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ABSTRACT. In this paper we define, for a graph invariant

. ; — ¥(C
W, the deck ratio of ¥ by Dy(G) = m;()—m We

give generic upper and lower bounds on Dy, for monotone
increasing and monotone decreasing invariants v, respec-
tively.

Then we proceed to consider the Wiener index W(G),
showing that Dy (G) < WTC}—)FE We show that equal-
ity is attained for a graph G if and only if every induced
P3 subgraph of G is contained in a C4 subgraph. Such
graphs have been previously studied under the name of
self-repairing graphs.

We show that a graph on n > 4 vertices with at least
"2‘% edges is necessarily a self-repairing graph and that
this is the best possible result. We also show that a 2-
connected graph is self-repairing iff all factors in its Carte-
sian product decomposition are.

Finally, some open problems about the deck ratio and
about self-repairing graphs are posed at the end of the

paper.
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1. INTRODUCTION

The deck of a graph G is the multiset of vertex-deleted sub-
graphs (G — v)yev(c). The famous unsettled Reconstruction
Conjecture of Kelly and Ulam (cf. [7] and [10]) asserts that ev-
ery graph on n > 3 vertices can be uniquely determined (up
to isomorphism, of course) from its deck. Information on graph
reconstruction can be found in [1] and [8], for instance.

In this paper we shall be considering the deck from a some-
what different point of view. Given some graph invariant i we
shall focus our attention on the ratio 2—‘:‘«'%%@_—”—) This ratio

will be referred to as the deck ratio of 1 and denoted by Dy.
As is easily seen, Dy, is an invariant as well. A word of caution,
however, is necessary to the effect that Dy may not be defined
for some graphs. An example of this situation will be seen in
Section 2 when we consider the Wiener index.

The main purpose of our investigation will be to look for lower
and upper bounds on Dy, (for particular invariants or classes of
invariants) and to investigate the structure of extremal graphs
which attain the bounds.

A graph invariant ¥ will be called vertez-increasing (resp.
vertez-decreasing) if for every graph G and every vertex v of G
holds %(G) > ¥(G — v) (resp. ¥(G) < (G - v)).

It is easy to establish the following generic bounds on Dy, for
a monotone :

Observation 1.1. Let v be a graph invariant. Let G be a graph
on n vertices.

(a) If ¥ is vertez-increasing, then: Dy(G) >
(b) If 3 is vertez-decreasing, then: Dy(G) <

2= |-

Proof. We prove only (a), since the proof of (b) is the same, up
to obvious sign reversals. By the monotonicity of ¢, we have for
every vertex v € V(G):

¥(G) = %(G —v).



Summing over all vertices we obtain:
np(G) > Y %(G ).
veV(G)
And this is just:
Dy(G) =

S|

O

In the remainder of this paper we shall be considering mostly
a particular invariant, namely the Wiener indez W of a graph.
If the graph G is connected, then W(G) is defined as the sum
of all distances between pairs of two different vertices. That is:

W(G) = {d(u,v)lu,v e V(G),u #v}.

For disconnected graphs we define the Wiener index to be
oo, following [5]. The Wiener index and its applications to the-
oretical chemistry have been extensively studied (cf. [4] for a
survey). It is also pertinent to remark that for a graph on n
vertices the Wiener index may be viewed as a re-scaling by (})
of the average distance. (cf. [9] for a survey) of the graph.

In the next section we study the deck ratio of the Wiener index
in detail, establishing a tight upper bound and giving a charac-
terization of graphs attaining equality in this bound. These turn
out to be exactly the so called self-repairing graphs, first intro-
duced by Farley and Proskurowski [6] and studied further by
Djelloul and Kouider [3]. We also establish in Section 2 some
new properties of self-repairing graphs.

In Section 3 we consider the extremal problem for self-repairing
graphs and show that a graph on n > 4 vertices with at least
n2-3n46 V3 . : Mo o .
=== edges is necessarily a self-repairing graph and that this
Is the best possible result. Some open questions about the deck
ratio of an invariant and about self-repairing graphs are asked
in Section 4.

Our notation and terminology follow mostly that of [2]. in
particular, the clique, cycle and path on k vertices are denoted
by Kk, Ck, Py, respectively. The join G, V G5 of the graphs G,
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and G, is formed by adding all possible edges between G, and
Gs.

2. THE DECK RATIO OF THE WIENER INDEX

In this section all graphs are assumed to be 2-connected. The
reason for this is that the deck ratio of the Wiener index is
undefined whenever a graph has a vertex-deleted unconnected
subgraph (since the denominator of the deck ratio is infinite in
this case).

We introduce another term before proceeding. For any vertex
v € V(G) its transmission o(v) is the sum of all distances from
v to other vertices. That is:

o(v) =Y _{d(u,v)lu € V(G)\{v}}-

The Wiener index is not a vertex-monotone invariant (in the
sense of the previous section). However we can estimate to some
extent the change in the Wiener index effected by the deletion
of a vertex. The following fact is well-known (cf. [5, Property
2.1]) and easy to prove:

Fact 2.1. For every graph G and every vertez v € V(G) holds:
W(G —v) 2 W(G) —a(v).

Now we can establish an upper bound on the deck ratio of the
Wiener index.

Theorem 2.2. Let G be a 2-connected graph on mn vertices.
Then: Dw(G) < %5.

Proof. Summing the inequality of Fact 2.1 over all vertices in G
we obtain:

S W(G—v)2aW(G) - )Y o(v).
veV(G) veV(G)
By the definition of the transmission we see that:

Y o(v) =2W(G).

veV(G)
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Therefore:
(n-2JW(G) < Y W(G-v).
veV(G)

In other words: ]

Dw(C) € —.

a

This bound turns out to be tight. Moreover, we can give
a characterization of the graphs for which equality is attained.
First we note that the triangle K3 attains equality (as can be
easily verified from the definition). For n > 4 vertices we have
the following result:

Theorem 2.3. Let G be a 2-connected graph on n > 4 vertices.
Then Dw(G) = - if and only if every induced subgraph of G
which is isomorphic to P3 is contained in some subgraph of G
which is isomorphic to Cy.

Proof. Looking over the proof of Theorem 2.2 we observe that
Dw(G) = = if and only W(G — v) = W(G) + o(v) holds for
every vertex v.

Now, this means that for every v the following property must
hold: for every two vertices u, w (different from v) the distances
between v and w in G and G — v must be the same.

The preceding property is equivalent to the following one for
every v: for every two vertices u,w (different from v) there is
a shortest path from u to w in G to which v doesn’t belong.
When the property is formulated in this way, it is clear that we
can assume, without loss of generality that both u and w are
adjacent to v and that u and w are non-adjacent themselves.

It remains to point out that the subset {u,v,w} C V(G)
induces a P3. On the other hand, the shortest path between
u and w which misses v is necessarily of the form (u, z, w) for
some z € V(G) (2 ¢ {u,v,w}). Thus the subgraph induced by
{u,v,w, z} contains a Cj. O

Graphs with this property have been introduced under the
name of self-repairing graphs by Farley and Proskurowski [6] and
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studied further by Djelloul and Kouider [3]. In the remainder
of this section we establish two new properties of self-repairing
graphs.

Corollary 2.4. Every graph is isomorphic to an induced sub-
graph of a self-repairing graph.

Proof. Let G be some graph and let H = GV Kj,. Then it is
readily seen that G is an induced subgraph of H, which is a
self-repairing graph by Theorem 2.3. O

The second property pertains to the Cartesian product. The
Cartesian product of G; and G, is denoted by G;0JG>, being
the graph with vertex set V(G;) x V(G2) and with two vertices
(v1,v2) and (w;, ws) being joined by an edge if and only if one
of the following holds: (i) v; = w; and {vz, w2} € E(Gz) (ii)
vp = wo and {v;, w1} € E(Gy).

Note that the Cartesian product is commutative, that is:
G,0G,; = G.0G;.

Theorem 2.5. Let G and Gy, ...,Gn, be 2-connected graphs so
that G = G10...0G,.. Then G is a self-repairing graph if and
only if every G;, 1 < i < m, is a self-repairing graph.

Proof. Without loss of generality we may assume that m = 2.

First let us prove that if Gy and G are self-repairing then so is
G10G,. Suppose that the vertices z = (z1,22),¥ = (¥1,¥2),2 =
(21, 22) induce a subgraph isomorphic to P in G,0G2, with z
being adjacent to both y and z. Since both G; and G are self-
repairing, without loss of generality we can assume that z; =
and therefore zo and y, are adjacent in G;. Now we shall deal
with two cases.

Case 1: Assume that z; = 2,. Then it follows that zo and
2o are adjacent in G,. Also, y;3 = 2 and thus y, and 2, are
non-adjacent in Gs, since otherwise y and z would be adjacent
in G10G3, contrary to assumption.

So we observe that z3,y2 and z; induce a P3 in G and by
Theorem 2.3 there must be a vertex we € V(Gs) that is different
from o and is adjacent to both y; and 2. Then the vertices
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z,y,z and w = (z;,w2) belong to a subgraph isomorphic to C,
in GlgGg.

Case 2: Assume that z; # z;. Then it follows that z; and 2,
are adjacent in G; and that zo = z,. Now consider the vertex
u = (21,y2) € V(G1OG,). We see that u ¢ {z,y, 2z} and that the
vertices z, y, z, u induce a subgraph isomorphic to Cy in G,0G,.

In both cases we find that G,00Gj is a self-repairing graph by
Theorem 2.3.

Conversely, let us prove that if G is not a self-repairing graph,
then for every graph H, the graph G,00H is not a self-repairing
graph. Indeed, by Theorem 2.3 we see that there exist distinct
vertices z,y,z € V(G,) that induce a subgraph isomorphic to
P3 which is not contained in any subgraph isomorphic to C,.
Without loss of generality assume that z is adjacent to both y
and z.

Now pick some vertex w € V(H) and consider the subgraph
induced by the vertices (z,w), (y,w), (z,w) € V(G,00H). It is
isomorphic to P3 and the vertices (y, w) and (z, w) have no com-
mon neighbour in G100H, for the existence of such a neighbour
would imply that y and z have a common neighbour in G;.
Thus the subgraph induced by (z,w),(y,w) and (z,w) is not
contained in any subgraph isomorphic to Cy. By Theorem 2.3
we conclude that G,0H is not a self-repairing graph. O

3. THE EXTREMAL PROBLEM FOR SELF-REPAIRING GRAPHS

Let us consider the extremal problem for self-repairing graphs.
We shall denote by g(n) the minimum number such that any 2-
connected graph on n vertices and with at least g(n) edges is a
self-repairing graph. Since the triangle is a self-repairing graph,
we have that g(3) = 3. In fact we have the following general
formula:

Theorem 3.1. For anyn > 3, g(n) = =346

Proof. First, consider a non-self-repairing 2-connected graph G
on n vertices. By Theorem 2.3 there are three vertices {z,y, 2}
that induce a P3 subgraph which is not contained in any C,
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subgraph. Without loss of generality, suppose that y is adjacent
to z and z.

Then z and 2z have no common neighbours except for y. This
means that the sum of their degrees is at most n—1. The degree
of y may be as high as n — 1. On the other hand, the degree of
any vertex other than z,y or z is at most n — 2, since it cannot
be adjacent to both z and z. Therefore, the graph has at most
(n-Lt(n-1+(n=3)(n-2) _ n’—n+d eqges. Therefore a 2-connected
graph with at least w edges cannot be a non-self-repairing
graph.

Now let us construct a 2-connected non-self-repairing graph
on n vertices and with "2'3-——2’54 edges. First take a clique on
(n — 4) vertices labelled vy, ...,vn—4. Then take a triangle with
vertices labelled wy,wq, w3 and add the following set of edges:
{(w‘izvj)ll < 1 < 2: 1< .7 <n- 4} U {('lU3,'l)n_4)}- Fina'lly, take
a new vertex y and add the following set of edges: {(y,v;)|1 <
j <n—5}U{(y,w2)}-

The graph G thus obtained has, in fact, ﬁ‘—g"—ﬂ edges and
is 2-connected. On the other hand, the subgraph induced by
{ws, ws, y} is isomorphic to P3 and is contained in no subgraph of
G which is isomorphic to Cy. Therefore G is not a self-repairing
graph. a

We remark that in 6] Farley and Proskurowski have shown
that a self-repairing graph on n vertices must have at least 2n —
4 edges and have characterized the self-repairing graphs with
exactly 2n—4 edges. That result provides a natural complement
to our Theorem 3.1.

4. SOME OPEN PROBLEMS

Is the converse of Observation 1.1 true? Without loss of gener-
ality, we formulate the problem below only for vertex-increasing
invariants.

Problem 4.1. Let 9 be some invariant. Suppose that Dy(G) >
L holds for every graph G on n vertices for which Dy, is defined.
Does it then follow that v is vertez-increasing?
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Another interesting question about the relationship between
¥ and Dy, is the following:

Problem 4.2. Let 4 be an NP-hard invariant. Is then D, nec-
essarily an NP-hard invariant?

In Section 3 we have found the value of the extremal function
g(n) and have described a construction of an extremal graph for
it. However, this is not the only possible construction. So, we
can pose the following problem:

Problem 4.3. Describe all 2-connected non-self-repairing graphs
on n vertices and with w edges.

Now let H and K be some fixed graphs such that K is iso-
morphic to a subgraph of H. We make the following definition:

Definition 4.4. A graph G is said to have property (K, H) if
every induced subgraph of G which is isomorphic to K is con-
tained in some subgraph of G which is isomorphic to H.

Obviously, by Theorem 2.3 the 2-connected graphs with prop-
erty I(Ps, Cy) are exactly the self-repairing graphs. In fact, it is
not hard to show that a connected graph with property I(Ps, C;)
must be 2-connected and thus a self-repairing graph.

It is also not difficult to see that the graphs with property
I(2K,, Ps) are exactly the graphs that have diameter at most
two.

We now pose the following problem:

Problem 4.5. Giwen H and K as in Definition 4.4, describe
all graphs with property (K, H).
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