Distance-Dominating Cycles in P_3 -Dominated Graphs*

Metrose Metsidik^a and Elkin Vumar^{b†}
^a College of Mathematical Sciences,
Xinjiang Normal University, Urumqi 830054, P. R. China
^b College of Mathematics and System Sciences,
Xinjiang University, Urumqi 830046, P. R. China

Abstract

Let G be a connected graph. For $x,y \in V(G)$ with d(x,y)=2, we define $J(x,y)=\{u\in N(x)\cap N(y)\mid N[u]\subseteq N[x]\cup N[y]\}$ and $J'(x,y)=\{u\in N(x)\cap N(y)\mid \text{if }v\in N(u)\setminus (N[x]\cup N[y])\text{ then }N(x)\cup N(y)\cup N(u)\subseteq N[v]\}$. A graph G is quasi-claw-free if $J(x,y)\neq\emptyset$ for each pair (x,y) of vertices at distance 2 in G. Broersma and Vumar introduced the class of P_3 -dominated graphs defined as $J(x,y)\cup J'(x,y)\neq\emptyset$ for each $x,y\in V(G)$ with d(x,y)=2. Let $\kappa(G)$ and $\kappa(G)$ be the connectivity of G and the maximum number of vertices that are pairwise at distance at least k in k0, respectively. A cycle k1 is k2 in k3 in k4 in k5 in k6. In this note, we prove that every 2-connected k3-dominated graph k6 has an k4 in k5 in k6.

Keywords: Quasi-claw-free graph; P_3 -dominated graph; m-dominating cycle.

1 Introduction

Throughout this note, we consider only finite, undirected and simple graphs. Let G=(V,E) be a graph with vertex set V=V(G) and edge set E=E(G). The open neighborhood and the closed neighborhood of a vertex u are denoted by $N(u)=\{x\in V(G),\ xu\in E(G)\}$ and $N[u]=\{u\}\cup N(u)$, respectively. Let $\langle A\rangle$ denote the subgraph of G induced by the subset A of V(G) and let d(x,y) denote the distance between vertices x and y, i.e., the length of

^{*}This work is supported by NSFC(No.11061034, 11061035) and XJEDU2010I01.

[†]Corresponding author. Email: elkin1226@sina.com

a shortest path from x to y in G. If H is a subgraph of G, then we define $d(x,H) = \min\{d(x,y) \mid y \in V(H)\}$ as the distance from x to H. A set $A \subset V(G)$ is independent if no two vertices in A are adjacent. The independence number $\alpha(G)$ of G is the cardinality of a maximum independent set in G, and the connectivity $\kappa(G)$ of G is the cardinality of a minimum cutset in G. Moreover, let $\alpha_l(G)$ be the maximum number of vertices of G that are pairwise at distance at least l in G. A cycle G is M-dominating if M-dominating if M-dominating cycle is hamiltonian. The following result on M-dominating cycles in graphs was proved by Fraisse.

Theorem 1 ([8]). Let G be a 2-connected graph. If $\alpha_{2m+2}(G) \leq \kappa(G)$, then G has an m-dominating cycle.

Let $C:=c_0c_1\cdots c_{p-1}c_0$ be a cycle in G with an implicit orientation according to the increasing subscripts. For $i\neq j$, let $C[c_i,c_j]$ be the subpath $c_ic_{i+1}\cdots c_j$, the subscript is taken modulo p. We define $C(c_i,c_j)=C[c_{i+1},c_j]$, $C[c_i,c_j)=C[c_i,c_{j-1}]$ and $C(c_i,c_j)=C[c_{i+1},c_{j-1}]$. In each case we use the notation to refer both to the subpath and to its vertex set, depending on context. For any i, we put $c_i^+=c_{i+1}$ and $c_i^-=c_{i-1}$. We use similar definitions for paths.

If $H \subset G$ is an induced subgraph of G isomorphic to the star $K_{1,r}$ $(r \geq 3)$, then the only vertex of degree r in H is called the *center* of H and the other vertices of degree 1 in H are called *toes* of H. Whenever vertices of $K_{1,r}$ are listed, the center is always the first vertex of the list. Following Ainouche [1], we set $J(a,b) = \{u \in N(a) \cap N(b) \mid N[u] \subseteq N[a] \cup N[b]\}$ for each pair (a,b) of vertices at distance 2.

A graph G is said to belong to the class \mathcal{CF} of claw-free graphs, if G does not contain an induced subgraph isomorphic to a claw — $K_{1,3}$. A large number of results have been obtained on claw-free graphs, while some interesting problems and some conjectures remain open [4]. During the last two decades several extensions of claw-free graphs have been introduced and many known results concerning matching and hamiltonicity on claw-free graphs have been extended to these classes. See [1], [3], [5], [7], [9], [10] and [11] for more details. We will repeat the definitions of some of these superclasses of claw-free graphs.

In 1994 [12], Ryjáček introduced the class \mathcal{ACF} of almost claw-free graphs, and in 1998 [1], Ainouche introduced the class \mathcal{QCF} of quasi-claw-free graphs. A graph G is in \mathcal{ACF} if for any independent set A of G and for any $v \in A$, N(v) contains two vertices x and y such that $N[v] \subseteq N[x] \cup N[y]$. A graph G is in \mathcal{QCF} , if $J(a,b) \neq \emptyset$ for each pair (a,b) of vertices at distance 2 in G. In [3], as a common generalization of almost claw-free and quasi claw-free graphs, Ainouche et al. introduced the class \mathcal{DCT} of dominated claw toes graphs. A claw $(\{z,a_1,a_2,a_3\})$ with the claw center z is said to be dominated (undominated, resp.) if $\bigcup_{1\leq i < j \leq 3} J(a_i,a_j) \neq \emptyset$ ($\bigcup_{1\leq i < j \leq 3} J(a_i,a_j) = \emptyset$, resp.). A graph G belongs to \mathcal{DCT} , if every claw in G is dominated [2].

Recently, Broersma and Vumar [6] introduced a new class of graphs, namely

 P_3 -dominated graphs, which is a super class of quasi-claw-free graphs. They also extended some known results concerning hamiltonicity on QCF to this new class of graphs. The class P3D of P_3 - dominated graphs is defined below.

Let (a, b) be a pair of vertices at distance 2 in G. We consider a common neighbor u of a and b with the following property.

If
$$v \in N(u) \setminus \{a, b\}$$
 is adjacent neither to a nor to b, then it is adjacent to all vertices of $N(a) \cup N(b) \cup N(u) \setminus \{a, b, v\}$. (1)

For a pair (a, b) of vertices at distance 2 in G, set $J'(a, b) = \{u \in N(a) \cap N(b) \mid u \text{ satisfies } (1)\}$. We say that G is a P_3 -dominated graph if $J(a, b) \cup J'(a, b) \neq \emptyset$ for every pair (a, b) of vertices at distance 2 in G.

The following results are shown in [1] and in [6].

- (i) $CF \subset (QCF \cap ACF)$, $QCF \subset P3D$, $(QCF \cup ACF) \subset DCT$;
- (ii) $QCF \setminus ACF$, $ACF \setminus QCF$, $(QCF \cap ACF) \setminus CF$, $DCT \setminus (QCF \cup ACF)$, $P3D \setminus QCF$, $P3D \setminus DCT$ and $DCT \setminus P3D$ are infinite.

Chen et al. extend Theorem 1 in case of quasi claw-free graphs by showing the following.

Theorem 2 ([7]). Let G be a 2-connected quasi claw-free graph. If $\alpha_{2m+3}(G) \le \kappa(G)$, then G has an m-dominating cycle.

In the present note we generalize the result in Theorem 2 to the class P3D.

Theorem 3. Let G be a 2-connected P_3 -dominated graph. If $\alpha_{2m+3}(G) \leq \kappa(G)$, then G has an m-dominating cycle.

The following sufficient condition for a 2-connected P_3 -dominated graph to be hamiltonian follows immediately from Theorem 3.

Corollary 1 ([6]). Let G be a 2-connected P_3 -dominated graph. If $\alpha_3(G) \le \kappa(G)$, then G is hamiltonian.

We conclude this section with the following conjecture that was proposed in [7].

Conjecture 1 ([7]). Every 2-connected DCT-graph G has an m-dominating cycle or $\alpha_{2m+3}(G) \ge \kappa(G) + 1$.

2 Proof of Theorem 3

Let G be a 2-connected P_3 -dominated graph. For each cycle C of G, define $F(C) = \{x \in V(G-C) \mid d(x,C) > m\}$. We prove the following result which implies the assertion of Theorem 3.

If G has no m-dominating cycle, then $\alpha_{2m+3}(G) > \kappa(G)$.

Let C be a cycle in G such that:

(a) |F(C)| is as small as possible.

There is a component H of G-C with $F(C)\cap V(H)\neq\emptyset$ because C is not an m-dominating cycle. We choose C such that:

- (b) Subject to (a), |H| is as small as possible;
- (c) Subject to (a) and (b), C is as long as possible.

Let $x_0 \in F(C) \cap V(H)$. Let $A = \{a_1, a_2, \dots, a_p\}$ be the set of vertices of C which are adjacent to vertices of H, assume that these vertices occur on C, in the order of their indices. Obviously, $p \geq \kappa(G)$ and there is a path $Q_{a_i a_j} := Q_{ij}$ between any pair a_i, a_j of A, whose internal vertices are all in H.

Let $S_i = C(a_i, a_{i+1})$. A vertex $u \in S_i$ is said to be *insertable* if there exist vertices $v, v^+ \in V(C) - S_i$ such that $uv, uv^+ \in E(G)$. Let I_i be the set of insertable vertices of S_i . For a cycle C' in G, we use $v_i(C')$ to denote the first vertex of C' on $C(a_i, a_{i+1}]$ (if any). Consider two indices i, j (not necessarily distinct) and let K_{ij} denote the set of cycles C' of G such that:

- 1. $V(C') \cap V(H) \neq \emptyset$.
- 2. $V(C) V(C') \subseteq (C(a_i, v_i(C')) I_i) \cup (C(a_j, v_j(C')) I_j)$.

Now $C[a_{i+1},a_i]Q_{i(i+1)}$ is a cycle and $S_i \subseteq V(G) - V(C[a_{i+1},a_i]Q_{i(i+1)})$. It is easy to obtain a cycle C_i from $C[a_{i+1},a_i]Q_{i(i+1)}$ and S_i such that $C[a_{i+1},a_i]Q_{i(i+1)} \cup I_i \subseteq C_i$. Remark that C_i belongs to K_{ii} , and hence K_{ij} is not empty.

Let L_{ij} denote the subset of K_{ij} , defined as follows: a cycle C' belongs to L_{ij} if

3. $C(a_i, v_i(C')) \cup C(a_j, v_j(C'))$ is minimal for inclusion.

Notice that $L_{ii} \neq \emptyset$ because each cycle in K_{ii} corresponds to, in a sense of Condition 3, some cycle that belongs to L_{ii} .

Consider i as a fixed index, then, for each $j \in \{1, \cdots, p\}$ and for each cycle C' in K_{ij} , we have $F(C') - F(C) \neq \emptyset$, otherwise C' would contradict Condition (a) or (b) of the choice of C. It follows that there exists a vertex x_{ij} with $d(x_{ij}, C) \leq m$ and $d(x_{ij}, C') > m$. From Condition 2 in the definition of K_{ij} , we deduce that

4. There is a path of length at most m from x_{ij} to $C(a_i, v_i(C')) - I_i$ or to $C(a_j, v_j(C')) - I_j$ with no internal vertex in $V(C) \cup V(C')$.

For each $j \in \{1, \cdots, p\}$, let H^i_j be the set of all cycles C_{ij} in L_{ij} such that there is a vertex x_{ij} in $F(C_{ij}) - F(C)$ which is joined by a path with no internal vertex in $V(C) \cup V(C_{ij})$ to a vertex $u(x_{ij})$ of $C(a_i, v_i(C')) - I_i$ such that $|C(a_i, u(x_{ij}))|$ is minimum. Note $H^i_j \neq \emptyset$ because of the remark after Condition 2. Choose an index j, a cycle $C_{ij} \in H^i_j$ and a corresponding vertex x_{ij} in

 $F(C_{ij}) - F(C)$ such that

5.
$$|C(a_i, v_i(C_{ij}))| = \min\{|C(a_i, v_i(C_{ij'}))| \mid 1 \le j' \le p \text{ and } C_{ij} \in H^i_{j'}\}.$$

Then we redefine $x_i = x_{ij}$ and $u_i = u(x_{ij})$ for $1 \le i \le p$. We will show in the following that $x_0, x_1, x_2, \dots, x_p$ are different vertices and of distance pairwisely at least 2m + 3.

Claim 1. (i) $x_i \notin V(H)$ for $1 \le i \le p$; (ii) $x_i \ne x_j$ and there is no path $P[x_i, x_j]$ such that $V(P(x_i, x_j)) \cap (V(C) \cup V(H)) = \emptyset$ for $1 \le i < j \le p$.

- *Proof.* (i) If $x_i \in V(H)$ for some i, then, by the definition of x_i , there is a path P from x_i to $u_i \in C(a_i,v_i(C')) I_i$ that has no internal vertex in $V(C) \cup V(C')$. Then, using the path P, we can construct a cycle $C'' \in L_{ij}$ such that $|C(a_i,v_i(C')) \cup C(a_j,v_j(C'))| > |C(a_i,v_i(C'')) \cup C(a_j,v_j(C''))|$, a contradiction.
- (ii) Let x_i (x_j , resp.) be a corresponding vertex of C_{is} (C_{jt} , resp.) which is joined to $u_i \in (C(a_i, v_i(C_{is})) I_i) \cup (C(a_s, v_s(C_{is})) I_s)$ ($u_j \in (C(a_j, v_j(C_{jt})) I_j$) $\cup (C(a_t, v_t(C_{jt})) I_t)$, resp.). Suppose without loss of generality that $i < j, u_i \in C(a_i, v_i(C_{is})) I_i$ and $u_j \in C(a_j, v_j(C_{jt})) I_j$, and assume that (ii) is not true. Then, since $x_i, x_j \notin V(H)$, there is a path $P[u_i, u_j]$ which is internally disjoint from $C \cup H$. Setting $C_{ij} := a_i Q_{ij} C[a_j, u_i) P[u_i, u_j] C(u_j, a_i]$, and inserting the insertable vertices in $C(a_i, u_i)$ and in $C(a_j, u_j)$, we can construct a cycle C'_{ij} such that $C_{ij} \subseteq C'_{ij} \in H^i_j \subseteq L_{ij} \subseteq K_{ij}$ and

$$|C(a_i, v_i(C_{is}))| > |C(a_i, v_i(C_{ij}'))| \text{ and } |C(a_j, v_j(C_{jt}))| > |C(a_j, v_j(C_{ij}'))|.$$

And then Condition 4 is verified for C'_{ij} , contradicting Condition 5.

From the proof of Claim 1, it is not difficult to obtain the following observation.

Observation 1. There exists no path internally disjoint from $C \cup H$ that joins a vertex of $C(a_k, v_k(C_{is}))$ and a vertex of $C(a_q, v_q(C_{jt}))$, where $k \in \{i, s\}$ and $q \in \{j, t\}$.

Claim 2. $d(x_0, x_i) > 2m + 2$ for $1 \le i \le p$.

Proof. By Claim 1 (i), every path from x_0 to x_i must contain a vertex of C. Let $P[x_0, x_i]$ be a shortest path from x_0 to x_i , and assume that $w \in V(P) \cap V(C)$ with $V(P[x_0, w]) \cap V(C) = \{w\}$. If $w \in C(a_q, v_q(C_{ij}))$, where $q \in \{i, j\}$ and C_{ij} is the cycle from which we define x_i , then the cycle $C[w, a_q]Q_{a_q, w}$ contradicts Condition 3 for C_{ij} . So we can assume that $w \in V(C) \cap V(C_{ij})$.

Let x and y be the predecessor and the successor of w on the path $P[x_0, x_i]$, respectively. By the minimality of the path, $xy \notin E(G)$, hence d(x,y) = 2. Since the graph is P_2 -dominated, we have $J(x,y) \cup J'(x,y) \neq \emptyset$.

Case A. $J(x,y) = \emptyset$.

By definition, we have $J'(x,y) \neq \emptyset$ and hence there exist vertices $z \in N(x) \cap N(y)$ and $v \in N(z) \setminus (N[x] \cup N[y])$ such that $N(x) \cup N(y) \cup N(z) \subseteq N[v]$. Notice that the path $P \cup \{xz, zy\} - \{xw, wy\}$ from x_0 to x_i is of the same length as P, and z is also in $V(C) \cap V(C_{ij})$, for otherwise, by replacing xwy by xzy, we can construct a shortest path $P'[x_0, x_i]$ such that $V(P'(x_0, x_i)) \cap V(C) = \emptyset$ and $|P'[x_0, x_i]| = |P[x_0, x_i]|$, a contradiction. Notice again that $z^+x \notin E(G)$, for otherwise the cycle $xz^+C(z^+, z)zx$ would contradict the choice of C. If $z^+y \notin E(G)$, then $N(x) \cup N(y) \cup N(z) \subseteq N[z^+]$. Let x^- and y^+ be the predecessor and the successor of x and y on the path $P[x_0, x_i]$, respectively. Then $\{x^-z^+, z^+y^+\} \subset E(G)$ and therefore $|P[x_0, x^-]z^+P[y^+, x_i]| = |P[x_0, x_i]| - 2$, a contradiction. Thus we have $z^+y \in E(G)$. Similarly $z^-y \in E(G)$.

Clearly $y \in V(C)$, otherwise the cycle $yz^+C(z^+,z)zy$ contradicts Condition (c) for the choice of C. Moreover $y \in V(C) \cap V(C_{ij})$. Indeed, if $y \in C(a_q, v_q(C_{ij}))$, then, since $z^-y, zy, z^+y \in E(G)$ and $z \notin C(a_q, v_q(C_{ij}))$, we have $y \in I_q$. Therefore $y \in V(C_{ij})$. By the definitions of x_0 and x_i , we have $|P[x_0, x_i]| = |P[x_0, w)wyP(y, x_i]| = |P[x_0, w)| + |wy| + |P(y, x_i)| \ge m + 1 + 2 + m + 1 = 2m + 4$.

Case B. $J(x, y) \neq \emptyset$.

There exists a vertex $z \in N(x) \cap N(y)$ such that $N[z] \subseteq N[x] \cup N[y]$. Using the similar argument as in Case A, we have $z \in V(C) \cap V(C_{ij})$ and $z^+x \notin E(G)$. Since $z^+ \in N(z) \subseteq N[x] \cup N[y]$, we have $z^+y \in E(G)$. Analogously $z^-y \in E(G)$. And then this case can be settled in the similar manner as in Case A.

Claim 3. $d(x_i, x_j) > 2m + 2$ for $1 \le i < j \le p$.

Proof. Let C_{is} and C_{jt} be the cycles from which we define x_i and x_j , respectively. By Claim 1 (ii), every path joining x_i and x_j has necessarily internal vertices on C. Let $P[x_i, x_j]$ be a shortest path from x_i to x_j and let y_i (y_j , resp.) denote the first vertex on $V(P[x_i, x_j]) \cap V(C)$ starting from x_i (x_j , resp.).

If y_i or $y_j \in V(C) \cap V(C_{is}) \cap V(C_{jt})$, then we settle this claim by using a similar argument as in the proof of Claim 2.

If $y_j \in C(a_q, v_q(C_{is}))$ $(q \in \{i, s\})$, then, since there is a path from x_j to u_j that is internally disjoint from $C \cup H$, we obtain a path form u_j to y_j with no internal vertices in $C \cup H$. This is contrary to Observation 1.

Now we can conclude that $y_j \in C(a_p, v_p(C_{jt}))$ $(p \in \{j, t\})$. Analogously $y_i \in C(a_r, v_r(C_{is}))$ $(r \in \{i, s\})$. By Observation 1, we have $V(P(y_i, y_j)) \cap V(C) \cap V(C_{is}) \cap V(C_{jt}) \neq \emptyset$. Then this proof can be completed by using a similar argument as in the proof of Claim 2.

Acknowledgement. The authors thank the referee for valuable comments and suggestions.

References

- [1] A. Ainouche, Quasi-claw-free graphs, Discrete Math. 179 (1998) 13-26.
- [2] A. Ainouche, H. J. Broersma and H. J. Veldman, Remarks on Hamiltonian properties of claw-free graphs, Ars Combin. 29C (1990) 110-121.
- [3] A. Ainouche, O. Favaron and H. Li, Global insertion and hamiltonicity in DCT-graphs, Discrete Math. **184** (1998) 1-13.
- [4] H. J. Broersma, On some intriguing problems in hamiltonian graph theory a survey, Discrete Math. 251 (2002) 47-69.
- [5] H. J. Broersma, Z. Ryjáček and I. Schiermeyer, Toughness and hamiltoncity in almost claw-free graphs, J. Graph Theory 21 (1996) 431-439.
- [6] H. J. Broersma and E. Vumar, On hamiltonicity of P_3 -dominated graphs, Math. Method. Oper. Res. **69** (2009) 297-306.
- [7] C. Chen, A.H. Benhamdine and H. Li, Distance-Dominating Cycles in Quasi Claw-Free Graphs, Graphs and Combin, 15 (1999) 279-285.
- [8] P. Fraisse, A note on distance-dominating cycles, Discrete Math. 71 (1988) 89-92.
- [9] M. Li, Longest cycles in almost claw-free graphs, Graphs and Combin. 16 (2000) 177-198.
- [10] M. Li, Hamiltonian cycles in almost claw-free graphs, Graphs and Combin. 17 (2001) 687-706.
- [11] R. Li, Hamiltonicity of 3-connected quasi-claw-free graphs, Discrete Math. **265** (2003) 393-396.
- [12] Z. Ryjáček, Almost claw-free graphs, J. Graph Theory 18 (1994) 469-477.