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Abstract

It has been known for at least 2500 years that mathematics and music are
directly related. This article explains and extends ideas originating with
Euler involving labeling parts of graphs with notes in such a way that other
parts of the graphs correspond in a natural way to chords. The principal
focus of this research is the notion of diatonic labelings of cubic graphs,
that is, labeling the edges with pitch classes in such a way that vertices
are incident with edges labeled with the pitch classes of a triad in a given
diatonic scale. The pitch classes are represented in a natural way with
elements of Z;2, the integers modulo twelve.

Several classes of cubic graphs are investigated and shown to be diatonic.
Among the graphs considered are Platonic Solids, cylinders, and General-
ized Petersen Graphs. It is shown that there are diatonic cubic graphs on
n vertices for even n > 14. Also it is shown that there are cubic graphs
on n vertices that do not have diatonic labellings for all even n > 4. The
question of forbidden subgraphs is investigated, and a forbidden subgraph
for diatonic graphs, or “clash”, is demonstrated.
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"FIGURE 1. the tonnetz

It has been known for at least 2500 years that mathematics and music are

directly related, and in fact some of the giants of mathematics have given
attention to the connection. Music served as the gateway for Pythagoras
and his followers to discover mathematics’ value in natural physics. It
is surely by Pythagoras’ knowledge that we have our current harmonic
intervals [2]. In particular, Pythagoras and his followers are credited with
the diatonic scales commonly used in Western music [8]. The focus of this
article will be a line of investigation pioneered by Euler {10}, who introduced
what is now called a “tonnetz”. This is a tiling of a surface with triangles
in which vertices are labeled with notes in the chromatic scale in such a
way that the vertices of each triangular face constitute a chord. This is
illustrated in Figure 1.

One might generalize this idea in a number of ways. Any triangulation of
the plane might be vertex-labeled. A cubic planar graph might be face-
labeled or edge-labeled subject to the condition that the faces or edges
incident with any vertex should constitute a chord. Dropping the restriction
of planar, the idea may be explored for cubic graphs with the edges labeled.
Then, there is the possibility of allowing or requiring different sets of notes
and chords. Some preliminaries are necessary.
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TABLE 1. The pitch classes and intervals

1. PRELIMINARIES

Two kinds of scales are prominent in Western Music, the chromatic scale
and the various diatonic scales. The chromatic scales consists of 12 equally
distributed notes often represented as pitch classes, denoted pes, in music
theory. It is interpreted that the pc O represents the note C, 1 represents
Clf or Db, 2 represents D, and so forth. We define the least non-negative
integer congruent to y —z mod 12, where = and y are pcs, as the pitch class
interval, denoted pci. We use Z,2 to denote both the set of pcs and the
group of pcis.

Shown in Table 1 are the musical notes and intervals within an octave. The

second row lists the letter name for the notes, and the third row lists the
names of the intervals where P stands for perfect, M for major, m for minor,
A for augmented, and d for diminished. The integers in the first row may
be considered as either pc or pcis, depending on whether they represent the
notes in the second row or the intervals in the third row. Thus while Cff and
Db have different names, they are essentially the same note. In music, these
notes are said to be enharmonically equivalent, since both are represented
by pc 1 in the first row of Table 1. In a similar fashion, G and Ab are
enharmonically equivalent since hoth are represented by pc 8. In addition,
the interval from C to C}f is an augmented unison (A1) while the interval
from C to Db is a minor second (m2). Once again, these intervals are both
represented by pci 1 as they are enharmonically equivalent. In general,
raising (lowering) a perfect interval results in an augmented (diminished)
interval while a raised minor interval hecomes major and a lowered major
interval hecomes minor.

With these conventions the addition = + i = y will be understood to mean
that the pc z raised by the pci ¢ yields pc y. So we now have a numeri-
cal interpretation of the twelve pcs of the chromatic scale, and a musical
interpretation of the addition.

In Western music theory, a chord is defined to be the basic element of
harmony and consists of three or more pcs. A chord with three pes is called
a triad, and these chords are the ones that hold our particular interest. A
triad is consists of a root pc and two other pcs that are a third and a fifth
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above the root. A major triad contains a major third and a perfect fifth,
while a minor triad contains a minor third and a perfect fifth [3]. For
example, the F triad is composed of the pcs F (the unison), A (the major
third), and C (the perfect fifth), and the d triad is composed of the pes D
(the unison), F (the minor third), and A (the perfect fifth).

The second prominent kind of scale is the diatonic scale, which is con-
structed by a model based upon ratio intervals used by the Greeks (2, 8].
At first, it would seem logical to divide the keyboard evenly to construct
a scale. This would be synonymous with finding a subgroup of Z;,. How-
ever, this is not the case. In fact, the diatonic scale can be described as a
maximally even set. As this concept does not pertain to the emphasis of
this article, we refer the reader to [6] for definitions.

The other diatonic scales are translations in Z;2 of the C-scale. For exam-
ple, the key of E is ohtained by adding 4 to each of the numerical values
in the key of C. For our purposes, it suffices to consider only the chromatic
scale and the diatonic scale in the key of C. We now define the sets of triads
for the chromatic and diatonic scales.

Definition 1.1.

(i) P -The set of all major and minor triads of the chromatic scale (24
in total) which will be called the consonance triad set. These triads
are: {{0,4,7},{1,5,8},{2,6,9},{3,7,10}, {4,8,11},{5,9,0},
{6,10,1}, {7,11,2}, {8,0,3}, {9,1,4},{10,2,5}, {11,3,6},{0,3,7},
{1,4,8}, {2,5,9}, {3,6,10}, {4,7,11}, {5,8,0}, {6,9,1},{7,10,2},
{8,11,3},{9,0,4},{10,1,5},{11,2,6} }.

(ii) D -The set of triads of the key of C: {C,d, e, F, G, ab°}=
{{0,4,7},{2,5,9}, {4,7,11}, {5,9,0}, {7,11,2},{9,0,4},{11,2,5}}
(7 in total) which will be called diatonic set.

Each triad is represented by a triple in which the first pc represents the
root, the second represents the third, and the third represents the fifth.
However, at times we may represent a given triad as a permutation of the
triple listed here depending on which pc is of interest.

Note that the C scale is the set of pes {0,2,4,5,7,9,11}. We denote this
set, Dj2. The B triad is composed of the three pcs B, Di, F§. However,
we observe that D and Fjf are not in the key of C. To compensate in
traditional Western music, we construct the triad B with a minor third, D,
and a diminished fifth, F. We call this the B diminished, denoted b°. Also
note that h° ¢ P,so D ¢ P.

Definition 1.2. Dy = {y |y € Do,z # v, {z,y} C X € D}. Suchayis
said to be compatible with z.
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Remark 1.3.

(D1) Vz € D13,z ¢ D,. That is, no pc appears twice in one triad.

(D2) Let DL = {X | X € D,{z} C X} Yz € Dy5. Then |D.| = 3. That
is, a pc appears in exactly three distinct triads. Elements of D} are
called z-triads.

(D3) Vz € D1y, |D;| = 4 and |Dy2 — (Do Jz)| = 2. That is, there are
exactly four pcs compatible with z, and there are exactly two pcs
that are neither z nor compatible with z in the diatonic set.

(D4) Vz,y € Dy, if {z,y} C X for some X € D, then there is at most
one Y € D such that Y # X and {z,y} C Y. A pair of pcs appear
in at most two triads.

(D5) Vz,y € Dy2,z € Dy « y € D;. Compatibility satisfies the sym-
metric property.

Lemma 1.4. If{z,y, z} is a triad of the diatonic set, there is no pcw € D;2
such that {z,w}, {y,w}, and {z,w} are subsets of triads in the diatonic
set.

Proof. Assume the contrary. That is, assume there exists a pc w € Djq
such that {x,w}, {y,w}, and {z,w} are all subsets of triads in the diatonic
set. Now, hy (D3) |D,] = 4, so there is another pc v such that v € P,,.
Thus, {z,w,v}, {y,w,v}, and {2z, w,v} must be triads of the diatonic set.
However, this contradicts (D4) as {w, v} appears in three triads. a

2. EDGE HARMONIES

We now have the tools and knowledge to hegin our discussion. Label
the edges of a graph with pcs in Zj2 in such a manner that the vertices
correspond to a common triad. As a simple first example, consider Ky
labeled as in Figure 2. Here each vertex is incident with edges labeled 0,
4, and 7. Hence each vertex corresponds to the C major triad. Such labels
are easily characterized. First, some definitions:

Definition 2.1. A cubic graph is said to have a harmony if the edges can
be labeled with elements of Z;5 so that the labels of the edges incident with
any vertex correspond to a triad. Such graphs are said to be harmonic.

Definition 2.2. A harmonic graph is:

(i) tonal if only one triad is induced by the edge labeling.
(ii) diatonic if every triad of D is induced hy the graph’s labeling.
(iii) consonant if every triad of P is induced by the graph’s labeling.
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FIGURE 3. the cube and dodecahedron tonal

Nice examples of tonal graphs are the three cubic Platonic Solids: the
tetrahedron, the cube, and the dodecahedron, shown in Figures 2 and 3
with labelings.

Characterizing tonal graphs is rather easy. The chromatic index of a graph

G is the minimum integer k such that the edges of G can be labeled with
k colors, no two incident edges having the same color. Recall Vizing's
Theorem [5]:

Theorem 2.3 (Vizing’s Theorem). The chromatic indez of any graph G
is either A(G) or 1 + A(G).

Hence cubic graphs have chromatic index either three or four. Graphs with
chromatic index A and A + 1 are called respectively class 1 and class 2.

Theorem 2.4. A cubic graph is tonal if and only if it is of class 1.
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FIGURE 4. P(12,1) consonant

Proof. Color the edges in three colors, calling the colors 0, 4, and 7. Every

vertex is incident with the edges of one triad. The argument is reversible.
O

Now the Generalized Petersen Graph P(n,2) is hamiltonian and therefore
class 1 and therefore tonal if n # 5 mod 6 [1]. The Petersen Graph P(5,2)
is class 2 and thus not tonal.

The emphasis of our discussion is on diatonic graphs. However, as an easy
example of a consonant graph, consider P(12,1) labeled as in Figure 4.

Now we turn to the more interesting property of diatonic graphs. First,
some examples: Figure 5 show the Generalized Petersen Graphs P(7,1),
P(7,2), P(7,3), and P(14,5) with appropriate labelings. Additionally, we
can further characterize such diatonic harmonies.

Theorem 2.5. Let G be a diatonic graph. Then G has at least 14 vertices.

Proof. Let G be a diatonic graph. The sum of the degrees of the vertices
is equal to twice the numnber of edges. Since G is cubic, 3n = 2¢, and so G
has an even number of vertices.

Now, G is diatonic so each of the seven triads of ID;2 appears on at least
one vertex. Thus n > 7. We can assume that the seven triads appear on
seven of the vertices. Create a listing of the n triads appearing on the n
vertices of G. In the listing, all seven triads appear at least once, so each
pc is written at least three times. Each edge is incident with two vertices,

~n
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FIGURE 5. P(7,1) P(7,2) P(7,3) P(14,5) diatonic

so each edge corresponds to a pc in two triads in the listing. Since each pc
must be counted an even number of times, and each pc is already written
three times, each pc must appear at least once more in the listing of the
triads appearing on the n — 7 vertices left over.

If n = 8, then the eighth vertex will be a repeated triad. However, each
of the seven pcs would have to be a label of an edge incident with the last
vertex. This is a contradiction to the fact that G is cubic.

Let n = 10. In listing the ten triads, there are thirty pcs. There are
three vertices and at most nine edges yet to be determined, and all seven
pes must appear at least one more time. Thus, there are nine pcs not yet
listed. From this information, we deduce the system of equations:

4a+6b=30,a+b=1,
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where a represents the number of pcs in Z;9 listed four times, and b six
times. We find that a = 6, and b = 1.

Thus, the three remaining vertices are incident to a set of edges in which
each of the seven pcs appear in the labeling, six pcs appear four times, and
one pc appears six times. Each has already appeared three times, so one
pc must appear three more times. Choose one pc to be in all three triads,
then those triads are determined, and by (D3) not all seven pes will appear.
Hence there are no solutions to label G.

Let n = 12. Then there are five vertices, vy, v, vs,v3, and v4, and at most
fifteen edges not determined, and once again all seven pcs must appear at
least one more time.

If one pc appears ten times in our list of the twelve triads, then that pc
appears in three of the first seven triads and seven more triads. However,
there are only five triads not yet listed. Thus, no pc appears ten times.

Likewise, if a pc appears eight times in this list of twelve triads, then that
pc appears in the five triads not yet listed. By (D3), there are two pcs that
will not appear in these five triads. Thus, no pc appears cight times. From
this, we deduce the system of equations:

4a+6b=36,a4+b=7,

where a represents the number of pes in Z,s listed four times, and b six
times. We find that a = 3 and & = 4.

Thus, the five remaining vertices are incident to each of the seven pcs,
three pcs appear four times, and four pcs appear six times. Hence four pes
need to appear three more times, and three pcs need to appear one more
time. Without loss of generality, say 0 appears three more times.

Case 1: Each 0-triad appears in the five remaining vertices.

Then, without loss of generality, vo = {0,4,7},v; = {9,0,4}, and vy =
{5,9,0}. Then 4 appears a total of five times in our list, and thus 4 must
appear one more time. The 4-triads are {0,4,7},{9,0,4}, and {4,7,11}.
Now 0 cannot appear again. Thus v3 = {4,7,11}. However, both 7 and 9
appear five times in our list, and they must both appear again. However,
9 ¢ D7 and 7 ¢ Dy, and only one vertex lacks a label. Hence, not every
0-triad appears.

Case 2: The saine 0-triad appears on vy and v;.

Say that vg = v; = {0,z,y}, then z and y must appear once more. Recall
that O appears on va. Assume that neither z nor y appear at vo. Then

341



either z and y appears at the same vertex or one appears at v3 and the other
at v4. Assume the prior, that is z and y appear at v3. There is another pc 2
that must appear three more times, so z appears at vz, v3, and v4. Now v,
must have another pc w so ve = {0, z,w}, and so D, = {0, z,y,w}. Since
0, z,y have appeared three times already, w must be at v4. However, now
w has appeared five times in our listing, and this cannot happen. Thus z
appears at v3, and y appears at v4. Once again, z must appear three times,
so z appears at vg, v, and v4. This contradicts Lemma 1.4.

Hence, either z or y appear at vo. Say x appears at vz, and y appears at
v3. Then, there is a pc z that appears three more times, and so z appears
at vo,v3 and vy. To complete the triad at vs, there is another pc w that
appears at va. Then D, = {0, z,y,w}. Since 0, z and y have appeared three
times already, w must appear with z at v4. However, w appears an odd
number of times. Once again, this cannot occur, and so the same 0-triad
cannot appear at vp and v;.

Case 3: The same 0-triad appears on v, v1, and va.

Obviously then v, v;, and v2 contain the same pcs. These three pcs show
up a total of six times. There must be one more pcs that appears six times,
which implies that this pc appears three times in v3 and v4. This cannot
happen without contradicting (D1). Thus there is no diatonic graph on 12
vertices. a

In light of the previous theorem, the only possible Platonic Solid candidate
to bhe diatonic is the dodecahedron. In fact:

Theorem 2.6. The dodecahedron is diatonic.
Proof. See the labelings of edges in Figure 6. a

Examples of diatonic graphs are not limited to the Platonic Solids. There
are numerous examples. As previously illustrated, Generalized Petersen
Graphs can be labeled with a diatonic harmony. First, the Generalized
Petersen Graph is defined as follows:

Definition 2.7. Let n > 3 and 1 € k < n — 1. The Generalized Petersen
Graph P(n, k) is defined as follows:
Vertex set: V = {vg,v2,...,0n—1} U{wo, w2, ..., wn_1}
{vi ~viz1} =€; foralli
Edge Set: E = ¢ {vi ~w;i} =s; for all ¢
{wi ~wipx} = f; foralli
where subscript arithmetic is modulo n.
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FIGURE 7. Cylinder P(6,1) and Mobius Ladder Mg

Definition 2.8. If k = 1, P(n,k) = P(n, 1) is called a cylinder.
The Mébius Ladder M, is defined like P(n, 1) but with v, ~ Wy, Wy ~ V)
rather than v, ~ vy, w, ~ w,.

The cylinder P(6,1) and the Mébius Ladder Mg are shown in Figure 7.
See Figure 8 for P(14,1) and P(7,2).
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FIGURE 8. P(14,1) and P(7,2) with notation

subscript mod 7 0 1 2 3 4 5 6
s; label 9 4 11 5 0 7 2

e; label 0 7 2 9 4 11 5

fi label 0 7 2 9 4 11 5

TABLE 2. edge labels for P(7n,1)

subscript mod 7 0|1 2 3 4 5 6
v; and w; labels | 59,0 | 0,4,7 | 7,11,2] 2,59 9,0,4 | 4,7,11 | 11,25
vertex triads F C G d a e b°

TABLE 3. triad labels of P(7n,1)

Using these conventions, the edges of P(7n,1) will be labeled with pes of
Z,2 as in Table 2.

Note that the edge labels are precisely the pcs in the diatonic scale in the
key of C. With these labels on the edges, each vertex is incident with three
edges with labels.

Also note that the triads in Table 3 are precisely the 7 triads constituting
the key of C. Hence P(7n,1) is diatonic. Figure 9 shows the labeling of
P(14,1) with vertex v at the north pole.

In the figure, edges are shown with their Z,, labels and vertices are given
their appropriate triad labels. Note that the labels on the e;’s, on the f;’s,
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FIGURE 9. P(14,1) diatonic

subscript mod 7 0 1 2 3 4 5 6
s; label 4 7 11 2 5 9 0

e; label 0 4 7 11 2 5 9

fi label 7 11 2 5 9 0 4
triad at v; a C e G h° d F
triad at w; C e G h° d F a

TABLE 4. labels for P(7n,2)

subscript mod 7 0 1 2 3 4 5 6
s; label 9 4 11 5 0 7 2
e; label 0 7 2 9 4 11 5
fi label 0 7 2 9 4 11 5
v; triad F C G d a e b°
w; triad a e h° F C G d

TABLE 5. labels for P(7n,3)

and on the s;’s respectively progress by fifths with one step a diminished
fifth. By a similar method, it can be shown that the graphs P(7n,2) and
P(7n,3) are diatonic. The details are shown in the tables 4 and 5.
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FICURE 10. P(28,7) diatonic

Note that the edge labelings shown in Table 4 progress in steps of major
and minor thirds. So P(7n,2) is diatonic.

Table 5 shows the label scheme for P(7n,3). Once again, the edge labeling
here progresses in steps of fifths as was the case for P(7n,1). So P(7n,3)
is diatonic.

It is well known that for 1 < k < n, P(n, k) is isomorphic to P(n,n — k)
[11). Hence, the knowledge that P(7,1), P(7,2), and P(7,3) are diatonic
implies that P(7,6), P(7,5), and P(7,4) are also. Similarly, in what follows,
it will always suffice to consider 1 < k < §. The case k = §, when n is
even, is not relevant, since, in this case P(n,k) is not cubic.

Now, labelings of P(7,k) for 1 < k < 3 have been shown in Tables 2, 3,
4, and 5 to be extendable to labelings of P(7n,k). In an entirely parallel
way, labelings of P(7n,j) can be constructed from labelings of P(7,j) for
4 < j < 6. Hence it follows that P(7n,k) is diatonic for 1 < k < 6.

Using the tables presented for P(7n,k) for 1 < k < 3 and the tables which
exist but are not presented here for 4 < k < 6, it will be shown that for all
n>1and 1<k <n with k% 0 mod 7, P(Tn,k) is diatonic.

Theorem 2.9. Letn > 1. Suppose 1 <k <n—1withk #0 mod 7. Then
P(7n, k) is diatonic.
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subscript mod 7 0 1 2 3 4 5 6
s; label 9 4 11 5 0 7 2

e; label 0 7 2 9 4 11 5

fi label 7 odd 5 0 7 2 9 4 11

fi label ¢ even 0 7 2 9 4 11 5

v;, w; triad F C G d a e b°

TABLE 6. labels for P(7n,7) when n = 2k, k > 2

Proof. Let 1 < r < 6 with k£ =r mod 7. We consider the graph P(7n,r),
which is diatonic according to the labeling given in one of the six tables.
Interpret the table of P(7n,r) as a labeling of the edges of P(7n, k). Note
that in this interpretation, the edges e; and s; play exactly the same role
in P(7n,r) as in P(7n, k), that is, e; joins v; to v;4,, and s; joins v; to w;.
However, the edge f; in P(7n,k) joins w; and w;,x, whereas the edge of
the same name joins w; and w;4, in the graph P(7n,r).

The labeling of edges in P(7n,r) is known to give every triad of the di-
atonic scale. It must be shown that the same is true for P(7n,k) in the
interpretation above. First, consider vertex v;. The edges incident with
v; are e;_1,e;, and s;. These edges are identical in P(7n,k) and P(7n,7r),
so the vertices v; have the same triads in P(7n,k) as in P(7n,r). Now
consider the vertices w;. The edges incident with w; in P(7n, k) are s;, f;,
and fi_x. In P(7n,7), the edges incident with w; are s;, f;, and f;—,. But
(i—7)~(i—k)=k—7r=0mod 7 since k =7 mod 7. It follows that the
label on f;_ in P(7n, k) is identical to the label on f;_, in P(7n,r). Hence
w; has the same triad in both labelings, and indeed P(7n, k) is diatonic. O

This theorem raises the interesting question of the labelings of P(7n,k)
when k = 0 mod 7. Now P(14,7) is not cubic and thus it need not bhe
considered. For P(7n,7) with n > 2, the f;’s induce disjoint n-cycles.

Theorem 2.10. Letn =2k, k > 2. Then P(7n,7) is diatonic.
Proof. Label edges according to table 6.
This ensures that w; is a triad. Thus P(7n, 7) is diatonic when n = 2k, k >

2. Consider for example P(28,7) as in Figure 10. O

Using Theorem 2.10, it is possible to show that still more of the P(7n, 7r)
are diatonic.
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FIGURE 11. P(21,7) diatonic

Lemma 2.11. Using standard notational conventions in P(m, k), letdp =
ged(m, k), c be the size of mutually disjoint cycles in the subgraph of P(m, k)
induced by the w vertices, and C be the number of such cycles. Then

() e = g2

(i) C = dmx.

Proof. Let C’ be a cycle of induced by the w vertices such that wy € V(C).
Then C' = wp, Wk, Wk, - .., Wex Where ¢ is the least positive integer such
that ck = O(modm). Asged(k/dm i, m/dm k) = 1, c(k/dm k) =0(modm/dy m).
Hence ¢ = 0(modm/d ), and c is the smallest such positive integer. Thus
c=m/dim.

We can find the number of cycles induced by the w vertices by dividing the
number of w vertices by the length of such a cycle. Hence C = m

m/dgm
dm k.

Theorem 2.12. Let n,r be integers with r # %n Suppose that for some
positive exponent q, 29|n but 2% {r. Then P(7Tn,7r) is diatonic.

Proof. The cycle size ¢ among the w; vertices is gc_dIn;F?’ which is even by
the previous lemma and our assumption on n and r. That is, 27 divides the
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FIGURE 12. P(49,7) diatonic

numerator in the expression for ¢, but 29 does not divide the denominator.
Even cycles may bhe edge-colored in two colors, and this allows use of the
labeling scheme of table 6 following Theorem 2.10. a

Note that not every P(7n,k) is covered by the preceding results. For
example, P(21,7), P(35,7), and P(49,7) are not covered. However, there
are examples of diatonic labelings of P(21,7) and P(49,7) as in Figure 11
and 12. At the time of this writing, the status of P(35,7) is not known.

We can further generalize the diatonic harmonies of the cylinders as the
following theorem demonstrates.

Theorem 2.13. Ifn > 7, then P(n,1) is diatonic.
Proof. The graphs P(n,1) with n divisible by 7 have already been shown
diatonic. Suppose now that n = 7m + k with 1 < k < 6. Then P(n,1) =

P(7m+k,1) can be visualized as Q7m J @k with the addition of four edges
as shown in Figure 13 with the four new edges dotted.
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FIGURE 13. P(n,1) the case when k is even

Note that Qy,, is a spanning subgraph of P(7m, 1), so we borrow the edge

labeling of P(7m,1) from Theorem 2.9 for every edge of Q7. except for
the first and last spokes. In Figure 13, the labels of six of the edges are
indicated. If m > 2, then all seven triads of the diatonic scale appear on
the vertices of Q7. If m = 1, then the only missing triad of D is the F
major triad {5,9,0}. In Qy, as pictured in Figure 13, the edges will be
referred to “inner”, “outer”, and “spokes”. The spokes of Q). will be given
label 5.

If k is even, both the inner and outer edges will be labeled alternately 0
and 9, beginning at the “bottom” in Figure 13. There are four edges joining
Q7m With Qi. These edges will labeled 9. Finally the end spokes of Q7
are given labels 5 at the “top” and 0 at the “bottom”. With these labels,
P(7m + 7,1) has all triads of the diatonic scale. Note that the vertices at
the ends of @) and at the ends of Q7,, and all the vertices of Qx have the
same F triad {5,9,0}.

If k is odd, the construction is slightly different. The inner and outer edges
alternate with 9 and 0 beginning at the “bottom” with 9. The spokes of
Q. are again labeled 5. The top end spoke of Q7,, is labeled 5, and the
bottom spoke is labeled 9. The top edges joining Qi to Q7 are labeled
9. The bottom edges joining Qk to Q7 are labeled 0. Again, the F triads
makes multiple appearances, and P(7m + k, 1) is diatonic. ]

Corollary 2.14. Mobius Ladders M,, for n > 7 are diatonic.

Proof. In the labelings of P(n,1) exhibited in the previous theorem, corre-
sponding inner and outer edges have the same label. O
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FIGURE 14. W with vertices labeled

After characterizing numerous graphs with harmonies, natural curiosity
leads to the search for examples that do not satisfy such schemes. As men-
tioned, we can easily find examples that are not tonal, but cubic graphs with
no diatonic labelings on 14 or more vertices are not easily demonstrated.

Definition 2.15. If H is a graph with A(H) = 3 and if no diatonic graphs
contain H as a subgraph, then H is said to be a diatonic clash.

Definition 2.16. W is a graph with vertex set V = {p,lo,l;,70,m} and
edge set E = {plo, pro, lol1, 7071, l171,loT1,70l1 } as in Figure 14.

Theorem 2.17. W is a diatonic clash.

Proof. Let G be a cubic graph containing W as a subgraph, let e, ey, €3,
e4, es, €g, €7 be the edges plo, loly, 17,7170, 70p, Tol1, and lor; respectively,
and let s be the edge incident with p where s ¢ E(W). We can be certain
that s exists since G is cubic. In order for G to be diatonic, W must be
colored with elements of D5 so that each vertex is a triad. Assume such a
coloring exists. Then a triad appears at the vertex of {;, and without loss
of generality this triad is the C {0, 4, 7}. This leads to six cases.

Case 1: Let e3 =0,e5 =4, and ex = 7.

Then e7 is incident with 0 and 7. Thus e7 has labeled 4. Now r, is incident
with 0 and 4, so e4 may be labeled 7 or 9. Then ry is incident with either
4 and 7 or 4 and 9, thus es is either labeled 0 or 11. Also, e, is incident

with edges labeled 7 and 4, so e; may be labeled either 0 or 11. There is
no available label for s, and Case 1 fails.

Case 2: Let e3 = 0,e5 = 7, and e = 4.

Then e4 is incident with edges labeled 0 and 7, so e, is labeled 4. Now ez
is incident with edges labeled 0 and 4, so e7 may be labeled 7 or 9. Now eg
may be labeled either 0 or 11 as well as e;. Now s cannot be labeled. Case
2 fails.
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Case 3: Let e3 =4,e =0,and e; = 7.

Then e is incident with edges labeled 4 and 7, so e; may be labeled either

0 or 11. Assume ey is labeled 0, then e4 is incident with edges labeled 4
and 0 so e4 must be either labeled 7 or 9. Thus es must be labeled 4 or 5.
Now e; is incident with edges labeled 0 and 7, and so e; must be labeled 4.
Hence, there is no possible label for s. Thus e; must be labeled 11. Now
e4 is incident with edges labeled 11 and 4, so ¢4 must be labeled 7, and so
es must be labeled 4. Now e; is incident edges labeled 7, 4, and 11. By
Lemma 1.4, e; has no available label. Thus Case 3 fails.

Case 4: Let e3 = 7,e6 =0, and e = 4.

Then ey is incident with edges labeled 0 and 7, so e4 must be labeled 4.
Now ey is incident with edges labeled 4 and 7, then e; may be labeled
either 0 or 11. Now e; and es may be labeled either 7 or 9, and there is no
available label for s. Thus Case 4 fails.

Case 5: Let e3 = 7,e6 = 4, and ex = 0.

Then e; is incident with edges labeled 0 and 7, so ez must be labeled
4. Then e, may be labeled either 9 or 11. Now ey is incident with edges
labeled 7 and 4, so e; may be labeled either 0 or 11. Then e is incident
with edges labeled either 0 and 4 or 11 and 4, so es may be labeled either
7 or 9. Once again, there is no available label for s, and so Case 5 fails.

Case 6: Let e3 =4,eg =7,and e =0

Then e7 is incident with edges labeled 0 and 4, so e; may be labeled either

7 or 9. Assume that e; is labeled 7, then e; must be labeled 4, and e4 may
be labeled either 0 or 11. Then es is incident with edges labeled either 0,
4, and 7 or 11, 4, and 7. By Lemma 1.4 es cannot be labeled. Thus e7
must be labeled 9, then es must be labeled 0. Then es is incident with
edges labeled 0 and 7, so e; must be labeled 4. By Lemma 1.4, there is no
available label for e;. Thus Case 6 fails.

We have then exhausted all possible cases for the labeling of the subgraph
W, and so G is not diatonic. Thus W is a clash. (]

With the knowledge that W is a diatonic clash, the existence of graphs
that have no diatonic labelling is assured.

Theorem 2.18. If n is even and n > 4, there is a cubic graph G with n
vertices such that G has no diatonic labelling.

Proof. The smallest cubic graph has four vertices. By Theorem 2.5, there
are in fact no diatonic graphs with fewer than 14 vertices. For non-diatonic
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FIGURE 15. Graphs with 14 and 16 vertices that have no
diatonic labeling

graphs with 14 and 16 vertices, see Figure 15. These graphs have no diatonic
labelling because of the presence of W.

Now suppose n > 18. Let H be a cubic graph with n — 14 vertices. Delete
one vertex leaving a subgraph J with n — 15 vertices, of which three have
degree 2. Attach W to each of those three vertices in the obvious way.
The resulting cubic graph G has n vertices and is non-diatonic due to the
clashes. ]

There are many interesting questions to pursue. Are there clashes other
than W? If so, is there a finite collection of clashes whose exclusion guaran-
tees that a cubic graph is diatonic? We are also pursuing questions similar
to those above for the class of consonant graphs. Many interesting questions
remain in both of these classes.

We are grateful for the exceptionally helpful comments and suggestions of
the referee.
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