear polynomial since any
positive power of a variable x; may be replaced by one. Throughout this
section we use x = (z1,%3,...,Z,) to denote a vector of n variables with
each variable z; only taking values 0 or 1, and we define the characteristic
vector of subset F of X to be the vector vg = (vp,,vF,,...,vr,) € R" with
vp, =1ifi € F and vg, = 0 otherwise. For z,y € R*,let z-y = Y 1. | T,y
denote their standard inner product.

Proof of Theorem 1.6. Consider the polynomial g(z) = [, (z—1), the
coefficients of which are integers obviously.

For each F € F, let vp denote its corresponding characteristic vector.
Let fr(x) be the multilinear polynomial in n variables defined by fr(x) =
9(vx\r - x). Note that fp(ve:) = g(|[F’\ F).
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First of all we show that g(z) is a polynomial which separates 0 from £+
qZ under the condition £ = {1,2,...,s}. Since g(|[F\F|) = g(0) = (—1)*s!,
we have val(g(|F'\ F|)) = val(s!). For F # F', |[F\F'| = ap®+t, 1 <t < s,
where a is a nonnegative integer, consider the set {ap® +t — 1,ap* +t —
2,...,ap* +t — s}. For each j > 0, the number of multiples of P’ in this
set is at least |s/p?]. Specially the number of multiples of p* is 1, while
|s/p*] = 0. Therefore we have val(g(|F" \ F'|)) > val(s!). This implies
val(g(|F \ F|)) < val(g(JF \ F'|)) for any F' # F'. By the definition of
the separating polynomial, it is obvious to see that the polynomial g(z)
separates 0 from £ + gZ.

There is a claim that the polynomials fr(x), F € F, are linearly inde-
pendent over Q. Note that since the degree of g(z) is s, the degree of fr(x)
is at most s. As we all know, the dimension of the space of multilinear
polynomials of degree at most s in n variables is Y ;_, (), which can infer

IFI < Tico (3)-

Suppose, to the contrary, there exists a nontrivial linear combination

> Brfr(x)=0

FeF

with Br € Q, where not all 8, F € F, are zero. Actually we may assume
that all coefficients BF in the above equality are integers, and there exists
some non-zero Bp which is not divisible by p. By taking x = v we can
rewrite the above equality as

Brg(F'\F'|)=— Y Brg(IF'\ F|).

F#£F

Using property (iii) of the valuation (that is, ultrametric inequality), we
obtain the following inequality,

val(Bpg(IF' \ F'])) 2 pin {val(Brg(|F "\ F)}- (2.1)

As we have proved g(z) is a polynomial which separates 0 from £ + ¢Z,
here we have val(g(|F’ \ F|)) > val(g(|F’ \ F'|)) = val(s!) for any F' # F"'.
Therefore, the right hand side of inequality (2.1) is greater than val(s!).
For the left hand side of inequality (2.1), it is easy to see that

val(Br g(|F' \ F'])) > val(s!). (2.2)
Based on property (ii) of the valuation, we have val(8r g(|F’ \ F'[)) =

val(Br+) + val(g(|F’ \ F'|)) = val(Bp+) + val(s!), implying val(BF+) > 0. But
val(Bp/) = 0 since p{ Bpv, a contradiction. This concludes our proof. |
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3 Proof of Theorem 1.7

In this section, we are concerned with codes and give the proof of Theorem
1.7.

Proof of Theorem 1.7. As Babai et al. [2], at first we define the following
two polynomials which are crucial for our proof.

For a fixed integer a € Z, let €(a,x) be the polynomial in the variable
z with rational coefficients such that for each b€ Z

0, ifb=a,
£(e.b) = {1, if b a.

For every a = (ai,...,a,) € C, let us define the polynomial fa(x) of n
variables x;,...,Zn:

fax) =] (Z e(as,zi) — z) ,

leL \i=0
clearly the coefficients of which are integers.

Note that, for any two distinct words a = (a1,...,a,), b= (b1,...,b,) €
C, the representation Y ., €(a:,b;) computes the Hamming distance of a
and b. For a = b, fa(a) = (-1)%s!, so val(f,(a)) = val(s!). For a # b,
we may assume Y . &(a;,b;) = rp® +t, where 7 is a non-negative inte-
ger and 1 <t < s. Then for every j > 0, the number of multiples of p’
in the set {rp®* +¢t —1,...,rp* +t — s} is at least |s/p’], specially the
number of multiples of p* is 1 in this set while [s/p*] = 0. Accordingly,
val(fa(b)) > val(s!) for and distinct pair a, b. By the argumentation in
previous section, it is not difficult to see polynomials f,, a € C, separate 0
from £ + ¢Z.

We claimn that these polynomials fa, a € C, are linearly independent
over Q. Consider a nontrivial linear combination

z Aafa(x) =0,

acC

and discuss as in the proof of Theorems 1.6, then we can obtain all Ay, a €
C, equal to zero. This concludes our claim.

Note that all our discussions are over the domain where z;(z;—1) - - - (z;—
z+ 1) = 0 for every variable z;, 1 < i < n. Consequently we can assume
that each variable z; has exponent at most z —1 in polynomials f., a € C.
Otherwise we can reduce it modulo z;(z; — 1)---(z; — z + 1) for all z;.
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In addition, each term of f, is a monomial with at most s variables. The
space of such monomials has dimension }";_,(z — 1)!(%}). Before this, we
have found |C| linearly independent polynomials in this space, implying our
desired bound. |

Remark. As a corollary, a similar result of Theorem 1.6, which is about
the family with given symmetric difference sizes between sets, is derived
directly from the above theorem when z = 2.

Corollary 3.1. Let £ = {1,2,...,s}, where 1,2,...,s are in the residual
class of modulo q. Suppose F is a family of subsets of X such that |[FAF'| €
L (mod q) for any two distinct members F, F' of F. Then

Iflsi(’;).

i=0
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SMALL COMPLETE CAPS IN GALOIS SPACES

GIORGIO FAINA, FABIO PASTICCI, AND LORENZO SCHMIDT

ABSTRACT. Some new families of complete caps in Galois affine spaces
AG(N,q) of dimension N = 0 (mod 4) and odd order ¢ < 127 are
constructed. No smaller complete caps appear to be known.

1. INTRODUCTION

A k-cap in an (affine or projective) Galois space over the finite field with
q elements F,, is a set of k points no three of which are collinear. A k-cap
is said to be complete if it is not contained in a (k + 1)-cap. A plane k-cap
is also called a k-arc.

The central problem on caps is determining the maximal and minimal
sizes of complete caps in a given space, see the survey papers [14],[1] and
the references therein. For the size of the smallest complete cap in the
affine space AG(N,q) of dimension N over F,, the trivial lower bound is
\/iqﬂf“l. Complete caps of size about ¢™/2 are known to exist for g even,
see (16, 10, 8, 12]; the same holds for g odd, provided that NV is even [7]. In
this paper, the case g odd, N =0 (mod 4) will be dealt with. Under these
assumptions, complete caps of size k < %qg' were obtained by Giulietti,
provided that ¢ > 762 [7]. For 25 < g < 762, the smallest known complete
caps appear to have size ¢/2. The aim of this paper is to construct smaller
complete caps for ¢ in this range.

Our main result is the following.

Theorem 1.1. Assume that N =0 (mod 4). Then there exists a complete
cap in AG(N,q) of size nqqﬁi—_z, with (g,nq) as follows:

g [|27] 20| 53|67 | 73]81]83]89
g | 23] 25 | 35 | 42 | 45 | 49 | 50 | 54
g [[97 101 [ 103 [ 107 | 109 [ 113 | 121 | 127
g |[55] 61 | 60 | 63 | 65 | 66 | 71 | 74

2000 Math. Subj. Class.: 51E22.
Keywords: Affine space, Complete cap, Complete arc.
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