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Abstract

We initiate the study of signed edge majority total domination
in graphs. The open neighborhood Ng(e) of an edge e in a graph
G is the set consisting of all edges having a common vertex with e.
Let f be a function on E(G), the edge set of G, into the set {~1,1}.
If 3 engie) f(8) 2 1 for at least a half of the edges e € E(G),
then f is called a signed edge majority total dominating function
of G. The value min}_, E(G) f(e), taking the minimum over all
signed edge majority total dominating function f of G, is called the
signed edge majority total domination number of G and denoted
bY Yame(G). Obviously, 45, (G) is defined only for graphs G which
have no connected components isomorphic to K2. In this paper we
establish lower bounds on the signed edge majority total domination
number of forests.
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1 Introduction

Let G be a graph with the vertex set V(G) and the edge set E(G). We use
[2] for terminology and notation which are not defined here and consider
simple graphs only. The line graph of a graph G, written L(G), is the graph
whose vertices are the edges of G, with ee’ € E(L(G)) when e = uv and
¢ = vw in G. It is easy to see that L(Cyp) = C, and L(P,) = Py—1. For
every nonempty subset E’ of E(G), the subgraph of G whose vertex set is
the set of vertices of the edges in E' and whose edge set is E’, is called the
subgraph of G induced by E’ and denoted by G[E’].

Two edges e), ez of G are called adjacent if they are distinct and have
a common vertex. The open neighborhood Ng(e) of an edge e € E(G)
is the set of all edges adjacent to e. Its closed neighborhood is Ngle] =
Ng(e) U {e}. For a function f : E(G) — {—1,1} and a subset S of E(G)
we define f(S) = Y. f(e). The edge-neighborhood Eg(v) of a vertex
v € V(G) is the set of all edges at vertex v. For each vertex v € V(G)
we also define f(v) = 3 cp, () f(€)- A function f : E(G) — {-1,1}
is called a signed edge majority total dominating function (SEMTDF) of
G, if f(Ng(e)) > 1 for at least a half of the edges e € E(G). It is clear
that there exists an SEMTDF only for graphs G which have no connected
components isomorphic to Kp. Throughout this paper we assume G is
a simple graph in which the order of each component of G is at least 3.
The signed edge magority total domination number (SEMTDN) of a graph
G is ¥omi(G) = min{} g f(e) | f is an SEMTDF on G}. The signed
edge majority total dominating function f of G with f(E(G)) = Yem:(G)
is called «.,,.,(G)-function.

A signed majority total dominating function (SMTDF) is a function
f:V — {=1,41} such that 3" ¢y, f(u) 2 1 for at least a half of the
vertices v € V. The signed majority total domination number (SMTDN)
of a graph G is 75,,;(G) = min{}_,cy f(v) | f is an SMTDF on G}. The
signed majority total domination number was introduced by Xing and Chen
in [3].

[A function f : E(G) — {—1,1} is called a signed edge total dominat-
ing function (SETDF) of G, if f(Ng(e)) > 1 for each edge e € E(G). The
signed edge total domination number (SETDN) of a graph G is 7, (G) =
min{} . f(e) | f is an SETDF on G}. The signed edge total domina-
tion number was introduced by Zelika in [6].

Here are some well-known results on 'y,‘,wj(G) and 7.,(G).

Theorem A. (3] For any path P, (n > 2), ¥4;(Pa) = ~1 if n is odd and
Yrmaj(Pn) =0 if n is even.

Theorem B. [3] For any cycle Cp, (7 > 3), 7;,,;(Cn) = 3 if n is odd and
Yaj(Cn) = 0 if n is even.
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Theorem C. (3] If G is a k-regular graph of order n, then 7},,:(G) >
(1 — k)n/2k if k is odd and v;,,;(G) = (2 — k)n/2k if k is even.

Theorem D. [1] For every tree T of size m > 2, v/,(T) > 2 — m/3.

We make use of the following terminology and notation in this paper.
A graph G with an SEMTDF f of G, denoted by (G, f), is called a signed
edge majority total graph (SEMTG). For simplicity, an edge e is said to be
a +1 edge of (G, f) if f(e) = 1. Similarly, an edge e is said to be a —1 edge
of (G, f) if f(e) = —1. Similar to Theorem 1 of [3] we have:

Theorem 1. A signed edge majority total dominating function f of a
graph G is a v},,,(G)-function only if for every edge e € E with f(e) = 1,
there exists an edge e’ € N(e) with f(N(e')) € {1,2}.

Proof. Let f be a «v,,,,(G)-function and assume that there is an edge e
such that f(e) = 1 and f(N(e')) € {1,2} for any ¢’ € N(e). Define
a new function g : £ — {~1,1} by g(e) = —1 and g(€’) = f(¢') for
all ¢’ # e. Then for all ¢ € N(e) either f(N(e’)) < 0, in which case
g(N(e) = f(N('))=2 < —2, or f(N(¢')) > 3, in which case g(N(¢")) > 1.
For ¢/ ¢ N(e) we have g(N(¢')) = f(N(e')). Thus g is a signed edge
majority total dominating function and g(E(G)) < f(E(G)), which is a
contradiction. O

Obviously, every signed edge total dominating function is also a signed edge
majority total dominating function. Thus we have:

Theorem 2. For any graph G, 4/,,,(G) < 7.,(G).

The proof of the following theorem is straightforward and therefore
omitted.

Theorem 3. For any graph G of order n > 3, 7,,,(G) = 7%,,;(L(G)).
Theorem 3 together with Theorems A, B and C lead to:

Corollary 4. For any path P, of order n > 3, 4%, (P,) = 0 if n is odd
and v.,,,(Pr) = —1if n is even.

Corollary 5. For any cycle C, of order n > 3, 4/ ,(C,) = 3 if n is odd
and v,,,,,(Crn) =0 if n is even.

Corollary 6. If k > 2 and G is a k-regular graph of order n > 3, then

, nk(2 — k)
Yeme(G) 2 k=D

Furthermore, this bound is sharp when k = 2 and G = Cy,.
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2 A lower bound for SEMTDN of forests

In this section we study the signed edge majority total domination number
of forests. We first find a sharp lower bound for the SEMTDN of forests
whose connected components are only Ps, Py or K1 3. Then we establish a
lower bound for the SEMTDN of forests without K; and Ks-components
and with a component of size at least 4.

Lemma 7. For every forest F of size m whose connected components are
only Ps, Py or K13, Yom(F) 2 —| %] with equality if and only if m = 4k
or 4k + 3 for some k = 3z + 2y + 3z, where z,y, z are nonnegative integers
and F consists of z Az-components, y A4-components, z A7-components,
and 3[2] Ag-components.

Proof. The proof is by induction on m . The statement is obviously true
for forests of size less than 6. Assume m > 6 and that the statement
holds for all forests of size less than m whose connected components are
only Ps, Py or K 3. Suppose f is & Y, (F)-function. We claim that the
SEMTDG (F, f) cannot contain a connected component isomorphic to a
path z,zazaz4 With f(z172) = f(z3z4) = 1 and f(zaz3) = —1. Otherwise,
we define g : E(F) — {-1,1} by g(z172) = g(zazs) = -1, g(z2z3) =1
and g(e) = f(e) for e € E(F)\ {z122, z223,z324}. Then g is an SEMTDF,
which contradicts the fact that f is a +.,,,(F)-function. Similarly, the
SEMTDG (F, f) cannot have a connected component isomorphic to a path
T1Z2%3%4 with f(z122) = f(zazs) = 1 and f(z3zs) = —1 or a star on
4 vertices 71, T2,Z3,z4 With f(z172) = f(z123) = —1 and f(z1z4) = 1.
Hence, each connected component of the SEMTDG (F, f) must have one
of the following forms:

Let s; be the number of A;-components of the SEMTDF (F, f). First
assume s; # 0. Let F’ be obtained from F' by deleting one of the A;-
components and adding a new component P3 = zyz. Define g : E(F') —
{—lv +1} by

g(zy) =1, g(yz) = -1 and g(e) = f(e) if e€ E(F)N E(F).

Obviously, g is an SEMTDF of F’. Hence, g(E(F')) 2 —[m—;lj by the
inductive hypothesis. Thus

Aome(F) = FE(F) = o(BE) +12 |2 +1> =) @)

Now assume s; = 0. If s5 # 0 and F” is obtained from F' by deleting one
of the As-components, then obviously f|s~ is an SEMTDF of F". Hence,
by the inductive hypothesis we have

FIE(F) = f(E(F")) 2 —|

m-—2 m
=1>-13! ®)
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Figure 1: The connected components of (F, f)

Now let s5 = 0 and define P = {e € E(F) | f(e) = 1}. The fact that
[ is an SEMTDF leads to 3s3 + 2s¢ + 2ss + 3s9 > [%]. Since m =
3(s2 + s3 + 57 + sg + sg) + 2(s4 + sg) and m > 6, we have

FE(F) =PI = |P¥| = 3(sa - s2) +2(s6 ~ 84) + 3(s0 — s17) — s
-m + (633 + 486 + 659 + 288)
-m + I-%] + (353 + 2s¢ + 3sg)

-l%] + (3s3 + 256 + 3sg).

v

3)
If m = 4k or 4k + 3 for some k = 3z + 2y + 3z and F consists
of z Ap-components, y As-components, z A7-components and 1[2] As-

components, then v, (F) = — [% ] by (3). Now let F be a forest of size m

whose connected components are only P3, Py or K 3 and 7., (F) = — l_% IB
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If m < 5, then obviously F = P;. Let m > 6. By (1), (2) and (3) we have
s = 83 = s5 = 8¢ = 89 = 0. Then m = 3s3 + 254 + 357 + 3sg. Now we
have _lﬂj = Yimi(F) = =383 — 284 — 3s7 — s3 = —m + 2sg, and hence

2sg = [— ] Therefore m = 4k or 4k + 3 for some nonnegative mteger k.

Now since |_2_| = 359 + 254 + 3s7 + s, we obtain k = [ |- —[ ]
339 + 284 + 3s7. This completes the proof.

Lemma 8. Let F be a forest of size m without K; and Ks-components
and with a component T of size at least 4 which satisfies the following
conditions:

L Yeme(F) <2-2m/3;

2. with respect to Condition (1), F has as few edges as possible and has
maximum number of connected components.

Let f be a Y., (F)-function and X = {e € E(F) | Xaen(e f(€) 2 1}
Then there is no vertex » in T with deg(u) > 3 which satisfies the following
conditions:

1. e = uv is a pendant edge with f(e) = —1 and e € X;;
2. ¢ = uw is an edge with f(¢’) =1 and ' € X;

3. if we split T at u into T} and T3 such that T> contains every edge at
u except e and €', then Ty # K>.

Proof. Assume such a vertex u exists. Define F' = (F-T)UT1 UT>.
By assumption on vertex u we see that f is an SEMTDF of F' and hence
Yeri(F) € Yame(F) < 2 —2m/3. On the other hand, |E(F')| = |E(F)|
and w(F') = w(F) + 1. (Recall that w(F) is the number of connected
components of F.) This contradicts the assumption on F'. O

Theorem 9. For every forest F of size m without K; and K»-components
and with a component of size at least 4, v,,,,(F) > 2 - 2m/3.

Proof. We use the method of contradiction and the notation in the proof
of Lemma 7. Let F be a forest without K; and Kj-components, with a
component of size at least 4 and v/,,,,(F) < 2—2m/3. Choose such a forest
with as few edges as possible and with maximum number of connected com-
ponents. Let T3, ..., T\ be the connected components of F. Suppose that
Ty,..., T, are the components with at most three edges and 741, ..., Tk are
the components with at least four edges. Assume f is a v, (F)-function.
Since F is a forest with a component of size at least 4 and does not have
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K, and Kj-components, m > 2w(F). Define M = {e € E(F) | f(e) = -1}
and X = {e € E(F) | Leene fle) =1}

Claim 1. If T € {T;41,...,Tx} and e = wv € E(T)N M, then one of the
connected components of T' — e is K, or Ka.

Proof of Claim 1. Without loss of generality we may assume that
T = T.41. Let T}, and T2, be the connected components of T — e
containing u and v, respectively. Let, to the contrary, |E(T} ;)| > 2
and |E(T?,,)| > 2. First suppose that e € X¢. Let T’,, be obtained
from T} ; by adding a pendant edge uu’. Let F’ be a forest consists of
Ty, T, T, T2, Tr2y - -, Tk Define g : E(F') — {—1,+1} by

g(ur’) = —1 and g(e) = f(e) if e # uu'.

Obviously, g is an SEMTDF of F’. Since |E(F')| = |E(F)| and w(F') =
w(F)+1, by assumption on F we have f(E(F)) = g(E(F')) > 2-2m/3,a
contradiction. Now let e € X. Since f(u)+ f(v)+2 = Yerenn (€)= 1,
it follows f(u) > 0 or f(v) > 0. Without loss of generality we assume
f(u) > 0. Let T/, be obtained from T}',, by adding a pendant edge uu’.
As before, it is easy to verify that this leads to a contradiction. O
By Claim 1, each e = uv € M is either a pendant edge or adjacent to
a pendant edge vw in which deg(v) = 2. In the later case, if f(vw) = 1,
then the connected component of F' containing e has at least four edges
(see Figure 1). Without loss of generality, we may assume this connected
component is T;41. Now split T;.4) at u into 7”7 and T such that E(T") =
{uv,vw}. Define F/ = (F —T)uT'UT". Then f is an SEMTDF of F'.
Since |E(F')| = |E(F)| and w(F') = w(F)+1, by assumption on F' we have
f(E(F)) = f(E(F')) 2 2 — 2m/3, a contradiction. Hence, f(vw) = —1.
Define Ly = {e = uv € M | e is a pendant edge whose support vertex
is of degree 2 and is adjacent to a —1 edge}, Ly = {e =ww € M\ L, |
e is a pendant edge} and L3 = M \ (L1 U L,). Then each edge of L3 is
adjacent to an edge in L;.
Claim 2. If T € {T;41,...,T}, v € V(T) and deg(v) > 3, then f(v) > 0.
Proof of Claim 2. Let, to the contrary, f(v) < —1. Since deg(v) > 3,
there exist at least two —1 edges at v. First let there exist two —1 pendant
edges at v, say e,e’. Split T at v into 7” and T such that E(T”) = {e,e'}.
Define F' = (F = T)uT’'UT". Obviously, f is an SEMTDF of F’. Since
|E(F')| = |E(F)| and w(F') = w(F) + 1, by assumption on F' we have
SE(F)) = g(E(F')) > 2 — 2m/3, a contradiction. Now assume there
exists an edge e = vu € L3 at v. Then deg(u) = 2 and u is adjacent to
a Leaf, say w. Split T at v into T’ and T such that E(T") = {uv,uw}.
Define F' = (F = T)UT’UT" and proceed as before to see a contradiction.
(]

Claim 3. If T € {Tr41,...,Tk}, then E(T)\ L, C X.
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Proof of Claim 3. Let e = uwv € E(T)\ L,. First assume e € Lo.
Without loss of generality we may assume deg(v) = 1. If deg(u) = 3, then
e € X by Claim 2. If deg(x) = 2 and uw € E(T), then f(uw) = 1 because
e L. Thus e € X. Now assume e € L3 and ¢ = uw € L, in which
f(€') = —1. Let, to the contrary, e ¢ X. Split T into 7" and T" such that
E(T") = {e,€'}. Define F' = (F-T)U(T'UT") and proceed as before to see
a contradiction. Hence, Lz C X. Finally, assume e € E(T)\ (L1UL2U L3),
hence f(uv) = 1. If deg(u) < 2, then obviously f(u) > 0. If deg(u) = 3,
then f(u) > 0 by Claim 2. Similarly, f(v) > 0. Let, to the contrary, e  X.
Then f(u)+ f(v) < 2 and e is adjacent to an edge, say €', with f(e’) = —1.
Without loss of generality we may assume e’ = uw. Consider two cases.

Case 1. deg(w) = 1. If deg(v) = 1, we apply Lemma 8 with vertex u and
edges uv and uw to see a contradiction. Hence, deg(v) > 2. First assume
deg(u) > 3 and H is the connected component of T — {e, e’} containing u.
If H = uz, then f(uz) = 1 and uz ¢ X. Apply Lemma 8 with vertex u and
edges uw and uz to see a contradiction. If H has at least two edges, we
apply Lemma 8 with vertex u and edges uv and uw to see a contradiction.

Now let deg(u) = 2. We consider two subcases.

Subcase 1.1 E(v)N M = 0. Since e ¢ X, deg(v) = 2. Let v’ € E(T).
If vo’ € X, we split T at v into T and T" such that E(T') = {uw,uv} to
see a contradiction with the assumption on F. Assume vv' € X. If T =
Ps = wuvv'v”, then f(v'v"”) = 1. Now split T' at v to see a contradiction.
If T # P, we proceed as follows. If E(v') N M = @, we split T at v to see
a contradiction. If E(v')N M # 0 and ¢ € M N E(v'), we split T at v’ into
T and T” such that E(T') = {uw,uv,vv'}. Define F/ = (F -T)uT'uT”
and g: E(F') — {-1,1} by

g(w') = -1,9(¢') =1 and g(e) = f(e) if e € E(F)\ {v,¢'}.

Obviously, g is an SEMTDF of F' with g(E(F')) = f(E(F')) which leads
to a contradiction.

Subcase 1.2 E(v) N M # . First assume there exists a pendant edge vv’
for which f(vv') = —1. Split T at v into T" and T" such that E(T") =
{uw, wv,vv'}. If |E(T')| > 2, we define F’ = (F —=T)UT'UT". Obviously,
f is an SEMTDF of F' with f(E(F')) < 2 —2m/3. This contradicts the
assumption on F. If E(T) = {vv"}, split T at v into T’ and T" such that
E(T") = {wu,uv}. Now it is easy to see a contradiction.

Suppose there is no —1 pendant edge at v. Then there exists a path vv'v"”
for which deg(v’) = 2 and f(vv') = f(v'v") = —1. If there is another path
vzz' with f(vz) = f(22') = —1, we proceed as follows. Define T’ = z1z223
(1, %2, 3 are new vertices), T = T(E(T) — {v'v",22'}] and F' = (F —
TYUT'UT". Define g: E(F') — {-1,1} by

9(z122) = g(z2z3) = —1 and g(e) = f(e) if e € E(F)\ {zz',vv"}.
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Obviously, g is an SEMTDF of F’ with g(E(F")) = f(E(F)), which leads to
a contradiction. Finally, let the only —1 edge at v be vv’. Sinee=uv ¢ X
and e has exactly two —1 edges in its neighborhood, deg(v) = 3 or 4. First
assume deg(v) = 3. Define T' = T[E(T) \ {vw,uv,vv"}], T" = Py =
wujv ve (wy,u;,v1,ve are new vertices) and F/ = (F-T)uT uT”.
Define g : E(F') — {-1,1} by

g(wiug) = glvyyve) = -1, g(ujv1) =1, and g(e) = f(e) otherwise.

Obviously, g is an SEMTDF of F' with g(E(F")) = f(E(F")), which leads
to a contradiction. If deg(v) = 4, we split T at v into T' and T” such that
E(T") = {vv',v"v"}. Suppose that F' = (F - T)uT'uT”. Obviously, F
is an SEMTDF of F’, which leads to a contradiction.

Case 2. deg(w) > 2. Then uw € L3 C X, deg(u) > 3, deg(w) = 2 and
uw is adjacent to a pendant edge, say ww’, for which f(ww’) = —1. Let H
be the connected component of T' — {uv, uw} containing u. If H = uz, we
define T" = T[E(T) \ {uz,ww'}], T" = 212023 and F' = (F - T)uT'UT".
Define g : E(F') — {-1,1} by

9(z122) = 1,9(2223) = —1 and g(e) = f(e) if e € E(F) \ {uz,ww'}.

Obviously, g is an SEMTDF of F' with g(E(F')) = f(E(F)), which con-
tradicts the assumption on F. Therefore, the size of H is greater then 1.
Consider two subcases.

Subcase 2.1 deg(v) = 1. Let 7' = H, T = z1202324 and F’ = (F —
TYUT'UT”. Define g : E(F') — {-1,1} by g(2122) = g(2324) = —1,
g(z223) = 1 and g(e) = f(e) if e € E(F) \ {uv,uw,ww’}. Obviously, g
is an SEMTDF of F’ with g(E(F')) = f(E(F)), which contradicts the
assumption on F.

Subcase 2.2 deg(v) > 2. By the facts uv ¢ X and f(u) > 0 there
exists an edge vv’ with f(vv') = —1. If vv’ is a pendant edge, then apply
Case 1 with v and v’ instead of u and w’. Now assume there exits a
path vvyvo in which f(vy)) = f(vivz) = ~1 and deg(vy) = 2. Let T =
T[E(T)\ {vive,ww'}], T” = 212923 and F/ = (F —T)UT' UT". Define
g: E(F") — {~1,1} by

g(z122) = g(2223) = —1 and g(e) = f(e) if e € E(F) \ {viv2, ww'}.

Obviously, g is an SEMTDF of F' with g(E(F')) = f(E(F)), which con-
tradicts the assumption on F. This completes the proof of Claim 3. a

Define T; = T; \ L; for each r +1 < i < k. By Claim 3, f|r; is a signed
edge total dominating function on T/ for each 7 + 1 < ¢ < k. Thus,
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flr:(E(T})) > 2 — m;/3 by Theorem D, where m; = |E(T})|. Recall that
s; is the number of A;-components of (F, f) (see Figure 1). Now we have

k
1X| = Zm,+sl+333+ss+2ss+2ss+339>|' iy
i=r+1

and _
| X€) = |L1| + 251 + 352 + 254 + 55 + 357 + 88 < |_.§J_

On the other hand,

k k k
S fln(E@) 2 S @-mi/3)=2(k-r)=(1/3) ) ma
i=r+1 i=r+1 t=r+1
Therefore,
FEBF) = Yr o flr(ET)) = || +s1— 3s2 + 353 — 284 + 255
—3s7 — sg + 3sg
> 2(k—7) — (1/3) S50 Mi + 351 + 353 + 55 + 256
+389 - IXcl
_ 10s; 4ss 836 2sg
= 2(k-r)-(1/3)|X]+ 3 +4s3 + — 3 3 3
+4s9 — IXc{ 5
> 2(k-r1)- §(|XI +1X°) - §|X°|
m
_ ) ———= >
2 2(k-r1) 3 l2J 2-2m/3.
This is a contradiction. O

We conclude this paper with the following observation. Let k > 0. If a
forest F of size m consists of 4k (or 4k + 1) components each isomorphic
to Py, then 4., (F) =1—-2m/3+ (2k — 1) (or ¥, (F) =1 - 2m/3 + 2k,
respectively).
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