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Abstract

In [2] it is proved that if X = Cay(G, S) is a connected tetravalent
Cayley graph on a regular p-group G (for p # 2,5), then the right
regular representation of G is normal in the automorphism group of
X. In this paper we prove that a similar result holds, for p = 5,
under a slightly stronger hypothesis. Some remarkable examples are
presented.
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1 Introduction

Let G be a group and S a subset of G such that 1 ¢ S. The Cayley graph on
G with connection set S, denoted Cay(G, S), is the digraph with vertex set
G and edge set {(g,h) | hg~! € S}. We recall that Cay(G, S) is connected
if and only if G = (S). Note that if § = S~!, then Cay(G, S) can be viewed
as an undirected graph by identifying two oppositely directed edges.

A Cayley graph X = Cay(G, S) on G is said to be normal on (G, S) if
the right regular representation R(G) of G, i.e. the permutation represen-
tation of G acting by right multiplication, is a normal subgroup of Aut(X).
In particular, it was noticed in [4] that the digraph X is normal on (G, ) if
and only if Aut(X) is the semidirect product of R(G) with Aut(G, S), where
Aut(G,S) = {a € Aut(G) | §* = S}, i.e. Aut(X) = R(G) x Aut(G, S).
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When the set S is clear from the context we simply say that X is normal
on G.
We recall the following definition, see [5] and [6].

Definition 1 A finite p-group G is regular if for every x,y € G there exists
Czy € (72({z,¥)))? such that (zy)P = zPyPegy.

In here 42(G) denotes the second term of the lower central series of
G, i.e. the commutator subgroup of G. Also, G? denotes the group (g” |
g € G), i.e the subgroup generated by the pth powers of the elements of
G. We note that the class of regular p-groups was introduced by P.Hall as
a generalization of the class of abelian p-groups. We refer the interested
reader to [6] for an overview on regular p-groups and their applications.
In particular we recall that the class of regular p-groups is very rich (for
example any p-group of nilpotency class at most p — 1 or exponent p is a
regular p-group) and is a very useful tool for studying p-groups of maximal
class, or more generally p-groups of bounded coclass. Moreover, we recall
that regular p-groups and abelian p-groups have several common properties,
see [6].

It was proved in [1] the following interesting theorem on Cayley graphs
on abelian groups.

Theorem ([1}, Theorem 1.1) Let X = Cay(G,S) be a connected undi-
rected Cayley graph on an abelian group G with valency 4. Then either
X is normal on G or X is one of a known list of exceptions. In partic-
ular, the only ezception, when G is a finite odd abelian p-group, is X = Ks.

In [2], using some remarkable similarities between abelian p-groups and
regular p-groups, it was proved the following generalization of Theorem 1.1
in [1].

Theorem ([2], Theorem 3.1) Any connected tetravalent undirected Cay-
ley graph on a regular p-group G, with p # 2,5, is normal on G.

It is worth noticing that a regular 2-group is abelian (see (5]) and so
the classification of the connected tetravalent undirected Cayley graphs on
regular 2-groups was achieved in [1]. In this article, we point out that
a result similar to Theorem 3.1 in [2] holds, for p = 5, under a slightly
stronger hypothesis.

In this paragraph we introduce some notation. If G is a group and ¢
is an automorphism of G, then we denote by g¥ the image of the group
element g via o, i.e. we let v act on G on the right. In particular, if V =F7
is the row-vector space over I, of dimension n, v is a row-vector of V and
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A is a matrix in GL(n,F,), then vA is the image of v via the isomorphism
induced by A on V.
Let T' be the 5-group with presentation

5 5
T =(e1,e2,e3,2 | € = [e;,ej] =1,z° = e3, €] = e1e2, €5 = eze3, €3 = e3).

In particular, T is a non-split extension of the elementary abelian 5-group
(e1,e2,€e3) by the element z, where the action of z is given by the matrix

10
A= 1 1
01

(note that, by our convention, the matrix A acts on the right on (e;, e2, e3}).
In Section 2, we prove the following theorem.

(= =N

Theorem 1 Let G be a regular 5-group with no image isomorphic to T'. If
X = Cay(G,S) is a connected tetravalent undirected Cayley graph on G,
then either X is normal on G or X = K.

We point out that the proof of Theorem 1 uses the proof of Theorem 3.1
in [2].

2 Proof of Theorem 1

In the sequel we use the same notation as in [2]. We denote by ®(G) the
Frattini subgroup of the p-group G, i.e. ®(G) = GPv(G). We recall that
G/®(G) is an elementary abelian p-group and that the minimal number of
generators of G is the number of elements in a basis of G/®(G), see [5).

Proposition 1 Let G be a regular 5-group with no image isomorphic to T
and let S be a subset of G with S = S~!, |S| = 4 and G = (S). Let
H be a non-trivial elementary abelian normal subgroup of G. If X =
Cay(G/H,SH/H) = K5, then X = Cay(G, S) is normal on (G, S).

PROOF. Since |V(X)| = 5, we have that H has index 5 in G and so
[V(X)| > 5%. Now, by Theorem 1.1 in [1], if G is abelian, then X is
normal on (G, S). Therefore we may assume that G is not abelian and
so, in particular, |[H| > 52. Since G is generated by S, we have that G is
2-generated.

We claim that there are exactly five non-abelian 2-generated regular
5-groups G with no image isomorphic to T and with an elementary abelian
maximal subgroup H.
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Set |H| = 5%. Let z be an element in G\H. The element z acts, by
conjugation, on H as an automorphism ¢;. Fix B8 a basis of H such that the
matrix M corresponding to ¢, with respect to the basis 8, is in Jordan
form. Assume that M has ¢ Jordan blocks of size n,,...,n;. We may
assume that n; < --- < n,;. In particular,

JIny
M=

where

In; =

denotes a Jordan block of size n;.

Now, we label the elements of B as hy 1,...,R1ny,y. .oy A1y -+ Peyn, SO
that h; 1, ... hin, are the row-vectors corresponding to the ith Jordan block
of M. For example, hy,1,...,h1,n, are the first n; elements of the basis B
and hy; is the (n1 + j)th element of B, for 1 < j < np. In particular,
h‘;-":j = h,"jhi,j.g.l for1< i<mn; and h?‘m = hi.n;v

From the previous paragraph we get [H, ] = (h1,2,...,h1,ny,. -+, Bt,25- .-

Furthermore, the elements z, k1 1,..., k1 generate G and commute mod-
ulo [H,z). Therefore, G/[H, z] is abelian. Hence, 72(G) = [H, z].

Since G/¥2(G) is abelian, we have (ab)® = a®b°® mod 72(G) for every
a,bin G. As H has exponent 5 and G = (z)H, we get that &(G) =
G512(G) = (z°)72(G). Now, in order to prove that there are exactly five
non-abelian 2-generated regular 5-groups G with no image isomorphic to
T and with an elementary abelian maximal subgroup H, we consider two
cases.

CASE A: z° lies in 72(G).

In this case ®(G) = 12(G) = [H,z] and |®(G)| = |[H,z]| = 5. The
group G is 2-generated, so 52 = |G/®(G)| = 5¥+1~(k=8) = 51+* Therefore
t =1 and M is a Jordan block of size k. Now, the isomorphism class of G
depends only on the order of z. If z has order 5, then G = (z) x H, where
the action of z on H is given by M = Jj.

Now assume z® # 1. We have z° € H and z° commutes with every
element of G. Therefore z° € (k1 x}, so, without loss of generality, we may
assume that z° = h; x. Therefore, G = (z) - H, where z° = hyx and the
action of = on H is given by M = Ji. In particular, since G is non-abelian
and G has no image isomorphic to T', we have k = 2.
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In either case (z° =1 or z® # 1), if k < 4, then |G| < 5. Thus, G has
nilpotency class at most 4. Therefore G is a regular 5-group. It is routine
to check that if k > 5, then G = (z) x H is not regular, see Satz 10.3(d)
in [5]. This gives us four groups.

CASE B: z° does not lie in 72(G).

In this case ®(G) = (2°)72(G) = (z°)[H,z] and |®(G)| = 5|[H,z]| =
58=t+1, The group G is 2-generated, so 52 = |G/®(G)| = sk+1-(k-t+1) =
5¢. Therefore t = 2 and M has two Jordan blocks. We claim that n; = 1
and ny = k — 1. Since z° € H, we have z° = ]!, AT}, [T}, h3’; for some
7i,8j. Further, since z° ¢ vo(G) = [H, z|, we have (r1, s;1) # (0,0). Now,
z% commutes with z. Therefore,

n nz ~ ﬂ2
N y ol
eIl = o8 =60 = [[w= [0y,
i=1 =1 =1 =1
n—1 n2—1

1. n 8;1.5n
= [I uihran) h3 T (hashogen)ho72,
=1 =1

n; ne
Ty Ti-1t+7ip s, Sj-1+s8;
hil H hi'; ha'y H hy’; .
=2

j=2

This yields r; = r;_1 +7; for 2 < i < n; and sj=s8j_1+s; for2 < j<no.
So,ri=0fori=1,...,ny—land s;=0forj=1,...,n—1. If n; > 1,
then ry = s, = 0 and z° € [H, 2], a contradiction. This yields n; = 1,
ng =k—1and s; =0 for j =1,...,n2 — 1. In particular, we get that
z° = h;:lh;:‘k'_‘l for some r;,s,—1 and 7; # 0. Now, up to replacing the
basis hl,l’ hg'l, . hz,k—l of H with h;.llh;fk-—il’ h2,1, ey hg,k..l, we may
assume that z° = h; ;. In particular, we have that G = (z) - H, where
z° = h;,, and the action of = on H is given by

M=(1 e )

Since G is non-abelian, we have k£ > 3. The group G has an image
isomorphic to T if and only if & > 4. In fact, if £ > 4, then T'= G/N where
N = (h1,1h2,3,h2,4,...,hok—1). For k = 3, the group G has nilpotency
class 2, thus G is a regular 5-group with no image isomorphic to T". Hence
Case B yields only one group.

Therefore, as claimed, there are exactly five non-abelian 2-generated re-
gular 5-groups with no image isomorphic to T’ and containing an elementary
abelian maximal subgroup.

The rest of the proof of this lemina is entirely computational and is left
to the reader. Indeed, since the group structure of G is determined and
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since we are dealing with a finite number of relatively small groups, we
can check Proposition 1 using the very efficient package GRAPE of GAP
written by L.Soicher and the package nauty written by B.McKay, see (7]
and [8]. As a matter of completeness, in the next paragraph, we show how
this can be done using as a guiding example the group G = (z) x H, where
|H| = 5% and the action of z on H is given by M = Js.

Clearly, G = (z,h,1) and &(G) = (hi,2,h1,3). We recall that if F' =
(X | R) is a finite group, defined by the generators X and by the relations
R, and ¢ : F — F is a function mapping the generating set X of F to
another generating set of F and preserving the defining relations R of F,
then ¢ is an automorphism of F. Now, the group G has presentation

G =(z,h1, b2l | 2 =h}; =R, =1,
i1 = h1,1h1,2,hT 5 = hi 21,8, AT 3 = hu3).

We claim that for any v € H and for any w € ®(G), there exists an
automorphism ¢ of G such that ¥ = zv and h{; = hj,;w. Set h{y =
[p%1,2¥] and hf3 = [h{,,2¥]. By the given presentation of G and by
the above remark, to prove our claim it suffices to show that z¥,h{, are
generators of G and that ¢ preserves the defining relations of G. Since
w € ®(G), we have (zv, hyw) = (zv, h1,1) = G. So, z¥, h{, are generators
of G. Also, since G has exponent 5, we have (h{,)® =1 and (2¥)° = 1. All
the remaining relations can be checked similarly.

This shows that if S is a subset of G such that |S| = 4, S§ = S,
G = (S) and Cay(G/H,SH/H) = Ks, then S is Aut(G)-conjugate to the
following set

J= {.’L', x_l, (xhl,l)z, (xhl,l)-z}.

Therefore, to prove Proposition 1 for the group G, it is enough to check
that the Cayley graph X = Cay(G, J) is normal on (G, J). Now, the built-
in command CayleyGraph in GRAPE allows us to compute X. Then, the
command AutomorphismGroup allows us to compute A = Aut(X). Finally,
we can check that R(G) is normal in A.

The remaining four groups can be checked similarly. o

PROOF OF THEOREM 1. Let G be a regular 5-group with no image isomor-
phic to T and X = Cay(G,S) a connected tetravalent undirected Cayley
graph. We have to prove that either X is normal on (G, S) or X = K5. We
argue by induction on |V(X)|. If |V(X)| = 5, then X = Kj and so there
is nothing to prove.

We use the proof of Theorem 3.1 in [2] to conclude the induction. In-
deed, the proof of Theorem 3.1 in [2] uses the hypothesis that p # 5 only
on page 358 (lines 11-20). So, we aim to use the the hypothesis “G has no
image isomorphic to 7" to adjust the proof of Theorem 3.1 to deal with the
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case p = 5. In the following paragraph we sketch the proof of Theorem 3.1,
up to page 358 line 20, to point out to the reader where the hypothesis
p # 5 is used (we suggest the use of [2] as a crib for the reader).

Let A be Aut(X) and N a minimal normal subgroup of A. Let B
be the set of orbits of N on V(X), m = |B| and K the kernel of A on
its natural action on B. Let X be the quotient graph corresponding to
the blocks in B. Using the classification of the finite simple groups the
authors of [2] proved that, if m > 1 and X has valency 4, then N is
a non-trivial elementary abelian p-group, N C R(G) and K = N (lines
11-17 page 358). In particular N = R(H), where H is a non-trivial el-
ementary abelian normal subgroup of G. From this the authors of [2]
proved that X is the tetravalent Cayley graph on the regular p-group G/H
with connection set SH/H, ie. X = Cay(G/H SH/H). In particular,
A/R(H) C Aut(X). Now, if p # 2,5, using induction and Theorem 1.1
in [1], we have that the Cayley graph X isnormal on (G/H,SH/H). There-
fore, the group R(G/H) = R(G)/R(H) is a normal subgroup of Aut(X).
Thus R(G)/R(H) is a normal subgroup of A/R(H), i.e. R(G) is a normal
subgroup of A. Hence X is normal on (G, S) (lines 18-20).

Clearly, the previous argument cannot be used in the case p = 5, as in
general X is not normal on (G/H, SH/H), (for instance K is not normal).

Now, assume in the previous argument p = 5. If X is normal on
(G/H,SH/H), then X is normal on (G,S) (use the same argument as
in the case p # 5).

Therefore, we may assume that X is not normal on (G/H, SH/H).
Since G/H is a regular 5- -group with no image isomorphic to T and |V (X)| <
[V(X)], by induction we get X = Kj. Since H is a non-trivial elementary
abelian subgroup of G, Proposition 1 yields that X is normal on (G, S).

In particular, in either case (X is normal on G/H or X is not normal
on G/H) the Cayley graph X is normal on (G, S).

The rest of the proof of Theorem 3.1 in [2] (i.e. the case m = 1 and
the case X is not tetravalent) does not use the hypothesis that p # 5.
Therefore, the rest of the proof of Theorem 3.1 in [2] yields Theorem 1. g

3 Some remarkable examples
Let n > 1 be a natural number and G, = PSL(2,Z/5"Z). Consider

.0 1 | ~(y+1) y .
z—[_l 0},t—[ v+1 y]andHn—(z,t),

where 2y + 2y + 1 =0 and y =3 mod 5 (note that y exists by Hensel's
lemma). The element i has order 2 and the element ¢ has order 3. Set
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j =1t and k = j*. We have

j=[ 0 2y+1]’k=[2y+1 0

2w+l 0 0 —(2y+1) | k=

Therefore the group H,, is a subgroup of G, isomorphic to Alt(4). We
consider the Sylow 5-subgroup of G, defined by

Pn={ [ o G2 ] | aj1,a22 = 1 mod 5,a2;1 = 0 mod 5,a11092 — @12021 = 1} .
az1 a22
Also, we consider the action of G, on the right cosets Q, = G,/Hy. Since
the order of P, and H,, are coprime, we have P,NH, = 1. Further, |G| =
|Pa||Hn|. Therefore P, acts regularly on Q. Since the only subgroup of
H, normal in G,, is the trivial group, we get that G, acts faithfully on .
Since P, is a regular subgroup of G, we identify the elements of 2,
with the elements of P,. Indeed, every point of 2y, is of the form Hy,z, for
a unique z in P,. So, we identify the point H,z with the group element z
of P,. Further, if w € Q, and g € G, then we denote by w - g the action
of g on w, to distinguish it from the matrix multiplication wg.
We claim that the element ¢ of H, fixes the point

11 2y+2
w=[o ™7

of Q,. Indeed,

v yv-1]_| v y
Oﬁt_'[y+1 y ]_[y+1 —(y+1)]a
and
Y Yy = t—li
y+1 —(y+1)

lies in H,. Therefore Hpot = Hat™lia = Hpa, ie. -t =a.

It follows that the H,-orbit S, of the point « contains four elements.
Namely S, = {a,a-i,a- j,a- k}. We leave it to the reader to check that

s y+1 —(y+1)
f=a-i = [—(3y+1) y+1 |°
a‘j = :B-l)
a-k = al

So, 8, = {a,a™1,8,87}.
We note that identifying the points of Q, with the elements of P, we
get that G, is a subgroup of the automorphism group of I', = Cay(Py, Sa).



Furthermore, since S, = S;7!, we have that I, is a graph and not a digraph.
Therefore I';, is a tetravalent undirected Cayley graph. Since P, is not a
normal subgroup of G, we have that I, is not normal on (P,,S,). We
note that P, = T,

We recall that P, is 2-generated and that

wp) = {| o o ]

an,axn =1 mod 5,012 =0 mod 5,
azy Q22

a2 = 0 mod 25,011022 —ajsag; =1

see Section 17 of [5]. Now, since o, 8 generate P, modulo ®(P,), we have
that P, = (S,). Therefore I',, is connected.

This construction gives rise to an infinite family, namely {Tn}n>1, of
non-normal connected tetravalent undirected Cayley graphs.

In the rest of this section we prove that the group P, is a regular 5-
group. We need to fix some notation. For 1 < i < n, let — : Z/5"Z —
Z/5'Z be the natural projection and 7, ; : G, — G; the natural homomor-

phism induced by —, i.e.
a a a a
Toni : 1 a2 1n a2 |
as a2 a1 a2

We denote by V;,; the kernel of 7, ;. We have

a) Qa2
Vn,i =
azy a2

Clearly, Vo341 € Vo and V,,,, = 1. Also, ®(P,) C V, pgand V, ;) is a
maximal subgroup of P,,. Furthermore, if n > 2, then the group V,l n—
is an elementary abelian 5-group of order 53, see Section 17 in [5). Also
since m,; is surjective, we have P,/V,,; = P; and V,x/V, ni = Vi, for
1<k<i<n.

We recall the following result on regular p-groups.

Proposition 2 ([5], Satz 10.14) Let G be a p-group. If G has no normal
subgroup N of exponent p with |N| > pP~!, then G is a regular p-group.

an,az2 =1 mod 5%,ay2,a3; =0 mod 5,
anaz —apzaz =1 )

We need the following lemma.
Lemma 1 Letg be in Py. The element g has order 5 if and only if g € Va,1.

PROOF. Since V2 is an elementary abelian 5-group, we have that every
element in V5 has order 5.

We have |P;| = 5. So, P; has nilpotency class at most 3. Therefore P,
is a regular 5-group. Thus the set O of elements of P, of order at most 5
is a subgroup of P,. Now, the element

[s 1]
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lies in Py and has order 25. In particular, since z ¢ O and V21 C O, we
have O = V1. Thus the lemma is proved. o

Finally, using Proposition 2 and Lemma 1 we prove that P, is a regular
5-group.

Lemma 2 The group P, is a regular 5-group.

PROOF. The group P; has order 5. So, we may assume that n > 2.

Let N be a normal subgroup of P, of exponent 5. We claim that
|N| < 5% In particular, by Proposition 2, we have that P, is a regular
5-group.

We argue by contradiction. Assume |[N| > 5% We claim that if 1 <4 <
n—2and z € V, ;\Va,it+1, then 2° € V, i41\Vai42. Let z bein Vo )\ Vo ip1.
We have

z= [ (1) (1) ]+5i [ i cbl ] = I+5'M, where a,b, ¢, d are not all divisible by 5,

(I denotes the identity matrix). By the binomial formula, we get
2% = I+ 5FIM + 2. 55+ M2 4+ 2. 5% MO 4 54 IM4 4 55 M5,

Now, since 2i + 1,3i + 1,4i + 1,56 > i + 2, we have that z° € V,, 542 if and
only if the entries of 57+!M are divisible by 5°+2. By hypothesis not all
the entries of M are divisible by 5, thus z° € V;, i+1\Va,i+2. So the claim
is proved.

In particular, from the previous claim we have that, if :z: € Vo1 has
order 5, then x € V n—1. Therefore Vpn_1 = {z € Va1 | z® = 1}. Since
IN| > 54 and Vaiisa maximal subgroup of P,, we have |V, 1 N N| > 5.
Since N has exponent 5, we have NNV, 1 =V n1.

We claim that no element in P,\V;,1 has order 5. Let g be an element
of order 5 in P,. Then m, 2(g) has order 5 in P;. Therefore, by Lemma 1,
we get 1r,,2(g) € %la Le. gVnZ € Vn I/Vn2 Thus, g € an

In particular, since N has exponent 5, we get N C V1. Thus N =NnN
Va1 = Van—1 and |N| = 5% Therefore, there exists no normal subgroups
of P, of exponent 5 with |N| > 54. Thus P, is a regular 5-group. o

Proposition 3 There ezist infinitely many non-normal connected tetrava-
lent undirected Cayley graphs on reqular 5-groups.

PROOF. The graph I', = Cay(P,,Sn) is a connected tetravalent undi-
rected Cayley graph on P,. Also, I', is not normal on (P, S,). Finally,
by Lemma 2, the group P, is a regular 5-group. o

42



We point out that all other examples known to the author of this paper
of non-normal connected tetravalent Cayley graphs are on non-regular p-
groups (for p # 2). We remark that, for any n > 2, the graph I',, is a cover
of I'y_5.

References

[1] Y.G.Baik, Y.Q.Feng, H.S.Sim, M.Y.Xu, Normality of Cayley Graphs of
Abelian Groups, Algebra Colloguium 5, (1998), 297-304.

[2] Y.Q.Feng, M.Y.Xu, Automorphism groups of tetravalent Cayley graphs
on regular p-groups, Discrete Mathematics 305, (2005), 354-360.

[3] The GAP Group, GAP - Groups, Algorithms, and Programming, Ver-
sion 4.3; 2002, http://www.gap-system.org.

[4] C.D.Godsil, On the full automorphism group of a graph, Combinatorica
1, (1981), pp. 243-256.

[5] B.Huppert, Endliche Gruppen I, Springer, Berlin, (1979).

[6] C.R.Leedham-Green, S.McKay, The Structure of Groups of Prime
Power Order, London Math. Soc. Monographs 27, London, (2002).

(7] B.D.McKay, The nauty package, Version 24, 2007,
http://cs.anu.edu.au/people/bdm/nauty.

[8] L.H.Soicher, The GRAPE package for GAP, Version 4.3, 2006,
http://www.maths.qmul.ac.uk/"leonard/grape.

43



