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Abstract
Using Cioabd’s inequality on the sum of the 3rd powers of the
vertex degrees in connected graphs, we present an inequality on the
Laplacian eigenvalues of connected graphs.

Keywords : Inequality, Laplacian Eigenvalue.

We consider only finite undirected graphs without loops and multiple
edges. Notation and terminology not defined here follow that in [1]. Let
G be a graph of order n > 2 with e edges. We assume n > 2 in order to
avoid trivialities. We also assume that the vertices in G are ordered such
that dy > d2 > ... > d,, where d;, 1 < i < n, is the degree of vertex v;
in G. We define £4(G) as 2}'=1d$‘. For cach vertex v;, 1 <i<n,m;is
defined as the sum of degrees of vertices that are adjacent to v;. Obviously,
Lt m; = £, d? = £5(G). The Laplacian of a graph G is defined as
L(G) = D(G) — A(G), where D(G) is the diagonal matrix of the degree
sequence of G and A(G) is the adjacency matrix of G. The eigenvalues
0 = A1(G) £ X2(G) £ ... £ Ap(G) of L(G) are called the Laplacian eigen-
values of the graph G. B, , is defined as the join between the complete
graph K, and the empty graph K,_,, where 1 < t < n. Notice that B,
is K, whent=nand B, , is K; ,—; whent=1.

The objective of this note is to prove the following thecorem which is on
an inequality for the Laplacian eigenvalues of graphs.

Theorem 1 Let G be a connected graph of order n with e edges and ¢
triangles. Then each Laplacian eigenvalue Ay, where 2 < k < n, satisfies

ARS COMBINATORIA 105(2012), pp. 361-368



the following inequality
(2e — Me)® + (n —2)223

S (n_2)2( 2e(n— l)nfdg —di)

— 6t).

2(G) +

Moreover, if 3 < k < n — 1, then the equality holds if and only if G is K,
with n > 2; if k = n, then the equality holds if and only if G is K, or K3 2
or Ky n—1 with n > 2; if k£ = 2, then the equality holds if and only if G is
K, with n > 2 or B, n—2 with n > 3.

2e — (d2 —d2) +3n
n

The following result (Corollary 7 in [2]) obtained by Cioab& will be used
in the proof of Theorem 1.

Theorem 2 [2] If G is a connected graph, then

)EQ(G’)+ 2e(n—1)n(df —di).

(2 — g2
23(6‘)526 (dj d?

Equality holds if and only if G is regular or G = By for some t with
1<t<n.

The following four results will be used when we determine the graphs
that make the equality happens in the inequality in Theorem 1.

Theorem 3 [5] Let G be a non-complete graph. Then A2(G) < &(G),
where x(G) is the vertex connectivity of G.

Theorem 4 [6] Let G be a graph on n vertices and 2 < ¢ < n. Then
Ai(GC) = n— My_iy2(G), where GC is the complement of the graph G and
Xi(GC), 1 < i < n, are the Laplacian eigenvalues of GC.

Theorem 5 [7] Let G be a graph on n vertices. Then

A(G) €2+ V(d1 +d2 — 2)(d1 + d3 — 2).

If G is connected, the equality holds if and only if G is a regular bipartite
graph or a path with three or four vertices.

Theorem 6 [8] Let G be a graph of order n. For any nontrivial subset X
of the vertices of G, X # @, X # V(G), we have

ne(X, X°)

2= e

S )\n(G):
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where X€ is V(G) - X and e(X, X) denotes the number of edges between
X and X€ in G.

Theorem 3, Theorem 5, and Theorem 6 above were proved respectively
by Fiedler in [5], Li and Zhang in [7], and Mohar in [8]. Theorem 4 can be
found on Page 280 in [6).

Next we will prove Theorem 1.

IA

Proof of Theorem 1. Since G is connected, we have 0 = A} < A < ...
An. By the fact that

n

%¢ = Z d; = trace(L(G)) = 2": Ay

i=1 i=1
we have that, for any k with 2 < k <mn,
n
2e—Ac= Y M
i=2,i#k

By Hélder inequality, we have that

zn: A< ( i 13/2)2/3( Zn: ,\?/1)1/3’

i=2,i%k i=2,i#k i=2,i#k

Therefore

(2¢ — M)® < (n—2)? Z 2.
i=2,i#k

Notice that

Z A= Z,\~*—,\3 Z,\s—,\tzmce((L( 1)) = AL

i=2,i#k i=2 =1
Hence we have that
(2e = \)® < (n — 2)%(trace({L(G))?) — A3),i.e.,
(2e — M) + (n — 2)°2} < (n — 2)%trace((L(G))%).

Now we evaluate trace((L(G))3). First notice that

(L(@))} = (D~ A)} = D*-D?A—-DAD+DA%*- AD* + ADA+ A®D — A3,
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It is easy to see that

n
trace(D3) = Zd?, trace(D%A) = 0,
i=1
n
trace(DAD) =0, trace(DA?) = Zd?,
i=1
trace(AD?) = 0, trace(ADA) = Z m;,
i=1
trace(A’D) = Zd?, trace(A%) = 6t.
i=1

Recall that 7. ,m; = L ,d%, we have
trace((L(G))3) = trace(D3) — trace(D?A) — trace(DAD)
+trace(DA?) — trace(AD?) + trace(ADA) + trace(A%D) — trace(A3)

= id?+3zn:d? - 6t.
i=1

i=1

From Theorem 2, we establish the desired inequality below
(2e — Ae)® + (n —2)278
2e(n — 1)(df — d2)
n

2e — (d? —d2) +3n
( n

< (n—2)? £2(G) + ~ 6t).

Now we determine the graphs that make the inequality in Theorem 1 to
become an equality when 3 < k< n-1.

When G is K, with n > 2, we have that A\, =n foreach k with2 <k <
n,dr =n—1foreachk withl <k <n,andt=C(n,3) =n(n—-1)(n-2)/6.
A simple computation shows that both sides of inequality in Theorem 1 are
equal to (n — 2)%(n — 1)n3.

Now suppose that the inequality in Theorem 1 becomes an equality.
Then

n

Zn: X < ( Z 13/2)2/3( i ,\?/1)1/3,

i=2,ik i=2,i7k i=2,ik

must become an inequality. By the condition for an Holder inequality
becomes an equality, we have that Ay = ... = Ay = A1 = ... = A, Let
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v be the vertex in G such that v has the minimum degree. Set X = {v}
and apply Theorem 6, we can obtain that

nd(v) _ nd

-1 n-1

~—

A2 £

< An.

3

Suppose G is not a complete graph. We have by Theorem 3 that Ao < & < 6.
Hence we have the following contradiction

Notice that when G is a complete graph, the incquality in Theorem 2 also
becomes an equality.

Next we determine the graphs that make the inequality in Theorem 1
to become an equality when k = n.

When G is K,, with n > 2, we again have that both sides of inequality
in Theorem 1 are the same. When G is K 2,5, We have that Ay = A,, = n,
di =n/2foreachkwith1 < k < n,andt = 0. A simple computation shows
that both sides of inequality in Theorem 1 are equal to (n —2)?n3(n +6)/8.
When G is K1, ,—) with n > 2, we have that A\, = A, =n,d, =n —1 and
d =1 for each k with 2 < k < n, and t = 0. A simple computation shows
that both sides of inequality in Theorem 1 are equal to (n —2)%(n +n—2).

Now suppose that the inequality in Theorem 1 becomes an equality.

Then N n "
Z X < ( Z 13/2)2/3( Z /\?/1)1/3,
i=2,i#k i=2i#k i=2,i#k
must become an inequality. By the condition for an Hélder inequality
becomes an equality, we have that Ay = A3 = ... = A1, If XA =
Az = ... = A\y—1 = A, then by a similar argument as in the case that
3 £k <n-1, we can show that G is K, with n > 2. Now we assume that
A2 = A3 = ... = A1 < A,,. This assumpution implies that G is not com-
plete since for each complete graph we have that Ay = Aa = ... = A1 = A,,.

Notice that now the inequality in Theorem 2 must also become an equality.
By Theorem 2, we have G is regular or G = B,, , for some ¢ with 1 <t < n.

We first consider the case that G is a regular graph and assume that
the degree of cach vertex in G is d. Since G is not complete, Theorem 3
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implies that Adp = A3 = ... = Ap—1 £ £ < d. From the fact that

n n
Z dt = Z Ai)
i=1 i=1

we have that nd = 31| A < (n—2)d+ . Thus 2d < A,. From Theorem
5, we have that

2d < Ap <24 (dy +d2 —2)(d1 +d3 — 2) =2d.

Thus A, = 2d and the inequality in Theorem 5 becomes an equality. Since
G is connected, by Theorem 5 again, we have that G is a regular bipartite
graph or a path with three or four vertices. Obviously, G cannot be a path
with three or four vertices since G is a regular graph. Let X and Y be the
partition of V(G) in the regular bipartite G so that each edge in G has one
end in X and anotherend in Y. Then n = |V(G)| = |X|+|Y| > d+d = 2d.
From the fact that

3 (d: + ) = trace((L(G))?) = »a
i=1

i=1

we have that nd + nd? = (n — 2)A\3 + A2 < (n — 2)d* + 4d?. Thus » < 2d.
Hence n = 2d. Recall that n = |V(G)| = |X|+|Y| > d+d = 2d. Therefore
| X|=|Y|=d=n/2. So Gis Kg,3 withn >2.

We now consider the case that G = By, ; for some t with 1 <t < n. No-
tice that the Laplacian eigenvalues of By, ; are 0 with multiplicity 1, ¢ with
multiplicity » — t — 1, and n with multiplicity ¢. Clearly, ¢ < n otherwise
G = B, is a complete graph. Since A2 = A3 = ... = Ap—1, We must have
that t = 1. Thus G = B, is K),n-1 withn > 2.

Finally we determine the graphs that make the inequality in Theorem
1 to become an equality when k = 2.

When G is K, with n > 2, we, as before, have that both sides of in-
equality in Theorem 1 are the same. When G is By, n-2 with n > 3, we have
that \x = Ao =n—2,dy =n—1foreachkwithl1 <k<n-2,dg=n-2
forn—1<k<n,andt=C(n3)—(n—-2)= ﬂf—_—lsxn—_zl—(n—%. A
simple computation shows that both sides of inequality in Theorem 1 are
equal to (n — 2)3((n — 2)% + n?).

Now suppose that the inequality in Theorem 1 becomes an equality.

Then n n n
S oMY PR NV

i=2,i#k i=2,i#k i=2,i#k
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must become an inequality. By the condition for an Hélder inequality
becomes an equality, we have that A3 = ... = Moy = Ay, If Xo =
A3 = ... = Apm1 = A,, then by a similar argument as in the case that
3 < k <n-1, we can show that G is K, with » > 2. Now we assume that
A2 < A3 = ... = Ay—1 = A,. This assumpution implies that G is not com-
plete since for each complete graph we havethat A\s = A3 = ... = A,,_1 = \,..
Notice that now the inequality in Theorem 2 must also become an equality.
By Theorem 2, we have G is regular or G = B,, , for some t with 1 <t < n.

We again first consider the case that G is a regular graph and assume
that the degree of each vertex in G is d. Since G is not complete, d < n—2.
From Theorem 4, we havethat 0 < n—A, = n—-A,_1 = ... =n—-A3 < n—->X
are the Laplacian eigenvalues of G, the complement of G. Next we con-
sider the following two subcases.

Suppose first that G€ is connected. Notice that G€ is non-complete
and regular. Apply the arguments in the subcase that G is a regular graph
when we determine the graphs that make the inequality in Theorem 1 to
become an equality if £ = n, we have that G€ is Kz 2 or Kj,n-1 with
n > 2. We therefore arrive at a contradiction that G cannot be a connected
graph. So this case cannot occur.

Suppose now that G€ is not connected. Then its algebraic connectivity
is equal to zero. Namely, n = A,. Son=A3 = ... = A,_; = A,,. From the

fact that " "
dodi=) "X,
i=1 i=1

we have that n(n — 2) > nd = n(n — 2) + A2. Thus Ay < 0, contradict-
ing to the assumption that G is connected. So this case cannot occur either.

We now consider the case that G = By, , for some ¢t with 1 <t < n.
Notice that the Laplacian eigenvalues of B, ; are 0 with multiplicity 1, ¢
with multiplicity n — ¢ — 1, and n with multiplicity ¢. Clearly, ¢ < n oth-
erwise G = B, , is a complete graph. Since A3 = Ay = ... = A, we must
havethat n—t—~1=1. Thusn =t+2. So G = B, ,,—2 with n > 3. QED.

Remark. Note that several tight upper bounds for >,(G) are available.
From Theorem 1 proved by De Caen in [4], we have that

2e

n—l+n_2)

e(

is an upper bound for }",(G). From Theorem 4.1, Theorem 4.2, and The-
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orem 4.3 proved by Das in [3], we have, respectively, that

2e +n—2
n—-1 n-1

2e(2e+ (d, — dy)(n—1))
n+dy —dy and

2e(d1 + dn) - ndld,.

are three upper bounds for _,(G). Thus if we use those upper bounds for
3-2(G) to replace Y ,(G) in the inequality in Theorem 1, we can get in-
equalities for Ax, where 2 < k < n. Using the formula for the roots of cubic
equations, we can solve those inequalities and find bounds for Ak, where
2 < k < n. But we will have very complicated mathematical expressions.
So we leave the main result in this note in the inequality form.

o d+ (d — )1~ =2,

The author thanks the referee for his or her suggestions and comments.
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