NOTE ON A ¢-OPERATOR IDENTITY
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Abstract: In this paper, we obtain an interesting identity by applying
two g-operator identities. From this identity, we can recover the terminat-
ing Sears’ 3®, transformation formulas and the Dilcher’s identity and the
Uchimura’s identity. In addition, an interesting binomial identity can be
concluded.
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1. Introduction and Main Result

Following Gasper and Rahman (5], the g-shifted factorial of a is defined
by

n-1

(;59)0=1, (a;q@)n= H(l -ag®), n=12-.-.
k=0

When |g| < 1, we have the infinite product expressions
(@90 = [[(1 - ag*) and (a;9)a = (6;@)e/(20% D)oo (1)
hk=0

where « is a complex number.
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The product and fraction forms of the shifted factorials are abbreviated
throughout the paper respectively to

(a1,82,** y8m;@n = (a1;9)n(82;@)n - - - (@m} Pns

a, az, ‘- GQr (01,0.2,"- ’ar;Q)n
[blx ba, ‘-1 bs,q]n (bl,bZ:"' abs;Q)n, '

The basic hypergeometric series ®; is defined by:

ay, "% Gr,
rés(bl’ ey bsr%x)
oad . 1+s—r
2 T G N
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The g-binomial coefficient is given by

ni_ (g;9)n
[k] CT T . (2)

The g-derivative operator D, and g-shifted operator 9 (cf. [1]), acting on
the variable z, are defined by:

D, {f@) = 12T oy (500} = f(ea)

Remark. The definition of D, is different from the ordinary ¢-differential
operator. Multiplying both sides of this definition by 1/(1 — g), it should
become the ordinary g-differential operator. The ordinary definition reduces
to the ordinary differentiation for ¢ — 1. There are many people using this
operator to obtain formulas of the g-series. The typical one is Cigler [2]. In
[2], he applied this operator to give a system way of studying the g-series.

We can prove, by means of the induction principle, the following explicit
formulae

2 [ (2w @)oo s" (w/s; @)n(zwg™; @)oo
oy { ) = 50w ®
D; @a@) = 3 [}] 4Dk (£@) D {ota)} . (0
k=0

The following elegant identity
k(k—1)/2+kr T q™

I e P D o

1€n, Snp 1 o€ <ni=l

(5)
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was given by Dilcher (3, p. 91, Eq. 5.3]. Fu and Lascoux [4] presented
an extension of it. Later, Prodinger (7], Zeng [8] applied different ways to
prove the extension given by Fu and Lascoux [4).

In this paper, we apply the following g-operator identity

D7 {f(2)} ==~ Z G Dk sk (12} (6)

(q, q)

to give an identity which contains (5) and (16) as its special cases. The
identity (6) is simple but important. Recently, Chu [1) has given some
applications of this operator identity. The main results of this paper are
stated as:

Theorem 1. Let z,a;,b; be complex numbers, i =1,2,--- ,r
q—n’ .’Bbl, Y xbf .
r+lq)r( zay, --- xarrq,q

(al/bl; Q)n
(@053 0n g, <k, oD <k chomn

gk, zb; @iy1/bigy ] (qbi+1 )ki
! ; — . 7
XH[ s, 1| (T ™
Theorem 2. Let a; # 0,b; # 0,z be complex numbers, i =1,2,.-- ,r

i q ", zb, -, IL'br. . (qnal...ar)k
k=0 q, zra,, ---, ZIar ’ k blb2 e br
_ (@/b1;q)n

(za1;)n 0<kr_1 k2L <k Sho=n

_k" zb;, a; b; .
x H[ kit fas, +/ “;q]k.qk'. ®)

= (bhiz)"

Tlit)

2. The Proof of the Theorems

Proof of Theorem 1
Taking

_ | a1, za2, ---, ZTar
f(x)_[xb], zby, -, b, xQ]w
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into (6), the right hand side equates to

'"f(Z)Z[ " ob, zbs, o mb';q] q~. (9)

zay, zaz, -°°°, ITar

From (4), the left hand side of (6) can be rewritten as follows

n kl
n - —k | @
2 [’“] ghihmmDE [xbljzi‘ ;q]
o0

k1=0

ra za v Ira
x D‘I?c; 2) 3, ) r; q
$b2, be’ "t zby oo

(" )k k1 (*5F) pn—ka [ivalqk‘. ]
Z @aw TOC TP gy g 9]

k | ZQ2, *°° ZCr
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Iterating the process above, by induction and using (3), the left hand
side of (6) comes to

(@1/b1;9)n [ zb;,  oa/br (qbz)’“
n ’ . 1
(za] q)n f( ) Z l"ﬂ/al’ Ta 1) q kl al
k2
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Ko
X zz [q_kr_g’ zbr_1, ar/br q] ( gb, )kr_l
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g ki-1, zb;, aiy1/bis1 gbiv1 \™
[ b;ql_k"‘/ai, Taipy v q " Py ) . (10)

Thls proves the Theorem.ll

Proof of Theorem 2
In (7), taking ¢ — 1/q, then replacing (z,a;,b;) by (1/z,1/ai,1/b;) re-
spectively, where i = 1,2,--- ,r. We can get the Theorem 2.0
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3. Some special cases
Putting r = 2 in (7), then replacing (a,z, asz, b1z, boz) by (a1,a2,by,b2)
respectively, we have the following Sears’ transformation formula

Corollary 1. The terminating Sears’ 3®, transformation formula [5, p.
61, Eq. 3.2.2)

3‘1’2((1 rob b2;q,¢1)=

a, a2

n(01/61;@)n ~ [g7™, by, az/by gby f
D 3l LA P "’L,(al) L an

kl =0

Setting » = 2 in (8), then replacing (a2, asz, by z, baz) by (a1, a2, by, b2)
respectively, we have another Sears’ transformation formula

Corollary 2. The terminating Sears’ 3, transformation formula [5, p.
61, Eq. 3.2.5]

- b b
3‘1’2(q ’ all, 2;Q;qnala2/blb2)=

(a1/b1; @)n ", b, az/bz, ki 12
Z [ ,quq (12)

(a9 Pyt big'""/a1, a2
Letting a; = ¢b; and @) = az = :-- = a, in (8), where i = 1,2, ,7,
then simplifying and putting zb; = x, we have the following identity
Corollary 3. We have

" [ ] D 2)+""r= (:9)- 5

k T
k=0 —2qt) (B Ontt g cp 5T <k homn

g~
i Toags (13)

i=1

Putting = = g, then multiplying ¢"~! on both sides of (13), we have the
following finite extension of Uchimura’s identity

Corollary 4. A finite extension of Uchimura’s identity

= [n k- 1
S [k uta et s

k=0
r-1 gt

(919)n
= - _ k, 1° (14)
(2 9)n+1 0<ky oy <hyog<oe <k,<ko—~nzl:-Il 1 ¥
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Taking z = ¢ and n — oo in (14), we have the following extension of
Uchimura'’s

Corollary 5. An extension of Uchimura’s identity

o4 D)

S 1)k-1
g( g @Dra(l-) > Hl qk- (15)

1<kr—y Shp2S Lko=n i=1

In (15), setting r = 2, we have Uchimura’s identity (cf. [9])

o (*3")

_1yk-1 q 2
21 (@;9)k-1(1 — ¢¥)° Z T—gh’ (1e)

k=1 k1=1

In fact, this identity was known much earlier (cf. [6]).
Taking the limit as ¢ — 1 in (14), we have the following binomial identity
Corollary 6. We have

i (:) (—l)k(k-:l)'” - n-ll- 1

k=0

1
X z (k1 +1)- - (kpor + 1)

0<kro1 Shroa S Ska Sho=n

(17)

Remark. We can derive the identity (5) from (13) by using a slick trick:
Letustakez—1=wandset k #0,k; #0 (i=1,---,r—1). (13) can be
rewritten as follows

[ ]( )L q(2 +kr (_l)rwr
(1-¢*)" (1 —wg*/(1-q¥))"
1
T (1-wg/(1—-g))--(1-wgr/(1—gq"))
x Z (_l)r—l

1<k, 1 Skr2 S-Sk Sho=n

(18)

r—
g~ w

X .

,.13, 1 — gk (1 - wgki/(1-q¥))



Then we expand both sides of (18) into a power series of w

n

Z[ ]( ’)k“(q(z)q TErsad i(l‘%)“”

A=1 3=0
1 —_
m=1j=0 1<ke -1 Shro g S <y Sho=n

‘Ik‘ lt
XH _k. Z 1—gk W
1 q

Thus we can get the Dilcher's identity (5) by comparing the coefficients of

w'.
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