SMALL COMPLETE CAPS IN GALOIS SPACES
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ABSTRACT. Some new families of complete caps in Galois affine spaces
AG(N,q) of dimension N = 0 (mod 4) and odd order ¢ < 127 are
constructed. No smaller complete caps appear to be known.

1. INTRODUCTION

A k-cap in an (affine or projective) Galois space over the finite field with
q elements F,, is a set of k points no three of which are collinear. A k-cap
is said to be complete if it is not contained in a (k + 1)-cap. A plane k-cap
is also called a k-arc.

The central problem on caps is determining the maximal and minimal
sizes of complete caps in a given space, see the survey papers [14],[1] and
the references therein. For the size of the smallest complete cap in the
affine space AG(N,q) of dimension N over F,, the trivial lower bound is
\/iqﬂf“l. Complete caps of size about ¢™/2 are known to exist for g even,
see (16, 10, 8, 12]; the same holds for g odd, provided that NV is even [7]. In
this paper, the case g odd, N =0 (mod 4) will be dealt with. Under these
assumptions, complete caps of size k < %qg' were obtained by Giulietti,
provided that ¢ > 762 [7]. For 25 < g < 762, the smallest known complete
caps appear to have size ¢/2. The aim of this paper is to construct smaller
complete caps for ¢ in this range.

Our main result is the following.

Theorem 1.1. Assume that N =0 (mod 4). Then there exists a complete
cap in AG(N,q) of size nqqﬁi—_z, with (g,nq) as follows:

g [|27] 20| 53|67 | 73]81]83]89
g | 23] 25 | 35 | 42 | 45 | 49 | 50 | 54
g [[97 101 [ 103 [ 107 | 109 [ 113 | 121 | 127
g |[55] 61 | 60 | 63 | 65 | 66 | 71 | 74
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2. COMPLETE CAPS FROM BICOVERING ARCS

Throughout this section, g is assumed to be odd and N divisible by 4.
Let ¢ = qﬁi—‘z. Fix a basis of Fs as a linear space over Fg, and identify
points in AG(N, gq) with vectors of F,y x Fy» x Fy x Fg. Also, let ¢ be a
fixed non-square in F,. Note that as ﬂi‘—z is odd, c is a non-square in F
as well.

For an arc A in AG(2,q), let

Ka = {(a,0?,u,v) € AG(N,q) | € Fy, (u,v) € A}.

As noticed in [7], the set K4 is a cap whose completeness in AG(N, q)
depends on the bicovering properties of A in AG(2,9).

According to Segre [17], given three pairwise distinct points P, Py, P; on
aline £in AG(2,q), P is external or internal to the segment P, P, depending
on whether

(2.1) (x —z1)(z — z2) is a non-zero square in Fy or not,

where z, z; and z, are the coordinates of P, P; and P, with respect to
any affine frame of £.

Definition 2.1. Let A be a complete cap in AG(2,q9). A point P €
AG(2,q) \ A is said to be bicovered by A if there exist P,PP3,Pse A
such that P is both external to the segment P, Py and internal to the seg-
ment P3Py. If every P € AG(2,q) \ A is bicovered by A, then A is said
to be a bicovering arc. If there ezists precisely one point Q € AG(2,q)\ A
which is not bicovered by A, then A is said to be almost bicovering, and Q
is called the center of A.

Our main tool is the following result from (7].

Proposition 2.2. If A is a bicovering k-arc, then K4 is a complete cap
in AG(N, q) of size kq'N=D/2, If A is almost bicovering with center Q =
(z0,%0), then either

K=KsU{(a,0® —c,To,0) | € Fp}
or

K=KsU{(e,0? - z0,50) |a €Fp}
is a complete cap in AG(N, q) of size (k + 1)gN=2/2,

3. NEW COMPLETE CAPS

The starting point of our investigation are some known families of com-
plete arcs in the projective plane PG(2,¢q) over Fq. Given a complete k-arc
A in PG(2,q), a natural question in this context is whether for a line ¢
disjoint from A, the arc A is bicovering (or almost bicovering) in the affine
plane PG(2,q) \ £ = AG(2,q).
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We fix the following identification of AG(2, q) with PG(2,q)\¢. Assume
that ¢ as equation a,X; + a2X2 + a3X3 = 0. Then for a point P in
PG(2,q9) \ ¢ with homogeneous coordinates (z,z2,z3), let m¢(P) be the
point in AG(2, q) defined as follows:

ifal =0,a2 950,
ifa; =a2=0.

a1z +021‘2+03$3 a1z +0232+aa-‘ta

(0111+a2$2+aa=3 YayTy +ﬂ:;2+0313) if a1 7& 0,
me(P) =< (

a)T) +0212+03$J ? 01-’51+¢!2$z+63$3

For a k-arc A in PG(2,q) and for a line ¢ dlSJOlnt from A, let
= {me(P) | P € A} C AG(2,9).

We have investigated the bicovering properties of A¢ for the following

arcs A in PG(2,q):

o the Chao-Kaneta complete 22-arc CKy; in PG(2,27) [3];

e the Chao-Kaneta complete 24-arc CK»4 in PG(2,29) [2];

e Zirilli arcs in PG(2,q) [19, 20|, for 53 < ¢ < 127.
We recall the definition of a Zirilli arc. Let C be a non-singular plane
projective curve of degree 3 defined over [y, and let C(F,) C PG(2,q) be
the set of points of C with coordinates in [F,. It is well-known that C(F,)
can be given the structure of an abelian group. If the size of C(F,) is even,
then the coset of the subgroup of index 2 in C(F,) is an arc. This was first
noticed by Zirilli. The completeness of Zirilli arcs has been investigated
in several papers {18, 15, 11, 6, 5). The Zirilli arc arising from a curve
with affine equation Y2 = f(X), with f a polynomial of degree 3, will be
denoted by Z(f(X)).

A computer assisted search has produced the results of Table 1. In
Table 1, the letter B stands for bicovering, whereas AB indicates that
A¢ is almost bicovering. Also, w stands for an element in Fa; satisfying
w?+2w+1 =0, a € Fg is such that a® + 2a® + 2 = 0 and v € Fy9;
satisfies 42 + 7y 4+ 2 = 0. Taking into account Proposition 2.2 these results
provide a proof of Theorem 1.1.

Remark 3.1. Other complete arcs have been checked, for instance those
described in (13, 9, 4]. No further example of a bicovering or almost bicov-
ering arc has been obtained. On the other hand, other almost bicovering
Zirilli arcs with size larger than those described in Table 1 have been found
out.
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Tonter

q A 7 TAel | B or AB | )

27 CKaa X1 +weXs +wi*Xs =0 | 22 AB (w?, wi?)
29 | 24 X) + 27 X3 + 271Xg = 0 24 —AB | (5,22)

53 Z(X> + X) X) + 21Xz +24X3 =0 34 AB (57, 1)

67 | Z2(X° + X* +39X) X2 +4X3 =0 42 B

73 Z(X® + 5) X1 +41X2 +72X3 =0 45 B

81 | Z(X°S +taX?+al?) | X1 +o X2 +a>2X3 =0 | 49 B

83 Z(X3 + X* +67) X; + 78X + 35X3 =0 50 B

89 Z(X° + X* + 33) X, 4+87Xa+ X3=0 54 B

97 Z(X® + X* +13) X1 + 37X2 +43X3 =0 55 B

101 Z(X3 +8) X, + 86X + 70X3 =0 61 B

103 Z(X% + X* +20) X =0 60 B

107 | Z(X° +2X? +18) X1 + 40X, +43X3 =0 63 B

109 Z(X° +8) Xy +4X2 +64X3 =0 65 B

113 | Z(X® + X* +110) Xy + 69Xz +11X3 =0 66 B

121 | Z(XS + X2+ 7)) | Xa+ 7o Xa ty ' Xa=0] 71 B

127 Z(X° + X2 4 24) X; + 34Xz +7X3 =0 74 B

TABLE 1. Bicovering or almost bicovering arcs A¢ in AG(2,q)
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