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Abstract

Let G be a connected graph. For =,y € V(G) with d(z,y) = 2,
we define J(z,y) = {u € N(z) " N(y) | N[u] C Niz] U N[y]} and
J'(z,y) = {u € N(z)NN(y) | ifv € N(u)\ (N[z]UN[y]) then N(z)U
N(y) U N(u) C N[v]}. A graph G is quasi-claw-free if J(z,y) # 0 for
each pair (z,y) of vertices at distance 2 in G. Broersma and Vumar intro-
duced the class of Ps-dominated graphs defined as J(z,y) U J'(z,y) # 0
for each z,y € V(G) with d(z,y) = 2. Let £(G) and a(G) be the
connectivity of G and the maximum number of vertices that are pairwise
at distance at least ! in G, respectively. A cycle C is m-dominating if
d(z,C) = min{d(z,u) | v € V(C)} £ mforall x € V(G). In this
note, we prove that every 2-connected Ps-dominated graph G has an m-
dominating cycle if azm+3(G) < k(G).

Keywords: Quasi-claw-free graph; Ps-dominated graph; m-dominating cy-
cle.

1 Introduction

Throughout this note, we consider only finite, undirected and simple graphs. Let
G = (V, E) be a graph with vertex set V = V(G) and edge set E = E(G).
The open neighborhood and the closed neighborhood of a vertex u are denot-
ed by N(v) = {z € V(G), zu € E(G)} and N[u] = {u} U N(u), respec-
tively. Let (A) denote the subgraph of G induced by the subset A of V(G)
and let d(z,y) denote the distance between vertices x and y, i.e., the length of
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a shortest path from z to y in G. If H is a subgraph of G, then we define
d(z,H) = min{d(z,y) | y € V(H)} as the distance from = to H. A set
A C V(G) is independent if no two vertices in A are adjacent. The indepen-
dence number a(G) of G is the cardinality of a maximum independent set in
G, and the connectivity £(G) of G is the cardinality of a minimum cutset in G.
Moreover, let o;(G) be the maximum number of vertices of G that are pairwise
at distance at least  in G. A cycle C is m-dominating if d(z,C) < m for al-
1z € V(G). Clearly, every 0-dominating cycle is hamiltonian. The following
result on m-dominating cycles in graphs was proved by Fraisse.

Theorem 1 ([8]). Let G be a 2-connected graph. If azm+2(G) < &(G), then G
has an m-dominating cycle.

Let C := cpcy -+ cp—1€0 be a cycle in G with an implicit orientation ac-
cording to the increasing subscripts. For i # j, let Clci,c;] be the subpath
ciCi+1 - - Cj, the subscript is taken modulo p. We define C(c;, ¢;] = Clcit1, ),
Clei,¢;) = Clei, ci—1) and C(ei, ¢5) = Cleit1, ¢j-1]- In each case we use the
notation to refer both to the subpath and to its vertex set, depending on context.
For any i, we put ¢} = ¢;+1 and ¢; = ¢;—1. We use similar definitions for paths.

If H C G is an induced subgraph of G isomorphic to the star K- (r 2 3),
then the only vertex of degree r in H is called the center of H and the other
vertices of degree 1 in H are called toes of H. Whenever vertices of K . are
listed, the center is always the first vertex of the list. Following Ainouche [1], we
set J(a,b) = {u € N(a) N N(b) | N[u] C Nla} U N[b]} for each pair (a, b) of
vertices at distance 2.

A graph G is said to belong to the class CF of claw-free graphs, if G does
not contain an induced subgraph isomorphic to a claw — K} 3. A large number
of results have been obtained on claw-free graphs, while some interesting prob-
lems and some conjectures remain open [4]. During the last two decades several
extensions of claw-free graphs have been introduced and many known results
concerning matching and hamiltonicity on claw-free graphs have been extended
to these classes. See [1], [3), [5), [7], [9], [10] and [11] for more details. We will
repeat the definitions of some of these superclasses of claw-free graphs.

In 1994 [12), Ryj4&ek introduced the class ACF of almost claw-free graphs,
and in 1998 [1], Ainouche introduced the class QCF of quasi-claw-free graphs.
A graph G is in ACF if for any independent set A of G and for any v € A,
N(v) contains two vertices z and y such that N[v] C N{z] U N[y). A graph G
is in QCF, if J(a,b) # @ for each pair (,b) of vertices at distance 2 in G. In
[3], as a common generalization of almost claw-free and quasi claw-free graphs,
Ainouche et al. introduced the class DCT of dominated claw toes graphs. A claw
({z,a1,a2,a3}) with the claw center z is said to be dominated (undominated,
resp.) if Uy <icjcs J(@ir05) # 0 Uscici<a J(ai,aj) = 0, resp.). A graph G
belongs to DCT, if every claw in G is dominated [2].

Recently, Broersma and Vumar [6] introduced a new class of graphs, namely
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Ps-dominated graphs, which is a super class of quasi-claw-free graphs. They also
extended some known results concerning hamiltonicity on QCF to this new class
of graphs. The class P3D of P;- dominated graphs is defined below.

Let (a,b) be a pair of vertices at distance 2 in G. We consider a common
neighbor u of a and b with the following property.

If v € N(u) \ {a, b} is adjacent neither to a nor to b, then it is adjacent )
to all vertices of N(a) U N(b) U N(u)\{a,b,v}.

For a pair (a, b) of vertices at distance 2 in G, set J'(a,b) = {u € N(a)NN(b) |
u satisfies (1)}. We say that G is a P3-dominated graph if J(a,b) U J'(a,b) # 0
for every pair (a, b) of vertices at distance 2 in G.

The following results are shown in [1] and in [6].

(3) CF C (QCFNACF), QCF c P3D, (QCFU ACF) C DCT;
(1) QCF\ACF, ACF\ QCF, (QCFNACF)\CF, DCT\(QCFUACF),
P3D\ QCF,P3D\DCT and DCT \ P3D are infinite.

Chen et al. extend Theorem 1 in case of quasi claw-free graphs by showing
the following.

Theorem 2 ([7]). Let G be a 2-connected quasi claw-free graph. If agm+3(G) <
£(G), then G has an m-dominating cycle.

In the present note we generalize the result in Theorem 2 to the class P3D.

Theorem 3. Let G be a 2-connected P3-dominated graph. If agm43(G) < k(G),
then G has an m-dominating cycle.

The following sufficient condition for a 2-connected Ps-dominated graph to
be hamiltonian follows immediately from Theorem 3.

Corollary 1 ([6]). Let G be a 2-connected P3-dominated graph. If a3(G) <
&(G), then G is hamiltonian.

We conclude this section with the following conjecture that was proposed in

[71.

Conjecture 1 ([7]). Every 2-connected DCT-graph G has an m-dominating cy-
cle or agm+3(G) = k(G) + 1.

2 Proof of Theorem 3

Let G be a 2-connected P3-dominated graph. For each cycle C of G, define
F(C)={z € V(G -C) | d(z,C) > m}. We prove the following result which
implies the assertion of Theorem 3.
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If G has no m-dominating cycle, then aam43(G) > &(G).

Let C be a cycle in G such that:

(@) |F(C)] is as small as possible.

There is a component H of G — C with F(C) N V(H) # 0 because C is not
an m-dominating cycle. We choose C such that:

() Subject to (a), |H| is as small as possible;

(c) Subject to (a) and (b), C is as long as possible.

Letzo € F(C)NV(H). Let A = {a),az,--- ,ap} be the set of vertices of
C which are adjacent to vertices of H, assume that these vertices occur on C, in
the order of their indices. Obviously, p > x(G) and there is a path Q4,q; := Q;
between any pair a;, a; of A, whose internal vertices are all in H.

Let S; = C(ai,ai41). A vertex u € S; is said to be insertable if there exist
vertices v,vt € V(C) — S; such that uv,uvt € E(G). Let I; be the set of
insertable vertices of S;. For a cycle C’ in G, we use v;(C’) to denote the first
vertex of C’ on C(a;, ai4+1] (if any). Consider two indices i, j (not necessarily
distinct) and let K;; denote the set of cycles C’ of G such that:

1. V(C)YNV(H) #0.

2. V(C) = V(C’) € (C(as, vi(C")) — I;) U (C(a;,v;(C")) = I;) .

Now C[a,-.H, a,-]Q,-(i.,.l) isa cycle and S,' g V(G) - V(C’[a,-_,.l, ai]Qi(i+1)).
It is easy to obtain a cycle C; from Cla;41, a;]Q;(i41) and S; such that
C[ai+1, a,-]Qi(,-.,.l) U I; C C;. Remark that C; belongs to K;, and hence Kij is
not empty.

Let L;; denote the subset of K;;, defined as follows: a cycle C’ belongs to
L,‘j if

3. C(as,v:(C")) U C(aj,v;(C")) is minimal for inclusion.

Notice that L;; # @ because each cycle in K;; corresponds to, in a sense of
Condition 3, some cycle that belongs to L;;.

Consider % as a fixed index, then, for each j € {1,--- ,p} and for each cycle
C'’ in K;j, we have F(C’) — F(C) # 0, otherwise C’ would contradict Condi-
tion (a) or (b) of the choice of C. It follows that there exists a vertex z;; with
d(z;;,C) < mand d(z;;,C’) > m. From Condition 2 in the definition of K;,
we deduce that

4. There is a path of length at most m from z;; to C(a;,vi(C’')) — I; or to
C(aj,v;(C")) — I; with no internal vertex in V(C) L V(C’).

For each j € {1,---,p}, let H} be the set of all cycles C;; in L;; such that
there is a vertex z;; in F(Cy;) — F(C) which is joined by a path with no inter-
nal vertex in V(C) U V(C;;) to a vertex u(z;;) of C(a;,v;(C’)) — I; such that
|C(as, u(z:5))| is minimum. Note H} # § because of the remark after Condi-
tion 2. Choose an index 7, a cycle Cj; € H} and a corresponding vertex z;; in
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F(C;;) — F(C) such that
5. |C(a:,v:(C))| = min{|C(as, v:(Ci))| | 1 < §' < p and C; € H}.}.

Then we redefine z; = z;; and u; = u(z;;) for 1 < i < p. We will show
in the following that zo, 21, 2, : - , Tp are different vertices and of distance pair-
wisely at least 2m + 3.

Claim1l. (i) z; ¢ V(H) for1 <i<p;
(i3) z; # x; and there is no path P(z,z;] such that V(P(z;,z;)) N (V(C) U
V(H)=0for1<i<j<p.

Proof. (i) If z; € V(H) for some i, then, by the definition of x;, there is
a path P from z; to u; € C(a;,v:(C’')) — I; that has no internal vertex in
V(C) U V(C’). Then, using the path P, we can construct a cycle C” € Ly;
such that |C(a;,v:(C’)) U C(a;,v;(C"))| > [C(ai, vi(C")) U C(a;,v;(C"))|, a
contradiction.

(i3) Let z; (z;, resp.) be a corresponding vertex of Cs (Cj¢, resp.) which is
joined tou; € (C(a,-,vi(C,-_,))—Ii)U(C'(a,.,,vs(C,-s))—Is) (u; € (C(aj,vj(Cjt))
—I;) U (C(as,v(Cjt)) — Io), resp.). Suppose without loss of generality that
i < j,u; € C(a;,vi(Cis)) — I; and u; € C(a;,v;(Cjt)) — I;, and assume that
(#1) is not true. Then, since x;,z; ¢ V(H), there is a path Plu;, u;] which is in-
ternally disjoint from C U H. Setting C;;j := a,;Q;;Cla;, u:) Plui, u;]C(u;, a4,
and inserting the insertable vertices in C(a;,u;) and in C(a;,u;), we can con-
struct a cycle C}; such that Cy; C Cj; € H} C L;; C K and

|C (i, vi(Cis))| > |Cas, vi(CY;))| and [C(a;, v;(Cje))| > 1C(as, 2;(Ci))I-
And then Condition 4 is verified for Cj;, contradicting Condition 5. O

From the proof of Claim 1, it is not difficult to obtain the following observa-
tion.

Observation 1. There exists no path internally disjoint from C U H that joins a
vertex of C(ax,vi(Cis)) and a vertex of C(aq,v,(Cj¢)], where k € {i,s} and
q € {i:t}

Claim 2. d(zg,z;) >2m +2for1 <i < p.

Proof. By Claim 1 (z), every path from xo to z; must contain a vertex of C. Let
P|xo, x;] be a shortest path from zo to z;, and assume that w € V' (P)NV(C) with
V(Pfxo,w]) N V(C) = {w}. If w € C(aq,v,(Ci;)), where g € {i,} and C;;
is the cycle from which we define z;, then the cycle Clw, ¢4]Qa 4w contradicts
Condition 3 for C;;. So we can assume that w € V(C) N V(Cy;).

Let  and y be the predecessor and the successor of w on the path P[zo, z;],
respectively. By the minimality of the path, zy ¢ E(G), hence d(z,y) = 2. Since
the eranh is P>-dominated. we have J(z,y) U J'(z,y) # 0.
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Case A. J(z,y) = 0.

By definition, we have J/(z, y) # 0 and hence there exist vertices z € N(z)N
N(y) and v € N(z) \ (N[z] U N[y]) such that N(z) U N(y) U N(z) € N[v].
Notice that the path PU {zz, 2y} — {zw, wy} from zo to z; is of the same length
as P, and z is also in V(C) N V(Cj;), for otherwise, by replacing zwy by zzy,
we can construct a shortest path P’[zo, z;] such that V (P’ (zo,z:)) N V(C) =0
and | P'[zo, z;]| = | P|zo, z:]|, a contradiction. Notice again that z*z ¢ E(G),
for otherwise the cycle zz+C(z+, z)zz would contradict the choice of C. If
2ty ¢ E(G), then N(z) U N(y) U N(z) C N[z*]. Let z~ and y* be the
predecessor and the successor of z and y on the path P{zo, x;], respectively. Then
{z~z*,zty*} C E(G) and therefore | Plzxo, ™)zt Ply™, )| = | Plzo, z:]| -2,
a contradiction. Thus we have z+y € E(G). Similarly z~y € E(G).

Clearly y € V(C), otherwise the cycle yz*C(z+, z)zy contradicts Con-
dition (c) for the choice of C. Moreover y € V(C) N V(Cy;). Indeed, if
y € C(agq,vg(Cij)), then, since 27y, zy, 2ty € E(G) and z ¢ C(aq,v4(Ci;)),
we have y € I,,. Therefore y € V(Ci;). By the definitions of 2o and x;, we have
|Plzo, i]| = | Plzo, w)wyP(y, z:]| = |Plzo, w)| +[wy| +|P(y, z]| 2 m+1+
24+4m+1=2m-+4.

Case B. J(z,y) # 0.

There exists a vertex z € N(z) N N(y) such that N[z] C N{z] U N[y].
Using the similar argument as in Case A, we have z € V(C) N V(C;;) and
ztz ¢ E(G). Since zt € N(z) C Niz] U N[y], we have zty € E(G).
Analogously z~y € E(G). And then this case can be settled in the similar manner
as in Case A. (]

Claim 3. d(z;,z;) >2m+2for1<i<j<p.

Proof. Let C;5 and Cj; be the cycles from which we define x; and z;, respective-
ly. By Claim 1 (i), every path joining z; and x; has necessarily internal vertices
on C. Let P[z;, z;] be a shortest path from z; to x; and let y; (y;, resp.) denote
the first vertex on V(P[z;, z;]) N V(C) starting from x; (z;, resp.).

If y; ory; € V(C) N V(Cis) N V(Cje), then we settle this claim by using a
similar argument as in the proof of Claim 2.

If y; € C(aq,v4(Cis)) (¢ € {i,s}), then, since there is a path from z; to u;
that is internally disjoint from C' U H, we obtain a path form u; to y; with no
internal vertices in C U H. This is contrary to Observation 1.

Now we can conclude that y; € C(ap,vp(Cjt)) (p € {7,t}). Analogously
yi € C(ar,vr(Cis)) (r € {i,s}). By Observation 1, we have V(P(y:,y;)) N
V(C)NV(C;5) N V(Cje) # 0. Then this proof can be completed by using a
similar argument as in the proof of Claim 2. O
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