Automorphism groups of tetravalent Cayley graphs on regular 5-groups

Pablo Spiga

Universitá degli Studi di Padova Dipartimento di Matematica Pura ed Applicata 35131 Via Trieste 63, Padova, Italy*

July 31, 2008

Abstract

In [2] it is proved that if $X = \operatorname{Cay}(G, S)$ is a connected tetravalent Cayley graph on a regular p-group G (for $p \neq 2, 5$), then the right regular representation of G is normal in the automorphism group of X. In this paper we prove that a similar result holds, for p = 5, under a slightly stronger hypothesis. Some remarkable examples are presented.

Keywords: Cayley graph, regular p-group

1 Introduction

Let G be a group and S a subset of G such that $1 \notin S$. The Cayley graph on G with connection set S, denoted Cay(G,S), is the digraph with vertex set G and edge set $\{(g,h) \mid hg^{-1} \in S\}$. We recall that Cay(G,S) is connected if and only if $G = \langle S \rangle$. Note that if $S = S^{-1}$, then Cay(G,S) can be viewed as an undirected graph by identifying two oppositely directed edges.

A Cayley graph $X = \operatorname{Cay}(G,S)$ on G is said to be *normal* on (G,S) if the right regular representation R(G) of G, i.e. the permutation representation of G acting by right multiplication, is a normal subgroup of $\operatorname{Aut}(X)$. In particular, it was noticed in [4] that the digraph X is normal on (G,S) if and only if $\operatorname{Aut}(X)$ is the semidirect product of R(G) with $\operatorname{Aut}(G,S)$, where $\operatorname{Aut}(G,S) = \{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha} = S\}$, i.e. $\operatorname{Aut}(X) = R(G) \rtimes \operatorname{Aut}(G,S)$.

^{*}Email: spiga@math.unipd.it

When the set S is clear from the context we simply say that X is normal on G.

We recall the following definition, see [5] and [6].

Definition 1 A finite p-group G is regular if for every $x, y \in G$ there exists $c_{xy} \in (\gamma_2(\langle x, y \rangle))^p$ such that $(xy)^p = x^p y^p c_{xy}$.

In here $\gamma_2(G)$ denotes the second term of the lower central series of G, i.e. the commutator subgroup of G. Also, G^p denotes the group $\langle g^p | g \in G \rangle$, i.e the subgroup generated by the pth powers of the elements of G. We note that the class of regular p-groups was introduced by P.Hall as a generalization of the class of abelian p-groups. We refer the interested reader to [6] for an overview on regular p-groups and their applications. In particular we recall that the class of regular p-groups is very rich (for example any p-group of nilpotency class at most p-1 or exponent p is a regular p-group) and is a very useful tool for studying p-groups of maximal class, or more generally p-groups of bounded coclass. Moreover, we recall that regular p-groups and abelian p-groups have several common properties, see [6].

It was proved in [1] the following interesting theorem on Cayley graphs on abelian groups.

Theorem ([1], **Theorem** 1.1) Let $X = \operatorname{Cay}(G, S)$ be a connected undirected Cayley graph on an abelian group G with valency A. Then either A is normal on A or A is one of a known list of exceptions. In particular, the only exception, when A is a finite odd abelian A-group, is A is A is a finite odd abelian A-group, is A is A is A.

In [2], using some remarkable similarities between abelian p-groups and regular p-groups, it was proved the following generalization of Theorem 1.1 in [1].

Theorem ([2], **Theorem** 3.1) Any connected tetravalent undirected Cayley graph on a regular p-group G, with $p \neq 2, 5$, is normal on G.

It is worth noticing that a regular 2-group is abelian (see [5]) and so the classification of the connected tetravalent undirected Cayley graphs on regular 2-groups was achieved in [1]. In this article, we point out that a result similar to Theorem 3.1 in [2] holds, for p=5, under a slightly stronger hypothesis.

In this paragraph we introduce some notation. If G is a group and φ is an automorphism of G, then we denote by g^{φ} the image of the group element g via φ , i.e. we let φ act on G on the right. In particular, if $V = \mathbb{F}_p^n$ is the row-vector space over \mathbb{F}_p of dimension n, v is a row-vector of V and

A is a matrix in $GL(n, \mathbb{F}_p)$, then vA is the image of v via the isomorphism induced by A on V.

Let T be the 5-group with presentation

$$T = \langle e_1, e_2, e_3, x \mid e_i^5 = [e_i, e_j] = 1, x^5 = e_3, e_1^x = e_1 e_2, e_2^x = e_2 e_3, e_3^x = e_3 \rangle.$$

In particular, T is a non-split extension of the elementary abelian 5-group $\langle e_1, e_2, e_3 \rangle$ by the element x, where the action of x is given by the matrix

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

(note that, by our convention, the matrix A acts on the right on $\langle e_1, e_2, e_3 \rangle$). In Section 2, we prove the following theorem.

Theorem 1 Let G be a regular 5-group with no image isomorphic to T. If X = Cay(G, S) is a connected tetravalent undirected Cayley graph on G, then either X is normal on G or $X = K_5$.

We point out that the proof of Theorem 1 uses the proof of Theorem 3.1 in [2].

2 Proof of Theorem 1

In the sequel we use the same notation as in [2]. We denote by $\Phi(G)$ the Frattini subgroup of the *p*-group G, i.e. $\Phi(G) = G^p \gamma_2(G)$. We recall that $G/\Phi(G)$ is an elementary abelian *p*-group and that the minimal number of generators of G is the number of elements in a basis of $G/\Phi(G)$, see [5].

Proposition 1 Let G be a regular 5-group with no image isomorphic to T and let S be a subset of G with $S = S^{-1}$, |S| = 4 and $G = \langle S \rangle$. Let H be a non-trivial elementary abelian normal subgroup of G. If $\overline{X} = \operatorname{Cay}(G/H, SH/H) = K_5$, then $X = \operatorname{Cay}(G, S)$ is normal on (G, S).

PROOF. Since $|V(\overline{X})| = 5$, we have that H has index 5 in G and so $|V(X)| \geq 5^2$. Now, by Theorem 1.1 in [1], if G is abelian, then X is normal on (G, S). Therefore we may assume that G is not abelian and so, in particular, $|H| \geq 5^2$. Since G is generated by S, we have that G is 2-generated.

We claim that there are exactly five non-abelian 2-generated regular 5-groups G with no image isomorphic to T and with an elementary abelian maximal subgroup H.

Set $|H| = 5^k$. Let x be an element in $G\backslash H$. The element x acts, by conjugation, on H as an automorphism ι_x . Fix $\mathfrak B$ a basis of H such that the matrix M corresponding to ι_x , with respect to the basis $\mathfrak B$, is in Jordan form. Assume that M has t Jordan blocks of size n_1, \ldots, n_t . We may assume that $n_1 \leq \cdots \leq n_t$. In particular,

$$M = \left(\begin{array}{ccc} J_{n_1} & & \\ & \ddots & \\ & & J_{n_t} \end{array}\right)$$

where

$$J_{n_i} = \left(\begin{array}{cccc} 1 & 1 & & & \\ & \ddots & \ddots & & \\ & & 1 & 1 \\ & & & 1 \end{array} \right)$$

denotes a Jordan block of size n_i .

Now, we label the elements of \mathfrak{B} as $h_{1,1}, \ldots, h_{1,n_1}, \ldots, h_{t,1}, \ldots, h_{t,n_t}$ so that $h_{i,1}, \ldots, h_{i,n_i}$ are the row-vectors corresponding to the *i*th Jordan block of M. For example, $h_{1,1}, \ldots, h_{1,n_1}$ are the first n_1 elements of the basis \mathfrak{B} and $h_{2,j}$ is the (n_1+j) th element of \mathfrak{B} , for $1 \leq j \leq n_2$. In particular, $h_{i,j}^x = h_{i,j}h_{i,j+1}$ for $1 \leq j < n_i$ and $h_{i,n_i}^x = h_{i,n_i}$.

From the previous paragraph we get $[H,x] = \langle h_{1,2},\ldots,h_{1,n_1},\ldots,h_{t,2},\ldots,h_{t,n_t}\rangle$ Furthermore, the elements $x,h_{1,1},\ldots,h_{t,1}$ generate G and commute modulo [H,x]. Therefore, G/[H,x] is abelian. Hence, $\gamma_2(G) = [H,x]$.

Since $G/\gamma_2(G)$ is abelian, we have $(ab)^5 \equiv a^5b^5 \mod \gamma_2(G)$ for every a, b in G. As H has exponent 5 and $G = \langle x \rangle H$, we get that $\Phi(G) = G^5\gamma_2(G) = \langle x^5 \rangle \gamma_2(G)$. Now, in order to prove that there are exactly five non-abelian 2-generated regular 5-groups G with no image isomorphic to T and with an elementary abelian maximal subgroup H, we consider two cases.

CASE A: x^5 lies in $\gamma_2(G)$.

In this case $\Phi(G) = \gamma_2(G) = [H, x]$ and $|\Phi(G)| = |[H, x]| = 5^{k-t}$. The group G is 2-generated, so $5^2 = |G/\Phi(G)| = 5^{k+1-(k-t)} = 5^{1+t}$. Therefore t = 1 and M is a Jordan block of size k. Now, the isomorphism class of G depends only on the order of x. If x has order x, then x has order x, where the action of x on x is given by x has order x has order

Now assume $x^5 \neq 1$. We have $x^5 \in H$ and x^5 commutes with every element of G. Therefore $x^5 \in \langle h_{1,k} \rangle$, so, without loss of generality, we may assume that $x^5 = h_{1,k}$. Therefore, $G = \langle x \rangle \cdot H$, where $x^5 = h_{1,k}$ and the action of x on H is given by $M = J_k$. In particular, since G is non-abelian and G has no image isomorphic to T, we have k = 2.

In either case $(x^5 = 1 \text{ or } x^5 \neq 1)$, if $k \leq 4$, then $|G| \leq 5^5$. Thus, G has nilpotency class at most 4. Therefore G is a regular 5-group. It is routine to check that if $k \geq 5$, then $G = \langle x \rangle \ltimes H$ is not regular, see Satz 10.3(d) in [5]. This gives us four groups.

CASE B: x^5 does not lie in $\gamma_2(G)$.

In this case $\Phi(G) = \langle x^5 \rangle \gamma_2(G) = \langle x^5 \rangle [H,x]$ and $|\Phi(G)| = 5|[H,x]| = 5^{k-t+1}$. The group G is 2-generated, so $5^2 = |G/\Phi(G)| = 5^{k+1-(k-t+1)} = 5^t$. Therefore t=2 and M has two Jordan blocks. We claim that $n_1=1$ and $n_2=k-1$. Since $x^5 \in H$, we have $x^5 = \prod_{i=1}^{n_1} h_{1,i}^{r_i} \prod_{j=1}^{n_2} h_{2,j}^{s_j}$ for some r_i, s_j . Further, since $x^5 \notin \gamma_2(G) = [H, x]$, we have $(r_1, s_1) \neq (0, 0)$. Now, x^5 commutes with x. Therefore,

$$\begin{split} \prod_{i=1}^{n_1} h_{1,i}^{r_i} \prod_{j=1}^{n_2} h_{2,j}^{s_j} &= x^5 = (x^5)^x = \prod_{i=1}^{n_1} (h_{1,i}^{r_i})^x \prod_{j=1}^{n_2} (h_{2,j}^{s_j})^x \\ &= \prod_{i=1}^{n_1-1} (h_{1,i}h_{1,i+1})^{r_i} h_{1,n_1}^{r_{n_1}} \prod_{j=1}^{n_2-1} (h_{2,j}h_{2,j+1})^{s_j} h_{2,n_2}^{s_{n_2}} \\ &= h_{1,1}^{r_1} \prod_{i=2}^{n_1} h_{1,i}^{r_{i-1}+r_i} h_{2,1}^{s_1} \prod_{j=2}^{n_2} h_{2,j}^{s_{j-1}+s_j}. \end{split}$$

This yields $r_i = r_{i-1} + r_i$ for $2 \le i \le n_1$ and $s_j = s_{j-1} + s_j$ for $2 \le j \le n_2$. So, $r_i = 0$ for $i = 1, \ldots, n_1 - 1$ and $s_j = 0$ for $j = 1, \ldots, n_2 - 1$. If $n_1 > 1$, then $r_1 = s_1 = 0$ and $x^5 \in [H, x]$, a contradiction. This yields $n_1 = 1$, $n_2 = k - 1$ and $s_j = 0$ for $j = 1, \ldots, n_2 - 1$. In particular, we get that $x^5 = h_{1,1}^{r_1} h_{2,k-1}^{s_{k-1}}$ for some r_1, s_{k-1} and $r_1 \ne 0$. Now, up to replacing the basis $h_{1,1}, h_{2,1}, \ldots, h_{2,k-1}$ of H with $h_{1,1}^{r_1} h_{2,k-1}^{s_{k-1}}, h_{2,1}, \ldots, h_{2,k-1}$, we may assume that $x^5 = h_{1,1}$. In particular, we have that $G = \langle x \rangle \cdot H$, where $x^5 = h_{1,1}$ and the action of x on H is given by

$$M = \left(\begin{array}{cc} 1 & \\ & J_{k-1} \end{array}\right).$$

Since G is non-abelian, we have $k \geq 3$. The group G has an image isomorphic to T if and only if $k \geq 4$. In fact, if $k \geq 4$, then $T \cong G/N$ where $N = \langle h_{1,1}h_{2,3}, h_{2,4}, \ldots, h_{2,k-1} \rangle$. For k = 3, the group G has nilpotency class 2, thus G is a regular 5-group with no image isomorphic to T. Hence Case B yields only one group.

Therefore, as claimed, there are exactly five non-abelian 2-generated regular 5-groups with no image isomorphic to T and containing an elementary abelian maximal subgroup.

The rest of the proof of this lemma is entirely computational and is left to the reader. Indeed, since the group structure of G is determined and

since we are dealing with a finite number of relatively small groups, we can check Proposition 1 using the very efficient package GRAPE of GAP written by L.Soicher and the package nauty written by B.McKay, see [7] and [8]. As a matter of completeness, in the next paragraph, we show how this can be done using as a guiding example the group $G = \langle x \rangle \ltimes H$, where $|H| = 5^3$ and the action of x on H is given by $M = J_3$.

Clearly, $G = \langle x, h_{1,1} \rangle$ and $\Phi(G) = \langle h_{1,2}, h_{1,3} \rangle$. We recall that if $F = \langle X \mid R \rangle$ is a finite group, defined by the generators X and by the relations R, and $\varphi : F \to F$ is a function mapping the generating set X of F to another generating set of F and preserving the defining relations R of F, then φ is an automorphism of F. Now, the group G has presentation

$$G = \langle x, h_{1,1}, h_{1,2}, h_{1,3} \mid x^5 = h_{1,i}^5 = [h_{1,i}, h_{1,j}] = 1, h_{1,1}^x = h_{1,1}h_{1,2}, h_{1,2}^x = h_{1,2}h_{1,3}, h_{1,3}^x = h_{1,3} \rangle.$$

We claim that for any $v \in H$ and for any $w \in \Phi(G)$, there exists an automorphism φ of G such that $x^{\varphi} = xv$ and $h_{1,1}^{\varphi} = h_{1,1}w$. Set $h_{1,2}^{\varphi} = [h_{1,1}^{\varphi}, x^{\varphi}]$ and $h_{1,3}^{\varphi} = [h_{1,2}^{\varphi}, x^{\varphi}]$. By the given presentation of G and by the above remark, to prove our claim it suffices to show that x^{φ} , $h_{1,1}^{\varphi}$ are generators of G and that φ preserves the defining relations of G. Since $w \in \Phi(G)$, we have $\langle xv, h_{1,1}w \rangle = \langle xv, h_{1,1} \rangle = G$. So, x^{φ} , $h_{1,1}^{\varphi}$ are generators of G. Also, since G has exponent 5, we have $(h_{1,i}^{\varphi})^5 = 1$ and $(x^{\varphi})^5 = 1$. All the remaining relations can be checked similarly.

This shows that if S is a subset of G such that |S| = 4, $S = S^{-1}$, $G = \langle S \rangle$ and $Cay(G/H, SH/H) = K_5$, then S is Aut(G)-conjugate to the following set

 $J = \{x, x^{-1}, (xh_{1,1})^2, (xh_{1,1})^{-2}\}.$

Therefore, to prove Proposition 1 for the group G, it is enough to check that the Cayley graph $X = \operatorname{Cay}(G,J)$ is normal on (G,J). Now, the built-in command CayleyGraph in GRAPE allows us to compute X. Then, the command AutomorphismGroup allows us to compute $A = \operatorname{Aut}(X)$. Finally, we can check that R(G) is normal in A.

The remaining four groups can be checked similarly. o

PROOF OF THEOREM 1. Let G be a regular 5-group with no image isomorphic to T and $X = \operatorname{Cay}(G, S)$ a connected tetravalent undirected Cayley graph. We have to prove that either X is normal on (G, S) or $X = K_5$. We argue by induction on |V(X)|. If |V(X)| = 5, then $X = K_5$ and so there is nothing to prove.

We use the proof of Theorem 3.1 in [2] to conclude the induction. Indeed, the proof of Theorem 3.1 in [2] uses the hypothesis that $p \neq 5$ only on page 358 (lines 11-20). So, we aim to use the hypothesis "G has no image isomorphic to T" to adjust the proof of Theorem 3.1 to deal with the

case p = 5. In the following paragraph we sketch the proof of Theorem 3.1, up to page 358 line 20, to point out to the reader where the hypothesis $p \neq 5$ is used (we suggest the use of [2] as a crib for the reader).

Let A be $\operatorname{Aut}(X)$ and N a minimal normal subgroup of A. Let B be the set of orbits of N on V(X), m=|B| and K the kernel of A on its natural action on B. Let \overline{X} be the quotient graph corresponding to the blocks in B. Using the classification of the finite simple groups the authors of [2] proved that, if m>1 and \overline{X} has valency 4, then N is a non-trivial elementary abelian p-group, $N\subseteq R(G)$ and K=N (lines 11-17 page 358). In particular N=R(H), where H is a non-trivial elementary abelian normal subgroup of G. From this the authors of [2] proved that \overline{X} is the tetravalent Cayley graph on the regular p-group G/H with connection set SH/H, i.e. $\overline{X}=\operatorname{Cay}(G/H,SH/H)$. In particular, $A/R(H)\subseteq\operatorname{Aut}(\overline{X})$. Now, if $p\neq 2,5$, using induction and Theorem 1.1 in [1], we have that the Cayley graph \overline{X} is normal on (G/H,SH/H). Therefore, the group R(G/H)=R(G)/R(H) is a normal subgroup of $\operatorname{Aut}(\overline{X})$. Thus R(G)/R(H) is a normal subgroup of A/R(H), i.e. R(G) is a normal subgroup of A. Hence X is normal on G (lines 18-20).

Clearly, the previous argument cannot be used in the case p = 5, as in general \overline{X} is not normal on (G/H, SH/H), (for instance K_5 is not normal).

Now, assume in the previous argument p=5. If \overline{X} is normal on (G/H, SH/H), then X is normal on (G,S) (use the same argument as in the case $p \neq 5$).

Therefore, we may assume that \overline{X} is not normal on (G/H, SH/H). Since G/H is a regular 5-group with no image isomorphic to T and $|V(\overline{X})| < |V(X)|$, by induction we get $\overline{X} = K_5$. Since H is a non-trivial elementary abelian subgroup of G, Proposition 1 yields that X is normal on (G, S).

In particular, in either case $(\overline{X} \text{ is normal on } G/H \text{ or } \overline{X} \text{ is not normal on } G/H)$ the Cayley graph X is normal on (G, S).

The rest of the proof of Theorem 3.1 in [2] (i.e. the case m=1 and the case \overline{X} is not tetravalent) does not use the hypothesis that $p \neq 5$. Therefore, the rest of the proof of Theorem 3.1 in [2] yields Theorem 1. \square

3 Some remarkable examples

Let $n \geq 1$ be a natural number and $G_n = PSL(2, \mathbb{Z}/5^n\mathbb{Z})$. Consider

$$i = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right], t = \left[\begin{array}{cc} -(y+1) & y \\ y+1 & y \end{array} \right] \text{ and } H_n = \langle i, t \rangle,$$

where $2y^2 + 2y + 1 = 0$ and $y \equiv 3 \mod 5$ (note that y exists by Hensel's lemma). The element i has order 2 and the element t has order 3. Set

 $j = i^t$ and $k = j^t$. We have

$$j=\left[egin{array}{ccc} 0 & 2y+1 \ 2y+1 & 0 \end{array}
ight], k=\left[egin{array}{ccc} 2y+1 & 0 \ 0 & -(2y+1) \end{array}
ight] ext{ and } k=ij.$$

Therefore the group H_n is a subgroup of G_n isomorphic to Alt(4). We consider the Sylow 5-subgroup of G_n defined by

$$P_n = \left\{ \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] \mid a_{11}, a_{22} \equiv 1 \mod 5, a_{21} \equiv 0 \mod 5, a_{11}a_{22} - a_{12}a_{21} = 1 \right\}.$$

Also, we consider the action of G_n on the right cosets $\Omega_n = G_n/H_n$. Since the order of P_n and H_n are coprime, we have $P_n \cap H_n = 1$. Further, $|G_n| = |P_n||H_n|$. Therefore P_n acts regularly on Ω_n . Since the only subgroup of H_n normal in G_n is the trivial group, we get that G_n acts faithfully on Ω_n .

Since P_n is a regular subgroup of G_n , we identify the elements of Ω_n with the elements of P_n . Indeed, every point of Ω_n is of the form $H_n x$, for a unique x in P_n . So, we identify the point $H_n x$ with the group element x of P_n . Further, if $\omega \in \Omega_n$ and $g \in G_n$, then we denote by $\omega \cdot g$ the action of g on ω , to distinguish it from the matrix multiplication ωg .

We claim that the element t of H_n fixes the point

$$\alpha = \left[\begin{array}{cc} 1 & 2y+2 \\ 0 & 1 \end{array} \right]$$

of Ω_n . Indeed,

$$\alpha t = \left[\begin{array}{cc} y & y-1 \\ y+1 & y \end{array} \right] = \left[\begin{array}{cc} y & y \\ y+1 & -(y+1) \end{array} \right] \alpha$$

and

$$\left[\begin{array}{cc} y & y \\ y+1 & -(y+1) \end{array}\right] = t^{-1}i$$

lies in H_n . Therefore $H_n\alpha t = H_nt^{-1}i\alpha = H_n\alpha$, i.e. $\alpha \cdot t = \alpha$.

It follows that the H_n -orbit S_n of the point α contains four elements. Namely $S_n = \{\alpha, \alpha \cdot i, \alpha \cdot j, \alpha \cdot k\}$. We leave it to the reader to check that

$$\begin{split} \beta &= \alpha \cdot i &= \begin{bmatrix} y+1 & -(y+1) \\ -(3y+1) & y+1 \end{bmatrix}, \\ \alpha \cdot j &= \beta^{-1}, \\ \alpha \cdot k &= \alpha^{-1}. \end{split}$$

So, $S_n = \{\alpha, \alpha^{-1}, \beta, \beta^{-1}\}.$

We note that identifying the points of Ω_n with the elements of P_n we get that G_n is a subgroup of the automorphism group of $\Gamma_n = \text{Cay}(P_n, S_n)$.

Furthermore, since $S_n = S_n^{-1}$, we have that Γ_n is a graph and not a digraph. Therefore Γ_n is a tetravalent undirected Cayley graph. Since P_n is not a normal subgroup of G_n , we have that Γ_n is not normal on (P_n, S_n) . We note that $P_2 \cong T$.

We recall that P_n is 2-generated and that

$$\Phi(P_n) = \left\{ \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] \middle| \begin{array}{c} a_{11}, a_{22} \equiv 1 \mod 5, a_{12} \equiv 0 \mod 5, \\ a_{21} \equiv 0 \mod 25, a_{11}a_{22} - a_{12}a_{21} = 1 \end{array} \right\},$$

see Section 17 of [5]. Now, since α, β generate P_n modulo $\Phi(P_n)$, we have that $P_n = \langle S_n \rangle$. Therefore Γ_n is connected.

This construction gives rise to an infinite family, namely $\{\Gamma_n\}_{n\geq 1}$, of non-normal connected tetravalent undirected Cayley graphs.

In the rest of this section we prove that the group P_n is a regular 5-group. We need to fix some notation. For $1 \le i \le n$, let $-: \mathbb{Z}/5^n\mathbb{Z} \to \mathbb{Z}/5^i\mathbb{Z}$ be the natural projection and $\pi_{n,i}: G_n \to G_i$ the natural homomorphism induced by -, i.e.

$$\pi_{n,i}:\left[\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right]\longmapsto\left[\begin{array}{cc}\overline{a_{11}}&\overline{a_{12}}\\\overline{a_{21}}&\overline{a_{22}}\end{array}\right].$$

We denote by $V_{n,i}$ the kernel of $\pi_{n,i}$. We have

$$V_{n,i} = \left\{ \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] \left| \begin{array}{cc} a_{11}, a_{22} \equiv 1 \mod 5^i, a_{12}, a_{21} \equiv 0 \mod 5^i, \\ a_{11}a_{22} - a_{12}a_{21} = 1 \end{array} \right. \right\}.$$

Clearly, $V_{n,i+1} \subseteq V_{n,i}$ and $V_{n,n} = 1$. Also, $\Phi(P_n) \subseteq V_{n,1}$ and $V_{n,1}$ is a maximal subgroup of P_n . Furthermore, if $n \geq 2$, then the group $V_{n,n-1}$ is an elementary abelian 5-group of order 5^3 , see Section 17 in [5]. Also, since $\pi_{n,i}$ is surjective, we have $P_n/V_{n,i} \cong P_i$ and $V_{n,k}/V_{n,i} \cong V_{i,k}$, for $1 \leq k \leq i \leq n$.

We recall the following result on regular p-groups.

Proposition 2 ([5], Satz 10.14) Let G be a p-group. If G has no normal subgroup N of exponent p with $|N| \ge p^{p-1}$, then G is a regular p-group.

We need the following lemma.

Lemma 1 Let g be in P_2 . The element g has order 5 if and only if $g \in V_{2,1}$.

PROOF. Since $V_{2,1}$ is an elementary abelian 5-group, we have that every element in $V_{2,1}$ has order 5.

We have $|P_2| = 5^4$. So, P_2 has nilpotency class at most 3. Therefore P_2 is a regular 5-group. Thus the set O of elements of P_2 of order at most 5 is a subgroup of P_2 . Now, the element

$$\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right]$$

lies in P_2 and has order 25. In particular, since $x \notin O$ and $V_{2,1} \subseteq O$, we have $O = V_{2,1}$. Thus the lemma is proved. \square

Finally, using Proposition 2 and Lemma 1 we prove that P_n is a regular 5-group.

Lemma 2 The group P_n is a regular 5-group.

PROOF. The group P_1 has order 5. So, we may assume that $n \geq 2$.

Let N be a normal subgroup of P_n of exponent 5. We claim that $|N| \leq 5^3$. In particular, by Proposition 2, we have that P_n is a regular 5-group.

We argue by contradiction. Assume $|N| \geq 5^4$. We claim that if $1 \leq i \leq n-2$ and $x \in V_{n,i} \setminus V_{n,i+1}$, then $x^5 \in V_{n,i+1} \setminus V_{n,i+2}$. Let x be in $V_{n,i} \setminus V_{n,i+1}$. We have

$$x = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] + 5^i \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = I + 5^i M, \text{ where } a,b,c,d \text{ are not all divisible by 5},$$

(I denotes the identity matrix). By the binomial formula, we get

$$x^5 = I + 5^{i+1}M + 2 \cdot 5^{2i+1}M^2 + 2 \cdot 5^{3i+1}M^3 + 5^{4i+1}M^4 + 5^{5i}M^5.$$

Now, since $2i+1, 3i+1, 4i+1, 5i \ge i+2$, we have that $x^5 \in V_{n,i+2}$ if and only if the entries of $5^{i+1}M$ are divisible by 5^{i+2} . By hypothesis not all the entries of M are divisible by 5, thus $x^5 \in V_{n,i+1} \setminus V_{n,i+2}$. So the claim is proved.

In particular, from the previous claim we have that, if $x \in V_{n,1}$ has order 5, then $x \in V_{n,n-1}$. Therefore $V_{n,n-1} = \{x \in V_{n,1} \mid x^5 = 1\}$. Since $|N| \geq 5^4$ and $V_{n,1}$ is a maximal subgroup of P_n , we have $|V_{n,1} \cap N| \geq 5^3$. Since N has exponent 5, we have $N \cap V_{n,1} = V_{n,n-1}$.

We claim that no element in $P_n \setminus V_{n,1}$ has order 5. Let g be an element of order 5 in P_n . Then $\pi_{n,2}(g)$ has order 5 in P_2 . Therefore, by Lemma 1, we get $\pi_{n,2}(g) \in V_{2,1}$, i.e. $gV_{n,2} \in V_{n,1}/V_{n,2}$. Thus, $g \in V_{n,1}$.

In particular, since N has exponent 5, we get $N \subseteq V_{n,1}$. Thus $N = N \cap V_{n,1} = V_{n,n-1}$ and $|N| = 5^3$. Therefore, there exists no normal subgroups of P_n of exponent 5 with $|N| \ge 5^4$. Thus P_n is a regular 5-group. \square

Proposition 3 There exist infinitely many non-normal connected tetravalent undirected Cayley graphs on regular 5-groups.

PROOF. The graph $\Gamma_n = \operatorname{Cay}(P_n, S_n)$ is a connected tetravalent undirected Cayley graph on P_n . Also, Γ_n is not normal on (P_n, S_n) . Finally, by Lemma 2, the group P_n is a regular 5-group. \square

We point out that all other examples known to the author of this paper of non-normal connected tetravalent Cayley graphs are on non-regular p-groups (for $p \neq 2$). We remark that, for any $n \geq 2$, the graph Γ_n is a cover of Γ_{n-1} .

References

- Y.G.Baik, Y.Q.Feng, H.S.Sim, M.Y.Xu, Normality of Cayley Graphs of Abelian Groups, Algebra Colloquium 5, (1998), 297-304.
- [2] Y.Q.Feng, M.Y.Xu, Automorphism groups of tetravalent Cayley graphs on regular p-groups, Discrete Mathematics 305, (2005), 354-360.
- [3] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.3; 2002, http://www.gap-system.org.
- [4] C.D.Godsil, On the full automorphism group of a graph, *Combinatorica* 1, (1981), pp. 243-256.
- [5] B.Huppert, Endliche Gruppen I, Springer, Berlin, (1979).
- [6] C.R.Leedham-Green, S.McKay, The Structure of Groups of Prime Power Order, London Math. Soc. Monographs 27, London, (2002).
- [7] B.D.McKay, The nauty package, Version 2.4, 2007, http://cs.anu.edu.au/people/bdm/nauty.
- [8] L.H.Soicher, The GRAPE package for GAP, Version 4.3, 2006, http://www.maths.qmul.ac.uk/~leonard/grape.