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Abstract

A graph X is said to be End-regular (resp., End-orthodox, End-inverse)
if its endomorphism monoid End(X) is a regular (resp., orthodox, in-
verse) semigroup. In this paper, End-regular (resp., End-orthodox,
End-inverse) graphs which are the join of split graphs X and Y are
characterized. It is also proved that X +Y is never End-inverse for any
split graphs X and Y.
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1 Introduction and preliminaries

Endomorphism monoids of graphs are generalizations of automorphism
groups of graphs. In recent years much attention has been paid to en-
domorphism monoids of graphs and many interesting results concerning
graphs and their endomorphism monoids have been obtained. The aim of
this research is try to establish the relationship between graph theory and
algebraic theory of semigroups and to apply the theory of semigroups to
graph theory. Just as Petrich and Reilly pointed out in [11], in the great
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range of special classes of semigroups, regular semigroups take a central
position from the point of view of richness of their structural “regularity”.
So it is natural to ask for which graph G the endomorphism monoid of G is
regular (such an open question raised in [10]). However, it seems difficult
to obtain a general answer to this question. So the strategy for solving this
question is finding various kinds of conditions of regularity for various kinds
of graphs. In [12], The connected bipartite graphs whose endomorphism
monoids are regular were explicitly found. An infinite family of graphs
with regular endomorphism monoids were provided in (7], and the joins
of two trees with regular endomorphism monoids were also characterized.
Hou, Luo and Cheng [5] explored the endomorphism monoid of P,, the
complement of a path P, with n vertices. It was shown that End(F,) is an
orthodox monoid. The split graphs with regular endomorphism monoids
were studied in [4] and [6], respectively. The split graphs with orthodox
endomorphism monoids were characterized in [3). Moreover, Split graphs
whose half-strong (resp, locally-srong, quasi-strong) endomorphisms form
a monoid were characterized in [9]. In this paper, we continue to explore
the endomorphisms monoids of the joins of split graphs and characterize
such graphs whose endomorphism monoids are regular (resp., orthodox,
inverse). )

The graphs considered in this paper are finite undirected graphs without
loops and multiple edges. Let X be a graph. The vertex set of X is denoted
by V(X) and the edge set of X is denoted by E(X). The cardinality of the
set V(X) is called the order of X. If two vertices z; and x2 are adjacent in
graph X, the edge connecting z; and z, is denoted by {z;,z2} and write
{z1,72} € E(X). For a vertex v of X, denote by Nx(v) (or briefly by
N(v)) the set {z € V(X)|{z,v} € E(X)} and called it the neighborhood of
v in X, the cardinality of Nx(v) is called the degree or valency of v in X
and is denoted by dx (v). A subgraph H is called an induced subgraph of X
if for any a,b € H, {a,b} € H if and only if {a,b} € V(X). We denote by
K, a complete graph with n vertices. A cligue of a graph X is the maximal
complete subgraph of X. The cligue number of X, denoted by w(X), is the
maximal order among the cliques of X.

Let X and Y be two graphs. The join of X and Y, denoted by X +Y,
is a graph with V(X +Y) = V(X)uV(Y) and E(X+Y) = BE(X)UE(Y)U
{{e,b}la € V(X),b e V(Y)}.

Let G be a graph. A subset K C V(G) is said to be complete if {a, b} €
E(G) for any two vertices a,b € K. A subset S C V(G) is said to be
independent if {a,b} ¢ E(G) for any two vertices a,b € S. A graph X is
called a split graph if its vertex set V(X) can be partitioned into disjoint
(non-empty) sets S and K, such that S is an independent set and K is a
complete set. We can always assume that any split graph X has an unique
partition V(X) = KU S, where K is a maximal complete set and S is an
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independent set. Since K is a maximal complete set of X, it is easy to see
that for any y € S, 0 < dx(y) < n —1 where n = |K]|.

Let X and Y be two graphs. A mapping from V(X) to V(Y) is called
a homomorphism if {a,b} € E(X) implies that {f(a), f(b)} € E(Y). A
homomorphism from X to itself is called an endomorphism of X. An en-
domorphism f of X is said to be half-strong if {f(a), f(b)} € E(X) implies
that there exist ¢ € f~!(a) and d € f~!(b) such that {c,d} € E(X). De-
note by End(X) and hEnd(X) the set of all endomorphisms and half-strong
endomorphisms of X. It is known that End(X) is a monoid with respect
to the composition of mappings and is called the endomorphism monoid
(or briefly monoid) of X. Denote by Idpt(X) the set of all idempotents of
End(X). It is known that every idempotent endomorphism is half-strong.

A retraction is a homomorphism f from a graph X to a subgraph Y
of X such that the restriction fly of f to V(Y) is the identity map on
V(Y). It is easy to see that the idempotents of End(X) are retractions.
Let f be an endomorphism of a graph X. A subgraph of G is called the
endomorphic image of G under f, denoted by Iy, if V(If) = f(V(G))
and {f(a), f(b)} € E(I;) if and only if there exist ¢ € f~!(f(a)) and
d € f~1(f(b)) such that {c,d} € E(G). By p; we denote the equivalence
relation on V(X) induced by f, i.e., for a,b € V(X), (a,b) € p; if and only
if f(a) = f(b). Denote by [a],, the equivalence class containing a € V(X)
with respect to py.

An element a of a semigroup S is called regular if there exists z € S
such that aza = a. A semigroup S is called regular if its elements are
regular. A semigroup S is called orthodoz if S is regular and the set of all
idempotents forms a subsemigroup, that is, a regular semigroup is orthodox
if the product of its any two idempotents is still an idempotent. An inverse
semigroup is a regular semigroup in which the idempotents commute and
inverse semigroups are orthodox semigroups. A graph X is said to be End-
regular (resp., End-orthodox, End-inverse) if its endomorphism monoid
End(X) is regular (resp., orthodox, inverse). Clearly, End-inverse graphs
are End-orthodox and End-orthodox graphs are End-regular.

The reader is referred to (1] and {2] for all the notation and terminology
not defined here. We list some known results which will be used frequently
in the sequel to end this section.

Lemma 1.1([7]) Let X be a graph and f € End(X). Then
(1) f € hEnd(X) if and only if Iy is an induced subgraph of X.
(2) If f is regular, then f € hEnd(X).

Lemma 1.2 ([8]) Let X be a graph and f € End(X). Then f is
regular if and only if there exists g,h € Idpt(X) such that p, = ps and
I =1y
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Lemma 1.3 ([7]) Let X and Y be two graphs. If X +Y is End-regular,
then both X and Y are End-regular.

Lemma 1.4 ([7]) Let X be a graph. Then X is End-regular if and
only if X + K,, is End-regular for any n > 1.

The following are some known results about split graphs which are
essential for our consideration.

Lemma 1.5([4]) Let X be a split graph with V(X) = K U S, where
S = {y1,Y2,--»¥m} is an independent set and K = {k1,ka....,kn} is a
maximal complete set. Then a mapping f on the set V/(X) is a retraction
of X if and only if the following conditions holds:

(1) For z € K, f(z) = ; for y € S, either f(y) € K\N(y), or f(y) € S,
in this case, N(y) C N(f(y)) and f3(y) = f(v).

(2) For some z; € K such that f(z;) = y; € S, where y; is some
vertex in X which is adjacent to every vertices of K except z;; for z €
K\{z:}, f(z) = z; f(y;) =yj; for y € N(z:)N S, f(y) € N(y;) \ N(y); for
y € S\ (N(z;) U {y;}), either f(y) € K\ N(y) or f(y) € S, in this case,
N(y) € N(f(y)) and f*(y) = f(v)-

Lemma 1.6([6]) Let-X be a connected split graph with V(X) = KUS,
where § is an independent set and K is a maximal complete set, |[K| = n.
Then X is End-regular if and only if there exists r € {1,2,...,n — 1} such
that d(x) =r for any z € S.

Lemma 1.7([6]) A non-connected split graph X is End-regular if and
only if X exactly consists of a complete graph and several isolated vertices.

Lemma 1.8([4]) Let X be a split graph with V(X) = KUS, where §
is an independent set and K is a maximal complete set. If for some y; # y;,
N(y;) € N(y;), then X is not End-orthodox.

2 End-orthodox split graphs

We will characterize the End-orthodox split graphs in this section. Since
End-orthodox split graphs are End-regular, we always assume our graphs
are End-regular in this section. To our aim, we first describe the idempotent
endomorphisms (retractions) of End-regular split graphs.

Lemma 2.1 Let X be a connected End-regular split graph with
V(X) = KUS, where S = {y1,¥2,.-,Ym} is an independent set and
K = {ki1,kz...,ks} is a maximal complete set. Then f € End(X) is an
idempotent if and only if one of the following conditions holds:
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(1) For z € K, f(z) = x; for y € S, either f(y) € K\ N(y), or f(y) € S
with N(y) = N(f(y)) and f2(y) = f(y).

(2) Ifd(y) =n —1 for all y € S, there exists z; € K such that f(z;) =
y; € S, where y; is some vertex in X which is adjacent to every vertices of
K except z;; for z € K\ {z:}, f(z) = ; f(y;) = y;; for y € N(z;) N S,
}‘gzz))e Iit;(ﬁ;r y € S\ (N(z:) U{y;}), f(y) € S with N(y) = N(f(y)) and

Yy)=1)

Proof It follows from Lemmas 1.5 and 1.6.

Note that a non-connected End-regular split graph consists of a com-
plete subgraph of it and several isolated vertices.

Lemma 2.2 Let X be a non-connected End-regular split graph with
V(X) = KUS, where S = {y1,¥2...,¥m} is an independent set and K =
{k1,k2..., kn} is a complete set. Then f € End(X) is an idempotent if and
only if for k; € K, f(k;) = k;; for y € S, either f(y) € K, or f(y) € S with
2 y) = fy)

Proof Note that an endomorphism of graph maps a clique to a clique
with the same order.

Theorem 2.3 Let X be a connected split graph with V(X) = KUS,
where S = {y1,¥2,...,Um} is an independent set and K = {k, ko...,kn} is
a maximal complete set. Then X is End-orthodox if and only if

(i) d(y) =r for any y € S, where r € {1,2,..n — 1};

(ii) Nx(y:) # Nx(y;) whenever i # j for ,j € {1,2,...,m}.

Proof The necessity follows from Lemmas 1.6 and 1.8.

Conversely, if the condition (1) holds, by Lemma 1.6, X is End-regular.
In the following, we only need to show that the composition of any idem-
potent endomorphisms of X is also an idempotent in each cases.

Assume r < n — 1. Let f be an arbitrary retractions of X. Then by
Lemma 2.1, for z € K, f(z) = z; for y € S, either f(y) € K \ N(y), or
f(y) = y. It is a routine to show that the composition of any such two
retractions is also a retraction of X.

Assume r = n — 1. Let f be an arbitrary retractions of X. Without
loss of generality, suppose y; is not adjacent to k; for i = 1,2,.-.,m. Then
by Lemma 2.1, f acts in one of the following ways:

(1) for any z € K, f(z) = z; for y; € S, either f(y;) = z;, or f(y;) = y;.

(2) f(zi) = yi € S for some z; € K; f(z) = z for any z € K\ {z;};
F(yi) = yi; f(y;) = k; for any j #i.

It is straightforward to see that the composition of any such two retrac-
tions is still a retraction of X. The proof is complete.

Remark 2.4 Fan characterized the connected End-orthodox split graphs
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in [4], but the main result Theorem 2.5 [4] has a mistake.

Theorem 2.5 [4]: Let G be a split graph with V(G) = K U S, where
K = {k,kj...,kn} is a maximal complete set and S = {v1,¥2,.-1Ym} is an
independent set. Then X is End-orthodox if and only if exactly one of the
following conditions holds:

(1) d(y) < n—1 for all y € S, Moreover, Nx(v:) € Nx(y;) for any
i# 37 (5,5 € {1,2,..,m}).

(2) d(y) = n—1 for all y € S, Moreover, m < n and after reindexing
{z;,y;} ¢ E(G) for every j € {1,2,...,m}.

In fact, the condition (1) of Theorem 2.5 [4] is not enough to ensure
a split graphs being regular. For example, let X be a connected split
graph with vertex set V(X) = K U S, where K = {1,2,3,4}, § = {5,6},
Nx(5) = {1,2}, Nx(6) = {3}. Obviously X satisfies condition (1) of
Theorem 2.5 in [4]. Lemma 1.5 implies that X is not End-regular. So that
the vertices in the independent set have the same valency is necessary for
End-regular and also for End-orthodox.

The next theorem characterizes the non-connected End-orthodox split
graphs.

Theorem 2.5 Let X be a non-connected End-regular split graph with
V(X) = KUS, where § = {v1,92, . Ym} is an independent set and
K = {ki,kz....kn} is a complete set. Then X is End-orthodox if and
only if m =1.

Proof Suppose m # 1, then S contains at least two vertices y1 and ya.
Let f be an idempotent that maps y; to some k; € K and fixes the others,
and let g be an idempotent that maps y; to ) and fixes the others. Now
af(¥2) = w1, but gf(v1) = ki # y1. Hence gf is not an idempotent and X
is not orthodox.

Conversely, suppose m = 1 and f is an idempotent endomorphism of
X, then f(k;) = k; and either f(y1) = k; (k; € K) or f(y1) = w1- Itisa
routine matter to show that the composition of any two such idempotents
is still an idempotent. Hence X is End-orthodox.

3 End-regular joins of split graphs

The End-regular split graphs have been characterized in Lemma 1.6 and
Lemma 1.7. In this section, we will characterize the End-regular graphs
which are the join of split graphs.

Let X be asplit graph with V(X) = V(K,)US1, where 8; = {z1,---,Zp}
is an independent set and V(K,) = {k1,k2,- -+ ,kn} is & maximal com-
plete set. Let Y be another split graph with V(Y) = V(Km) U Sa, where
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S2 = {y1,¥2, - -, ¥,} is an independent set and V(K,,) = {r1,72,---,7m}
is a maximal complete set. Then the vertex set V(X +Y) of X +Y can
be partitioned into three parts V(K,i+m), S) and S, i.e., VIX+Y) =
V(Knim) U Sy U Sy, where V(Knim) = V(K,) UV (Ky) is a complete
set, S and S; are independent sets. Obviously the subgraph of X + Y
induced by V(K,,+m) is a complete graph and the subgraph of X +Y in-
duced by S) U S, is a complete bipartite graph. Hence in graph X +Y,
Nx4y(z:) = Nx(z;)UV(Y) forz; € S1,i € {1,2,---,p} and Nx,y(w:) =
Ny (y:)UV(X) fory; € S3,i € {1,2,---,g}. It is easy tosee that X +Y is a
split graph adding to the edge set {{zi,y;} | z: € S1,y; € S2}. By Lemma
1.3, we know if X + Y is End-regular, then both of X and Y are End-
regular, so we always assume that X and Y are End-regular split graphs in
the sequel unless otherwise stated. Moreover, let d, be the valency of the
vertices of S} in X and dg be the valency of the vertices of S; in Y. Clearly,
if X (resp., Y) is connected, then 0 < d; <n —1 (resp.,, 0 <dy <n—1);
if X (resp., Y) is non-connected, then d, = 0 (resp., d2 = 0).

Lemma 3.1 Let X and Y be two End-regular split graphs. If X + Y
is End-regular, then d) + m =dy + n.

Proof Suppose d; +m # dz+n, without loss of generality, let d; +m <
ds +n. Asd; < mn, for any z € S;, z is not adjacent to exactly n — d;
vertices of V(K,) in X, so z is not adjacent to exactly n — d; vertices
of V(Knsm) in X + Y, take such a vertex and write k. Similarly, for
any y € Sa, y is not adjacent to exactly m — ds vertices of V(K 4+y,) in
X +Y, take such a vertex and write r,. Let z; be a vertex of S; and y;
be a vertex of S;. Since |V(Kp4m) N Nxiy(z)| =di+m <dpg+n =
[V(Kp+m) N Nx1y(y1)|, there exists a permutation 7 on V (K, 4+m) such
that 7(V(Kp4m) N Nxyy(z1)) C V(Knim) N Nxiry(v1)-

Let f be a mapping from V(X +Y') to itself defined by

M, e VKyen)

T(x), ifx € n+m)s

flz)= T(kz), if €S \{;l}'
7(rz), if z € Ss.

Then f € End(X +Y). Since |V(Kpnim) N Nxiy(z1)] < |V(Epim) N
Nx 4y (y1)l, Iy is not an induced subgraph of X +Y. Hence f ¢ hEnd(X +
Y). It follows from Lemma 1.1 that X +Y is not End-regular. A contra-
diction. Therefore d; + m = ds +n.

Lemma 3.2 Let X and Y be two End-regular split graphs with d; +
m =dy +n. If X +Y is End-regular, then

(1) There are no two vertices z;, 27 € Sy, such that Nx(z,)UNx(z2) =
V(Ky).
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(2) There are no two vertices ¥, y2 € Sa, such that Ny (y1))UNy(y2) =
V(Km)-

Proof (1) Suppose there exist two vertices x; and z3 of S such that
Nx(21)UNx(z2) = V(Kn). Then (V(Ka)\Nx (z1))N(V (Kn)\Nx(z2)) =
¢. Let y) be a vertex of S2. Then there exists a permutation 7 of V(Kpn4m)
such that 7(V (Kn)\Nx(21)) = V(Km)\Ny (1) and 7(V (K)\Nx (z2)) =
V(Km) \ Nx(z2).

For z € S; and y € Sz, k. and r, have the same meaning as in the
proof of Lemma 3.1. Let f be a mapping from V(X +7Y) to itself defined
by

Y1, "'f T=2x,
z2, (".f T = XT3,

f(:L‘) = T(x): ifxze€ V(Kn+m)a
T(kx), ifze S \ {:B1,$2},
1'(7‘,,), ifzxe Ss.

Then f € End(X +Y). It is easy to see {y1,22} € E(X +Y). But
f~Y(=za) = z2, f~ (1) = 1 and {z1,22} ¢ E(X +Y). Therefore f ¢
hEnd(X +Y) and so X +Y is not End-regular.

A similar argument may show that if there exist two vertex y1,y2 € Sy
such that Ny (y1) U Ny (¥2) = V(Km), then X +Y is not End-regular.

We next prove the conditions in Lemma 3.1 and 3.2 are the sufficient
conditions such that X+Y being End-regular. Note that in case of m+d; =
n+ds, X +Y has a unique clique (of order n+m) if and only ifdy <n—2
and dy < m—2. So we can go process into two cases: d; < n—2, do <m-2
and dy =n — 1, d3 = m — 1. First we have

Lemma 3.3 Let X and Y be two End-regular split graphs with d; <
n—2,d, < m-2and m+d; =n+d; Then for any endomorphism
f of X +Y, I is an induced subgraph of X +Y (i.e, End(X +7Y) =
hEnd(X +Y)) if and only if

(1) There are no two vertices ;1,22 € S1 such that Nx(z1)UNx(z2) =
V(K,).

(2) There are no two vertices y;,y2 € Sz such that Ny(y1)UNy(y2) =
V(Km)-

Proof Necessity follows from the proof of Lemma 3.2.

Conversely, if there are no two vertices z1,z2 € 51 such that Nx(z;)U
Nx(z2) = V(K,), then for any two vertices s1,s2 € Sy, there is no en-
domorphism f such that f(s;) € S and f(s2) € S2. Otherwise, since
F(V(Kn4m)) = V(Knim) and the numbers of vertices in V(Kn+m) which
is adjacent to f(s;) and s; (i=1,2) are equal, we have f(V(Kn)\Nx(s1)) C
V(K,) and f(V(Kn)\ Nx(s2)) C V(Kn). Note that Nx(s1) U Nx(s2) #
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V(K,), (V(Kn) \ Nx(s1)) N (V(Kp) \ Nx(s2)) # ¢. Hence V(K,) N
V(Kn) # ¢. A contradiction. Similarly, if there are no two vertices
¥1,¥2 € Sy such that Ny (y;) U Ny(y2) = V(K,,), then for any two ver-
tices s;,s82 € Sa, there is no endomorphism f such that f(s;) € S; and
f(s2) € 83,

Let f € End(X +Y) and let a,b € Iy with {a,b} € E(X +Y). We need
to prove that there exist ¢ € f~1(a), d € f~!(b) such that {c,d} € E(X +
Y). If both of a and b are in f(V(Kn+m)), then there exist ¢ € f~1(a),
d € f~1(b) such that {c,d} € E(X +Y) since f(V(Kpim)) = V(Kntm)-
If exactly one of a and b is in f(V(Kn4m)), without loss of generality,
assume that a € f(V(Kn4+m)), b € f(V(Knim)), then there exists a vertex
¢ € V(K 4m) such that f(c) = a. Suppose that {c,v} ¢ E(X +7Y) for any
vertex v € f~1(b), let u € f~1(b). Then u is adjacent to exactly m + d,
vertices in V(Knim)\{c}, say, 1,Z2, - *, Tm4d,. So b is adjacent to f(z,),
f(z2), -, f(Tmia,). Clearly f(z1), f(z2), -+, f(Tm+a,), a are distinct.
We get that b is adjacent to m-+d; 41 vertices in V(K,4m), a contradiction.
If both a and b are not in f(V(Knt+m)) and {c,d} ¢ E(X +Y) for any
c € fYa), d € f~}(b), then f~!(a) and f~!(b) are contained in the
same S;(i = 1,2). From the discussion in the last paragraph, we have
a = f(f~'(a)) and b = f(f!(b)) are in the same S; (¢ = 1,2) and so
{a,b} ¢ E(X +Y), a contradiction, as required.

Lemma 3.4 Let X and Y be two End-regular split graphs with d; <
n—2,dy < m—2. Then X +Y is End-regular if and only if

(l) m+d1 =n+d2)

(2) There are no two vertices =, 2 € Sy such that Nx(z1)UNx(z2) =
V(K.),

(3) There are no two vertices y1,y2 € Sz such that Ny (y) U Ny (y2) =
V(Kn).

Proof Necessity follows immediately from Lemmas 3.1 and 3.2.

Conversely, let f € End(X +Y). To show that f is regular, we need
to prove that there exist two idempotents g and h in End(X) such that
pg = py and Iy = Iy,

Since d; < n—2and dz < m —2, f(V(Knim)) = V(Kpntm) and for
any £ € §) U Ss, there exists a vertex kz € V(K,4m) such that z is not
adjacent to k.. Let h be the mapping from V(X +Y) to itself defined by

[z ifzef(X+Y),
"(‘”)—{ b ifae VX +VI\ X +T).

Then h € End(X +Y) and h(V(Knim)) = V(Knsm). Ifz € f(X +7Y),

then h2(z) = h(z) = z; If z € V(X +Y)\ f(X +Y), then h?(z) = h(k:) =
ky = h(z) since k; € V(Knym) € f(X +Y). Hence f € Idpt(X +Y).
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Clearly, I; and Iy have the same set of vertices. Note that an idempotent
endomorphism is half-strong. It follows from Lemmas 1.1 and 3.3 that both
Iy, and I are induced subgraph of X +Y. Therefore In=1I;.

Since f(V(Kn4m)) = V(Knim), [2]p, contains at most one vertex of
V(Knsm) for any £ € V(X +Y). Without loss of generality, suppose

that V(X + Y)/P.f = {[kllpp [k2]Pf"‘ [knlp,n [TI]P!"’[T"‘]P!’ [sl]Pf"’[s\‘v]pJ }a
where s; € S; US,. Let g be a mapping from V(X +Y) to itself defined by

ki’ Zf TE [ki]p;)
g("B) = Tiy Zf TE [Ti]p_p
s;, tfzxze [s,-]p,.

Then g € End(X +Y). If any z € [ki],,, then g%(z) = g(k:) = ki = g(z);
If z € [ri),, then g?(z) = g(r:) = r = g(z); And if = € [si]p,, then
g%(z) = g(s:) = 8;i = g(x). Hence g% = g. Clearly, p, = py, as required.

Lemma 3.5 Let X and Y be two End-regular split graphs with d; =
n—1 and d =m — 1. Then X +Y is End-regular if and only if

(1) Nx(z1) = Nx(z2) for any z,,%2 € S,

(2) Ny (y1) = Ny (y2) for any y1,42 € S2,-

Proof Necessity follows immediately from Lemma 3.2.

Conversely, since Nx (1) = Nx(z2) for any 71,22 € 5) andd; =n—1,
there is an unique vertex k in K such that {z,k} ¢ E(X +Y) for any z €
S,. Similarly, there is an unique vertex r in K3 such that {y, r} ¢ E(X+Y)
for any y € Sa. Now the subgraph of X +Y induced by $; U Sa U {k,7}
is a complete bipartite graph, we denote it by Kmyn,- Hence X +Y is
isomorphic to Kpim—2+ Ky, - Since Kp, n, is End-regular (see[12]), by
Lemma 1.4, X +Y is End-regular.

Now we are ready for our main result in this section.

Theorem 3.6 Let X and Y be two split graphs with V(X) = V(K,)U
S1, V(Y) = V(Kum) U S, respectively. Then X +Y is End-regular if and
only if

(1) X is End-regular, that is there is a positive integer d; such that
dx(z) = d, for any z € Sy,

(2) Y is End-regular, that is there is a positive integer d; such that
dy(y) = dg for any y € 5>,

(8) m+d, =n+ds,

(4) There are no two vertices z), T2 € 51 such that Nx(z;)UNx(z2) =
V(K,),

(5) There are no two vertices y1,¥2 € S, such that Ny (y;)U Ny (y2) =
V(Km).

Proof It follows directly from Lemmas 1.3, 1.6, 3.4 and 3.5.
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4 End-orthodox joins of split graphs

The End-regular graphs which are the join of split graphs are characterized
in section 3 and the End-orthodox split graphs are characterized in section
2. Furthermore, we will characterize the End-orthodox graphs which are the
join of split graphs in this section. We also prove that the endomorphism
monoids of such graphs are not inverse. To these aims, we first give the
following lemmas which is essential for our consideration.

Lemma 4.1 Let G; and G2 be two graphs. If G; +G3 is End-orthodox,
then both of G, and G5 are End-orthodox.

Proof Since G) + G is End-orthodox, G, + G; is End-regular. By
Lemma 1.3, both of G; and G are End-regular. To show G, is End-
orthodox, we only need to prove that the composition of any two idempo-
tent endomorphisms of G, is also an idempotent.

Let f) and f2 be two idempotents in End(G;). Define two mappings
g1 and g from V(X +Y) to itself by

s ={ L [2EG ew={2O 1E0

Then g, and go are two idempotents of End(G; + G3) and so g,g. is also
an idempotent of End(G, + G3) since G; + G; is End-orthodox. Clearly,
fif2 = (9192)|c,, the restriction of g, g2 to G,. Hence f) f5 is an idempotent
of End(G,), as required.

A similar argument will show that G5 is also End-orthodox.

Lemma 4.2 Let G be a graph. Then G is End-orthodox if and only if
G + K, is End-orthodox for any positive integer n.

Proof If G + K, is End-orthodox, then by Lemma 4.1, G is End-
orthodox.

Conversely, for any positive integer n, by Lemma 1.4, if X is End-
regular, then X + K, is End-regular. Let f be an idempotent of End(G +
K,). Note that w(G + K») = w(G) +n, V(K,) C Iy and f|k, = 1|x.,., the
identity mapping on K,,. Hence f(V(G)) C V(G) and f|¢ € Idpt(G).

If f1 and f; are two idempotents of End(G + K,,), let g1 = fi|c and
92 = f2|g. Then g1, g2 € Idpt(G) and so 192 € Idpt(G). Now (f1f2)|k, =
1|k, and (f1f2)|le = 9192 imply that f, f> is an idempotent of End(G+K,).
Consequently G + K, is End-orthodox.

Let X and Y be two split graphs. If X +Y is End-orthodox, then X +Y
is End-regular and both of X and Y are End-orthodox and so are regular.
So, in this case, we can represent graphs X and Y as in section 3 (see the
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first paragraph in section 3). Furthermore, we have Nx(z1) # Nx(z2) for
any two vertices 1,72 € S1 and Ny(y1) # Ny(y2) for any two vertices
y1,y2 € Sa. The following lemma describes the idempotent endomorphisms
of certain End-regular graphs X +Y.

Lemma 4.3 Let X and Y be two split graphs and X + Y be End-
regular with dy < n —2,d, < m — 2. If Nx(z1) # Nx(z2) for any two
vertices x1,z2 € S1 and Ny(y1) # Ny (y2) for any two vertices y1,y2 € Sz,
then f € End(X +Y) is a retraction (idempotents) if and only if

(1) f(z) = z for any = € V(Knim)-

(2) For any y € S1US,, either f(y) € V(Knsm)\Nx+v(y), or f(y) =y

Proof Note that under the hypothesis of lemma, X +Y has an unique
maximum clique Ky 4.

As in section 3, we go precess into two cases.

Lemma 4.4 Let X and Y be two End-regular split graphs with d; <
n—2,dp <m—2. Then X +Y is End-orthodox if and only if

(1) X +Y is End-regular,

(2) Nx(z1) # Nx(z2) for any two vertices 21,z € 51,

(3) Ny (y1) # Ny (yz) for any two vertices y1,¥2 € S2.

Proof Necessity is obvious.

Conversely, since X +Y is End-regular, we only need to prove that the
composition of two idempotent endomorphisms is also an idempotent. Let
f be an arbitrary idempotent of End(X+Y). Then flv(x,,..) = Uv(Knim)
and either f(z) = z or f(z) = kg, for any x € S; U S;, where k; is a vertex
in V(Kn4m) such that {z,k;} ¢ E(X +Y). Now the assertion follows

immediately.

Lemma 4.5 Let X and Y be two End-regular split graphs with d; =
n—1and d; = m — 1. Then X +Y is End-orthodox if and only if |S| =
|S2| = 1.

Proof Necessity is obvious.
Conversely, X + Y is isomorphic to Ky4m-2 + Cs. Since C; is End-
orthodox, it follows from Lemma 4.2 that X + Y is End-orthodox.

Now we are ready for our main result in this section.

Theorem 4.6 Let X and Y be two split graphs with vertex set V(X) =
V(Kp)US1, V(Y) = V(Kn)USs, respectively. Then X+Y is End-orthodox
if and only if

(1) X is End-regular, that is there exists a positive integer d, such that
dx(z) = d, for any z € 5,

316



(2) Y is End-regular, that is there exists a positive integer d; such that
dy (y) = d2 for any y € S,

8) m+d; =n+d,,

(4) Nx(z1) U Nx(z2) # V(K,) for any two vertices z,,z2 € Sy,

(5) Ny (1) U Ny (y2) # V(Km) for any two vertices y;,y2 € Sa,

(6) Nx4+y(s1) # Nx4y(s2) for any two vertices s;,s2 € S; U Ss.

Proof If X +Y is orthodox, then X + Y is regular and so both of X
and Y are regular. Now it follows immediately from Theorem 3.6, Lemma

4.4 and 4.5.

In conjunction with Theorem 3.6, we obtain another version of the
previous theorem as follows:

Theorem 4.6* Let X and Y be two split graphs with vertex set
V(X) =V(K,)US:, V(Y) = V(K,) U Sy, respectively. Then X +Y is
End-orthodox if and only if

(1) X +Y is End-regular;

(2) Both of X and Y are End-orthodox.

As an application of Theorem 3.6, we prove that the endomorphism
monoid of the join of two split graphs can not be an inverse semigroup.

Theorem 4.7 Let X and Y be split graphs with vertex set V(X) =
V(Kp,)US, V(YY) = V(K,,)US,, respectively. Then End(X +Y) can not
be an inverse semigroup, that is, X + Y is always not End-inverse.

Proof Since inverse semigroups are orthodox semigroups, we may sup-
pose that X + Y is End-orthodox. There two cases:

Case 1 X and Y are two split graphs satisfied conditions in Lemma
4.4. Let =, be a vertex in S;. Then there exist two vertices k; and ks in
V(K,) such that {z1,k1}, {z1,k2} ¢ E(X +Y) sinced, <n—2. Let f and
g be two mappings from V(X +Y) to itself such that f(z,) = ki, f(z) ==
forzx e V(X+Y)\{z:1} and g(z;) = ko, g(x) =z forz € V(X +Y)\ {21},
respectively. Then f and g are two idempotents of End(X + Y') such that
fg=gand gf = f. Clearly, f # g. Hence gf # fg and End(X +Y) is
not an inverse semigroup.

Case 2 X and Y are two split graphs satisfied conditions in Lemma
4.5. Let z; be a vertex in S;. Then there exists exactly one vertex in V(K,)
which is not adjacent to x;, say, k). Let f and g be two mappings from
V(X +Y) to itself such that f(z,) = ki, f(z)=zforz € V(X +Y)\{z:1}
and g(k;) = z1, g(z) = z for z € V(X +Y) \ {k1}, respectively. Then f
and g are two idempotents of End(X + Y') such that fg = f and gf = g.
Clearly f # g. Hence gf # fg and End(X +Y') is not an inverse semigroup.
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