ON LINEAR POSITIVE OPERATORS INVOLVING
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ABSTRACT. In this paper we recall Konhauser polynomials. Approx-
imation propertics of these operators are obtained with the help of
the Korovkin theorem. The order of convergence of these operators
is computed by means of modulus continuity, Peetre’s K-functional
and the elements of the Lipschitz class. Also, we introduce the r-th
order generalization of these operators and we evaluate this gener-
alization by the operators defined in this paper. Finally, we give an
application to differential equations.

1. Introduction

In 1965, Konhauser presented the general theory of biorthogonal poly-
nomials [8]. In 1967 (9], he introduced the following pair of biorthogo-
nal polynomials Y™ (z; k) and Z{™ (z;k) (n> —1; ke N={1,2,3,..})
which are suggested by the classical Laguerre polynomials LM (z) given
by

L (z) = Y (1) = 28 (x;1).

In this work, we are especially interested in Y™ (z;k) (k € Z*) which is
defined by

Y4 (k) = 5—,};0‘”—,;)(-1) () () -

The classical Meyer-Kénig and Zeller (MKZ) operators are defined in 1960
[11] by

M (f;) = (1 - 2)™*! g,f (ﬁ) (n:k):zk, z€0,1).
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In order to give the monotonicity properties, Cheney and Sharma intro-
duced the modification of the MKZ operators

M? (f;z) = (1 - z)" ki;of (ﬁ-—n) (n : k)a:", z€0,1). (1.1)

In [4], they also introduced the operators (for z € [0,1) and t € (—00,0])
oy mexp (<2 ) S £ (K ) L () 2 (1 - )
Pt =e (755) 2 f () B 0@ -ar™ 02

where L{™ (£) denotes the Laguerre polynomials. Since L{™ (0) = (n Z k) s

then M (f;z) is the special case of the operators Py (f; z). Now, We
consider the sequence of linear positive operators (similarly in [5]) which
is another generalization of the these operators via v (z; k) Konhauser
polynomials. For z € [0,1), t € (—0,0] and k < n +1,

1 = Uk n v
(Lnf)(z’t)=m;f(k(v—l)+n+l)y"( )t k)z¥, (1.3)

where {Fy, (z,t)},¢n are the generating functions for the sequence of func-
tions {YJ") (% Ic)} en given by Carlitz (3] in the form
vENo

o0
Fa(z,t) =) _YM (tk)z, n>0 (1.4)

v=0
and

Fa(wt)= (-2 F exp{-t[1-2)7* -1]} (1.5)
This recurrence relation was given by Srivastava in [12]

Y (4.k) = (k( - 1) + 0+ 1) Y, (k) — k0¥ (65k)  (1.6)

where Y™ (t;k)=0forveZ .

If we choose k = 1 in (1.3), then we acquired (1.2). Similarly, if we
choose k£ =1 and ¢ = 0 in (1.3), we get (1.1) which are called as Bernstein
power series by Cheney and Sharma in [4].

Lemma 1.1. L, f is linear and positive operator.
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Proof. For Vf,g € C[0,1) and Vo, 8 € R, we have

(Ln(af + Bg))(=,t)

1 oo
Fu(@0) Z_:o(“f + B9) (o=t Y™ (6 K) 2

= = 3 L (n) (4
~ Fp(z,t) vz_:% f (k(v—;))+n+1) ;M (k) x¥

B < . . )
+Fn(w,t)1§)9(nﬁlﬁm Y™ (k)
= a(Laf)(z,t) + B(Lag) (x,t).

So, the operator Ly, f is linear. From the expression of Y™ (k) (k€ Zt)
Konhauser polynomials, we get that

YV (k) = ﬁz_j —, i‘(—l)” () (25),
= (n_.kﬂ)o + (B-?ci)l + [(Ekﬂ)l - (n_;cLZ)l] z
+3 {(3E), + [(28), - (%2),] =
+[(22), -2 (582), + (32),) 5} + &

2
= L [mE ] [lotlaehen) _ Gnepeie £ g

If we use t € (—~00,0], n > 0 and k € Z*, then we have the positivity of
Konhauser polynomials. Also, from (1.5) one can see that F,, (z,t) generat-
ing function is positive for = € [0,1). Hence, we obtain that L, f operator
is positive for z € [0,1), t € (—00,0], n > 0 and k € Z*. (]

The goal of this paper is to define linear positive operators including
Konhauser polynomials, to investigate the approximation properties and
the rate of convergence of this operators by using modulus of continuity,
Peetre’s K-functional and Lipschitz class functional, to define the r-th order
generalization of the operators and to study the approximation properties
and rate of convergence of this r-th order generalization, to give an appli-
cation to differential equation for the operators.

2. Approximation properties of L,

Let z € [0,1),t € (—00,0], b be a real number in the interval (0,1) and
ei (z) = z*, i = 0,1,2. We have the following theorem for the convergence

of the operators L, f.
To obtain our main results we recall the following theorem.
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Theorem 2.1. (P. P. Korovkin’s Theorem) Let f € C[a,b] and f(z) is
bounded function on the real azxis. If the three conditions

L,(L;z) 3 1

Lpo(t;z) 3 =

Lp (%) = 2
are satisfied for the sequence of linear positive operators Ly, (f;x) then the
sequence Ly, (f;z) converges to f (z).

Now we prove the following theorem to obtain approximation properties
of the operators Ly, (f; z) with the help of Korovkin’s theorem.

Theorem 2.2. If f is continuous on [0,b] then (L, f) (x,to) converges to
£ (z) uniformly on [0,b] for each fized value of the ty € (—00,0].

Proof. From Lemma 1, it is clear that L, f is a positive linear operator.
From (1.4), we see from the function f (s) = 1, that
(Lneo) (z,t0) = 1. (2.1)
Consider then the function f(s) = s. For it by using (1.6) and (1.4), we
have

1
(Lnel) (x’ to) = F, (.'L‘ tO) Z k(v-T{-n+l (tO’ k) z¥

+1
F, (:z; to) &= E(y(n) (to; k) kiu—1§+n+1 v(gl )(t k))z®.

Since

0 1 y{»+D)
F, (z,tp) ; k(v—1)+n+1 Yo (to; k) z” < 0

then
(Lnel) (a:, to) >z (2.2)
On the other hand, we have

e} @t0) = S (101 ) - i ¥int (s )

v=1

b o~ 1 (1) (5. 1) ¥
z Fr (2, %0) gkﬁnﬁyv (to; k) z*.

One can easily see that k—-F:Tl' L and Foyy (z,t0) = (1 - x)"% F, (z,to)
from (1.5). Thus, we obtain
i,
[(Lne) (@ 20) 2l < 2 (1 2)H
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If we take maximum over [0,5] from two hand-side of last inequality for
z € [0,b], we obtain

|to b
l(Lner) (z, o) — x”C[O,b] < 'n(l_-—-bf (2.3)

We proceed then to a consideration of the function f (s) = s2. Using

1 > 2
(Lnez) (z,t0) = F, (z, o) Z (k(v—;’)k+n+l) Ytsn) (tos k) =¥

v=0

and the recurrence formula (1.6) twice, we obtain

1 k(v—
I R E (v 2)+ﬂ+ly(ﬂ) t 'k v 2
( n€2) (:D, tO) z© = [Fn (33, tﬂ) v=2 k(v=D)+n+17v-2 ( 0, ):B -z

fo 3 1 (n+1) v
- Y, to; k
F, (z,to) vz=:2 Fo—D+n+1" v-2 (tos k) x

o0

E ! (?) (4. 1y v
+Fn (z,t0) UZ Ro—D)FnF1 Yu-1 (to; k) x

=1

kty < " (n+1)
- Y,uT (to; k) =¥
Fy (z,t0) ; (k(v=1)+n+1)* “v-1 (to; k)
(2.4)
It is obvious that
v+1 < 1
(kv+n+1) n
and using (1.4), we get
kto = v (n+1) v k|to| b
; L —. 2.
F, (z,to) ; (kv=1)+n+1)* Y21 (tes k) 2] < n(l—0b) (2:5)
Similarly, since m < L and using (1.4) we have
o N~ 1y ool ool )
F, (z,t) f;z Rt Yoz (3 k)2 < n(l-b)’ (2.6)

in a similar manner, by using the inequality Z=— < + and (1.4), we
have

sz

Y™ (to; k) z¥ (2.7)

k hnd .
F, (z,t0) Zl Fo—D+n+l v-1 <
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. k(v—2)+n+1 .
Finally, since Fiﬁ%ﬁ < 1, we can write

k(u=2)4n+1y,(n) (4 . 2
F, (:z: to) Z Ko=) ins1 Yoz (to; k) 2¥ —2* < 0. (2.8)

v=2

On the other hand, using the expression
er(s) =2 = (s — z)? + 225 — 22
we may write
(Lnes) (z,to) — 2% = (Ln (e1 - x)2) (2, t0) + 22 (Ln (e1 — 2)) (=, t0) -
By (2.2) and positivity of Ly, it follows that
(Lnez) (z,t0) — 22 > 0.
Thus from (2.5), (2.6), (2.7) and (2.8) we can write

I(Znea) (2, t0) — 22 oy < [lt:,,lb + kl::ol + k(ln b)] 1f-b' (2.9)
So
(Lneg) (z,to) = z?
on [0,3].
Using the Korovkin’s theorem, the proof is completed. O

3. Rate of Convergence

In this section, we compute the rates of convergence by the means of
the modulus of continuity, Peetre’s K-functional and elements of Lipschitz
class.

Let f € C[0,b]. The modulus of continuity of f denoted by w(f;4), is
defined to be

w(f;8)= sup |f(s)—f(z).

|s—z|<é

8,z€0, bl
The modulus of continuity of the function f in C [0, b] gives the maximum
oscillation of f in any interval of length not exceeding 4 > 0. It is well
known that a necessary and sufficient condition for a function f to be in
C[0,b] is

}inéw (f;9)=0.

It is also well known that for any § > 0 and each s € [0, b]
s -s@I<uia (1+1557). (31)

The next results gives the rate of convergence of the sequence {(L f) (z,t)}
(for all f € C[0,b]) by means of the modulus of continuity.
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Theorem 3.1. For all f € C[0,b] and fized ty € (—00,0], we have
I(Zaf) (@1t0) = £ @y < (1+ (3B)*) w (£58n)
2
op = _1.. andB:max{kb’ M M}

Jn 1-6' 1-5

Proof. Let f € C|0,b]. By linearity and monotonicity of L,f and using
(3.1), we obtain

(Enf) (@:t0) = ()] S (38) {1+ 3 (L lex — ) (o).

By the Cauchy-Schwarz inequality we have

(Ea) (t0) = F @ < 0(£i0) {14 3 (An (e}

where

where

1 oo vk 2
M = — (n) . 'U. .
An (zito) Fa (z,t0) UZ=0 (k (v-1)+n+1 m) Y (toi k) 2®. (3.2)

This implies that

3

1
I(Lnf) (z,0) — £ (2)Icpo,e) < w (f36) {1 t3 ( sup An (; tO)) } .
z€[0,b)
(3.3)
For each z € [0,b], one can write
An (:L‘; tO) < |(Lne2) (:1:, tO) - le + 2z |(Lnel) (.’L‘, tO) - :L‘l .
So, by (2.3) and (2.9) we get

s1|1pbl Apn (z380) < " (Lne2) (z,t0) — :z:2|| +2b||(Lner) (z,t0) — z]|
z€|0,

< 3Bé& (3.4)
where B = max{lcb, 51“:",')3, ﬂitﬂ_]:—z} and 6, = ﬁ Combining (3.4) with
(3.3) we can write

I(Laf) @t0) = £ @lope S (1 + GBY2) w(fs8).
a

C? [0, 8] :== The space of those functions f for which £, f/, f € C[0,4].
Similarly in [2], we define the following norm in the space C? [0, ] :

I fllc2po.8 = IS llcpo,sy + I Mo,y + 115 oo,y -
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We consider the following Peetre’s K-functional
K(£,82) = _inf, {1 = sllcam +n lsllcoron }-

Theorem 3.2. If f € C[0,b] and each fized value of to € (—00,0] then we
have

I(Zaf) (2, t0) = f (@)l o) < 2K (£,6n)
where the operators L, f are defined as (1.3) and
_ 2|t0|b+kb(1 —b) +klto|b+3|to|b2

bn dn(1-1b)

Note that §,, — 0, when n — oo.

Proof. Suppose that g € C2[0,b], from the Taylor expansion for g (s) func-
tion, we have

(Lng) @ t0) ~ 9 (@) < I(Ln (o1 = ) (&, t0)] g’ @)
+% |(Zn (e - 2’) (=, to)|lg” ()] (3.5)
Since

- 2
(CRr i gy L E L LAY

taking supremum over [0, 5] from two hand-side (3.5) and by (3.6) and (2.3)
observe that

- 2
I(Lng) (z,t0) — 9 (@)llgoyy < oletElBLibLolbtdliol jig| oy -
(3.7)

On the other hand, since L, f is a linear operator, we have
(Lnf) (@ t0) = F @) < [(Ln (f = 9)) (=, 20)| + |f () — g ()|
+|(Lng) (z,t0) — g ()| - (38)

Thus, by using (2.1) and taking supremum over [0,b] from two hand-side
of (3.8) , we can write

_ 2
I(Znf) (2,t0) = f @iy < 2If —gllcroe + ltolbkb(1 o By klcolb+Sltold
X llgll c2j0,4)-

If we take infimum over g € C? [0, b] from two hand-side of last inequality,
by choosing

_ 2tol b+ kb(1 = b) + k[to] b+ 3 [to] b°
- dn (1-b)
the proof is obvious. a

On
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We will now study the rate of convergence of the positive linear operators
L, means of the Lipschitz class Lipys (o), for 0 < o < 1. We recall that a
function f € C [0, b] belongs to Lipas () if the inequality

£ (&) = f@) < M|t —=|* (3.9)
(t,z € [0, b]) holds.
Theorem 3.3. For all f € Lipp (a) , we have
I(Znf) (2, t0) — f ()l cpoy < M (3B)*/* 63
where B and §,, are the same as in Theorem 8.1.

Proof. Let f € Lipy (@) and 0 < a £ 1. By (8.9), linearity and monotonic-
ity of L, f, we have

M o0
(Znf) (@:t0) = J (&) < s Z;:

«@
z| Y™ (to; k) z¥.

vk -
k(v—1)+n+1

Applying the Holder inequality with p = % and g = -2—3—;, we get
(Lnf) (2,t0) = f (2)] S M (An (z;20))*/ (3.10)
where A, (z; o) is given by (3.2). Combining (3.4) with (3.10) that
I(Lnf) (z,t0) = f @)y < M (3B)*/ 53
whence the result can be obtained. (]
4. A Generalization of r-th Order of The Operators L,

By C"[0,b](0<b< 1, 7=0,1,2,...), we denote the set of functions f
having continuous 7 — th derivatives f(”) (f(9 (z) = f(z)) on the segment
[0,8].

We consider the following generalization of the positive linear operators
L, defined by (1.3) :

1 co T ; v (x—mﬁh)i
(z85) @ = mzzf"(uv-n’iw) E
B p=0 i=0

(A
x Y™ (k)2 (4.1)

where f € CT[0,b],7=0,1,2,... and n € N. We call the operators (4.1) the
T — th order of the operators L, f (for instance [6], [7]). Note that taking
T = 0 we get the sequence {L,f} defined by (1.3).

Theorem 4.1. If f(") € Lipy (@) and f € C"[0,b] then we have
|(57) @t - s @) < HraeBlan)

Clo,b]
X ” (L" lex - mlaw) (x’tO)"c[oS;?Q)
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where B (a,r) is the beta function and r,n € N.
Proof. By (4.1) we get

£@ = (L) @t0) = iz L@ = 519 (rotfeer)
n H v=0 3=

« eommtEm) |y (15 k)a¥.  (4.3)

It is known from Taylor’s integral formula in [6],

(:B 'EZU- ; n ) (z_tiu—vﬂk n. )'.
f(z) - Z & (k(—1)+n+1) e = o

r— r k v
x [= 2 O =y - weet)
0

- f(r)(Tc-(u_—;,,:-T-i-l')]dz’ (4.4)

Because of f(") € Lipps (c), one can get
70 (rtiemmr + 2 (2 - w1 (rotirem)|
a
SMza|$—m-:;-",:mﬁ| (45)

From the well known expansion of the beta function, we can write
1

/z 1- z) " Ydz=B(l+o,r)= —B (o, 7). (4.6)
0
Now by using (4.6) and (4.5) in (4.4), we conclude that

RN e - 5.5
f (IE) - Z f (k(v~lT+n+l) ]

=0

< a8 (o) |o — et T (@)

Taking into consideration (4.3) and (4.7) we have
£ @) - (£51) (@.t0)| < HmageBles)(Lnler = 2I) (st0) - (48)
Taking supremum over [0, b] from two hand-side of (4.8) , we have (4.2). O

Now, consider the function g € C [0, b] defined by
g(s)=ls—=*"". (4.9)
Since g (z) = 0, Theorem 2.2 yields
lim ||(Lng) (2, %) — 9 (z)ll o, = 0-
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So, it follows from Theorem 4.1 that, for all f € C”[0,5] such that f(") ¢
Lipp (a) , we have

im | (£17) (2.t0) = £ @] ., =

Finally, taking into consideration Theorem 3.1 and Theorem 3.3 with M =
b" and observing g € Lip,- (a), one can deduce the following results from
Theorem 4.1 immediately.

Corollary 4.2. For all f € C™(0,b] such that f(") € Lipps (), we have
[(2617) @ t0) = £ @) 1,y < T ate Blenr)(1 + (8B)/*)es (6360)
where 0, is the same as in Theorem 3.1 and g is defined by (4.9).
Corollary 4.3. For all f € CT[0,b) such that f(") € Lipp (), we have
|(2415) @) - £ (= )|C[0 o S et B (aur) (3B)/°67

where 8, is the same as in Theorem 3.1.

The last two results give us the rates of convergence of the sequence
{(LL' ] f) (z, t)} by means of the modulus of continuity and the elements

of the Lipschitz class Lipas (), respectively.

5. An Application to Differential Equations

In this section we give a functional differential equation for (L, f) (z,t)
as defined in (1.3) . This equation seems to be fundamental for the investi-
gation of many kinds of linear positive operators. In May [10], Volkov [13]
and Alkemade [1] there are equations similar to the equation in Theorem
5.1 below.

Theorem 5.1. Let g(s) = =
C[0,b], (Lnf) (z,t) as defined in (1.3), satisfies the functional differential

equation

z% (Laf) (@, t0) = ~a 1580281 (1,.f) (z, 10) + 2541 (L fg) (z,to)
(5.1)

Proof. Since f € C'[0,b], the power series on the right-hand side of (1.3)
converges on [0, 8] . Hence it is allowed to differentiate this term by term in

[0,8] . Thus

d "",—' 0
L Lanete) = LD Y (ot Y (i) 2
v=0

[o o)
+ ey O S e ) Y™ (tos k) va¥ =" (5.2)
v=1
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. k — k
Using g (r(u—_i'mm) = % and

n+l—to(1—

x)"% .
k(l—:z:) Fn(x!t0)7

o
%Fn (x; tO) =

it follows that
d n+l—to(1—2z _'k —~ v
g (Lnf) (z,00) = —z iSO > f ) Y (oK) =

v=0

+E L S (F9) =i )Y (tos k) 2.

v=0

Using (1.3) in this equation, we obtain the proof of the theorem. (]
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