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Abstract. If G is a connected graph, the distance d(u, v) between
two vertices u,v € V(G) is the length of a shortest path between
them. Let W = {w), ws, ....,wi} be an ordered set of vertices of G
and let v be a vertex of G. The representation r(v|W) of v with
respect to W is the k-tuple (d(v, w1),d(v, w2), ....., d(v, wi)). If dis-
tinct vertices of G have distinct representations with respect to W,
then W is called a resolving set or locating set for G. A resolving
set of minimum cardinality is called a basis for G and this cardi-
nality is the metric dimension of G, denoted by dim(G).

A family G of connected graphs is a family with constant metric
dimension if dim(G) does not depend upon the choice of G in G.
In this paper, we are dealing with the study of metric dimension
of Mdbius ladders. We prove that M&bius ladder M,, constitute a
family of cubic graphs with constant metric dimension and only
three vertices suffice to resolve all the vertices of Mdbius ladder
M,, except when n = 2(mod 8). It is natural to ask for the charac-
terization of regular graphs with constant metric dimension.
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1 Notation and preliminary results

If G is a connected graph, the distance d(u,v) between two vertices
u,v € V(G) is the length of a shortest path between them. Let W =
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{wy,ws,....,wr} be an ordered set of vertices of G and let v be a vertex
of G. The representation r(v|W) of v with respect to W is the k-tuple
(d(v,w1), d(v, wa), ....., d(v, wr)). If distinct vertices of G' have distinct rep-
resentations with respect to W, then W is called a resolving set or locating
set for G [1]. A resolving set of minimum cardinality is called a metric basis
for G and this cardinality is the metric dimension of G, denoted by dim(G).
The concepts of resolving set and metric basis have previously appeared in
the literature (see [1-4, 6-23]).

For a given ordered set of vertices W = {wy, ws, ....,wx} of a graph G, the
ith component of r(v|W) is 0 if and only if v = w;. Thus, to show that W
is a resolving set it suffices to verify that r(z|W) # r(y|W) for each pair of
distinct vertices z,y € V(G)\W.

A useful property in finding dim(G) is the following lemma [22]:

Lemma 1. Let W be a resolving set for a connected graph G and u,v €
V(G). If d(u,w) = d(v,w) for all vertices w € V(G)\ {u,v}, then {u,v}N
W #0.

Motivated by the problem of uniquely determining the location of an in-
truder in a network, the concept of metric dimension was introduced by
Slater in [20,21] and studied independently by Harary and Melter in [6].
Applications of this invariant to the navigation of robots in networks are
discussed in [18] and applications to chemistry in [4] while applications to
problems of pattern recognition and image processing, some of which in-
volve the use of hierarchical data structures are given in [19)].

By denoting G + H the join of G and H a wheel W, is defined as W,, =
Ky +Chp, forn >3, a fanis fo = K1 + P, for n > 1 and Jahangir graph
Jon, (n > 2) (also known as gear graph) is obtained from the wheel Wa, by
alternately deleting n spokes. Buczkowski et al. [1] determined the dimen-
sion of wheel W, Caceres et al. [3] the dimension of fan f, and Tomescu
and Javaid [23] the dimension of Jahangir graph Jan.

Theorem 1. ([1], /3], [23]) Let W;, be a wheel of order n > 3, fn be fan
of order n > 1 and J,,, be a Jahangir graph. Then

(i) For n > 17, dim(W,) = | 28£2|;

(ii) Forn > 7, dim(f,)) = | 2832];

(iii) For n > 4, dim(J2s) = | ].

The metric dimension of all these plane graphs depends upon the number
of vertices in the graph.

On the other hand, we say that a family G of connected graphs is a family
with constant metric dimension if dim(G) does not depend upon the choice
of G in G. In [4] Chartrand et al. proved that a graph has metric dimension
1 if and only if it is a path, hence paths on n vertices constitute a family
of graphs with constant metric dimension. Similarly, cycles with n(> 3)



vertices also constitute such a family of graphs as their metric dimension
is 2 and does not depend upon on the number of vertices n. Caceres et al.
[2] proved that

2, if n is odd;

dim(Pm X C")={ 3, otherwise.

Since prisms D,, are the cubic plane graphs obtained by the cross prod-
uct of the path P, with a cycle C,,, hence they constitute a family of 3-
regular graphs with constant metric dimension. Also Javaid et al. proved
in [17] that the plane graph antiprism A, constitutes a family of regular
graphs with constant metric dimension as dim(A,) = 3 for every n > 5.
A Cartesian product of two graphs G and H, denoted by GOH, is the graph
with vertex set V(G)OV (H), where two vertices (z,z') and (y,y’) are ad-
jacent if and only if z = y and z'y’ € E(H) or 2’ = ¢ and zy € E(G).
The metric dimension of the cartesian product of graphs has been studied
in [2].

The metric dimension of some classes of plane graphs and convex polytopes
has been studies in [7}-[14] while metric dimension of generalized Petersen
graphs P(n, 3) and some rotationally-symmetric graphs has been discussed
in [15] and [16].

In this paper, we extend this study by considering the Mébius ladder M,
which is a cubic circulant graph with an even number of vertices, formed
from an n-cycle by adding edges (called “rungs”) connecting opposite pair
of vertices in the cycle. We prove that M6bius ladder M,, are cubic circulant
graphs having constant metric dimension 3 except when n = 2(mod 8). It
is natural to ask for the characterization of regular graphs with constant
metric dimension.

2 Mobius ladders

The Mobius ladder M,, is a cubic circulant graph with an even number of
vertices, formed from an n-cycle by adding edges (called “rungs”) connect-
ing opposite pair of vertices in the cycle. It is so-named because (with the
exception of Mg = K33) M, has exactly n/2 4-cycles which link together
by their shared edges to form a topological Mébius strip. Mdbius ladders
can also be viewed as a prism with one twisted edge. Two different views of
Mobius ladders M6 have been shown in Fig. 1. M6bius ladders have many
applications in chemistry, chemical stereography, electronics and computer
science.

For our convenience, we view the Mobius ladder M, as an n-cycle by adding
edges (called “rungs”) connecting opposite pairs of vertices in the cycle.
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Fig. 1. Two views of Md&bius ladder Mie

Suppose that the vertices of Mébius ladder M,, are numbered {vy,...,v,}
counter clockwise.

In the next theorem, we prove that only three vertices suffice to resolve all
the vertices of Mébius ladder M,, except when n = 2(mod 8). In that case,
we prove that 3 < dim(M,) < 4. Note that the choice of an appropriate
basis of vertices is the core of the problem.

Theorem 2. Let M,, be the graph of Mébius ladder; then for every even
positive integer n > 8, we have dim(M,) = 3 when n # 2(mod 8) and
3 < dim(M,) < 4 otherwise.

Proof. (a) Suppose that n # 2(mod 8). We will prove this case by double
inequality. In this case we have the following subcases.

Case(i). When n = 0(mod 8)

In this case, we can write n = 8k,k € ZT. Let W = {v;,v2,v4k41} C
V(M,), we show that W is a resolving set for M, in this case. For this, we
give the representation of any vertex of V(M,)\W with respect to W.

(2i,2i — 1,2i + 1), 1<i<k-1;
(2k, 2k — 1,2k), i=k;
r(vgear|W) = (4k — 2+ 1,4k — 24+ 2,4k — 20), k+1 <i <2k —1;
2i+1 (2i — 4k +1,2i — 4k, 2i — 4k), 2%k+1<i<3k-—1;
(2k, 2k, 2K), i = 3k;
(8k — 2,8k —2i+ 1,8k —2i+1), 3k +1<i<4k—1.

and

(2i — 1,2 — 2,2i), 2<i<k;
(2k, 2k, 2k — 1), i=k+1;
r(ves|W) = { (4k — 2 + 2,4k — 2 + 3,4k — 2i + 1), k+2 <i < 2k;
(2i - 4k, 2 — 4k —1,2i — 4k —1), 2k+1<i<3k;
(8k —2i + 1,8k — 2 + 2,8k — 2i +2), 3k +1<i < 4k.



We note that there are no two vertices having the same representations
implying that dim(M,) < 3.

On the other hand, we show that dim(M,) > 3 by proving that there is no
resolving set W such that [W| = 2. Suppose on contrary that dim(M,,) = 2,
i.e., there exists a resolving set including exactly two vertices.

Without loss of generality, we can suppose that one resolving vertex is v;.
Suppose that the second resolving vertex is v, (2 <t < 4k + 1). Then for
2 <t < 4k, we have r(vn|{v1,v}) = r(Vars1/{v1,v:}) = (1,t) and when
t =4k + 1, 7(vn|{v1, vak+1}) = r(v2|{v1,Vak+1}) = (1,2), a contradiction.
We deduce that there is no resolving set with two vertices for V(M,), im-
plying that dim(M,) = 3 in this case.

Case(ii). When n = 4(mod 8)

In this case, we can write n = 8k + 4,k € Z*. Let W = {v;,va,Var43} C
V (M), we show that W is a resolving set for M, in this case. For this, we
give the representation of any vertex of V/(M,)\W with respect to W.

(24,2 —1,2i +1), 1<i<k;

(2k +1,2k + 1,2k), i=k+1;
r(vai|W) =< (4k—2i+3,4k— 2+ 4,4k — 2 +2), k+2< i < 2k;

(2 — 4k — 1,2 — 4k — 2,2 — 4k — 2), 2k + 2 < i < 3k;

(8k—2i+4,8k—2i+3,8k—2i+3), 3k+1<i<4k+1.

and

(26 —1,2¢ — 2,24), 2<i<k;
(2k + 1,2k, 2k + 1), i=k+1;

T(ves|W) = (4k —2i +4,4k -2+ 5,4k —2i +3), k+2<:1 <2k + 1;
(26 — 4k —2,2i — 4k - 3,2i — 4k — 3), 2k +2 < i < 3k + 2;
(8k —2i+5,8k—2i+6,8k—2i+86), 3k+3<i<4k+2

We can see that there are no two vertices having the same representations
implying that dim(M,,) < 3.

On the other hand, we show that dim(M,,) > 3 by proving that there is no
resolving set W such that |W| = 2. Suppose on contrary that dim(M,) = 2,
i.e., there exists a resolving set including exactly two vertices.

Without loss of generality, we can suppose that one resolving vertex is v;.
Suppose that the other resolving vertex is v; (2 <t < 4k + 3). Then for
2 <t < 4k +2, we have r(v,|{v1, % }) = T(var+s|{v1,v:}) = (1,t) and when
t =4k + 1, r(v,|{v1, Var+3}) = r(v2|{v1,v4k+3}) = (1,2), a contradiction.
We deduce that there is no resolving set with two vertices for V (M), im-
plying that dim(M,) = 3 in this case.

Case(iii). When n = 6(mod 8)

In this case, we can write n = 8k+6,k € Z*. For n = 6 we have Mg & K3 3,
hence dim(Mg) = 4 because dim(Knn) = 2n — 2. For every n > 14, let
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W = {v1,v2,v4k+3} C V(M,), we show that W is a resolving set for M, in
this case.. For this, we give the representation of any vertex of V(M,)\W
with respect to W.

(21,2 — 1,2 + 1), 1<i<k

(2k + 2,2k + 1,2k + 1), i=k+1;
r(vaipr|[W) = { (4k — 2 +4,4k — 2 + 5,4k —2i+3), k+2<i <2k +1;

(2 — 4k — 2,2 — 4k —3,2i —4k —3), 2k +2 < i < 3k +2;

(8k —2i+6,8k— 2 +7,8k—2i+7), 3k+3<i<4k+2.

and

(2 — 1,2 - 2,2), 2<i<k+1;
(o W) = (4 — 2 + 5,4k — 2§ + 6,4k — 2i + 4), k +2 < i <2k +1;
W)=Y (2 —4k—3,2i —4k—4,2i — 4k —4), 2k +3 < i <3k +2;

(8k —2i+7,8k—2i+8,8k—2i+8), 3k+3<i<4k+3.

Again we can note that there are no two vertices having the same repre-
sentations implying that dim(M,) < 3.

On the other hand, we show that dim(M,,) > 3 by proving that there is no
resolving set W such that |W| = 2. Suppose on contrary that dim(M,) = 2,
i.e., there exists a resolving set including exactly two vertices.

Without loss of generality, we can suppose that one resolving vertex is vy.
Suppose that the other resolving vertex is vy (2 <t < 4k + 4). Then for
2 <t < 4k+3, we have 7(v,|{v1, vt}) = r(va+4|{v1,v:}) = (1,t) and when
t =4k + 1, r(vn|{v1, vak+4}) = r(ve|{v1,v4k+4}) = (1,2), a contradiction.
We deduce that there is no resolving set with two vertices for V(M,), im-
plying that dim(M,) = 3 in this case.

(b) When n = 2(mod 8)

In this case, we can write n = 8k+2,k € Z+. Let W = {v1, v2, Var42,Ver+2} C
V(M,), we show that W is a resolving set for M, in this case. For this,
first we give the representation of any vertex of V(M,)\U with respect to

U = {v1,v2,Var42}

(26,2 — 1,2 + 1), 1<i<k

Uy d (4 —2i—2,4k—2—8,4k—2i—1), k+2<i <2k
r(2+1lU) =\ (9i — 4k +4,2i — 4k +3,2i — 4k +3), 2k +1 <i < 3k;
(8k — 2 — 6,8k — 2 — 5,8k — 2 — 5), 3k + 1 < i < 4k.

and

(2i —1,2i — 2,2i), 2<i<k;

(2k + 1, 2k, 2k), i=k+1;
r(vg|U) = { (4k —2i — 1,4k — 23,4k — 2i — 2), k+2<i<2k

(26 — 4k +3,2i — 4k +2,2i —4k +2), 2k +2<i <3k +1;

(8k—2i—5,8k—2i—4,8k—2i—4), 3k+2<i<4k+1.



We note that the set U can distinguish all the vertices of M,, except the
vertices vory2 and vokyo. As T(vek42|U) = r(ver+2|U) = (2k + 1, 2k, 2k),
it suggests that W = U U {vai42} is a resolving set for M, in this case
implying that dim(M,) < 4.
On the other hand, we show that dim(M,,) > 3 by proving that there is no
resolving set W such that |W| = 2. Suppose on contrary that dim(M,) = 2,
i.e., there exists a resolving set including exactly two vertices.
Without loss of generality, we can suppose that one resolving vertex is v;.
Suppose that the other resolving vertex is v; (2 <t < 4k + 2). Then for
2 <t < 4k+1, we have r(v,|{v1,v¢}) = r(vak41|{v1,v:}) = (1,t) and when
t =4k + 2, 7(vn|{v1,vak+3}) = r(v2|{v1,v4k4+3}) = (1,2), a contradiction.
We deduce that there is no resolving set with two vertices for V(M,),
implying that dim(M,,) > 3 in this case, which completes the proof.

(W]

3 Concluding remarks

In this paper, we have studied the metric dimension of Mébius ladder M,
which is a cubic circulant graph. We proved that only three vertices suffice
to resolve all the vertices of M6bius ladder M,, except when n = 2(mod 8).
In that case, we proved that 3 < dim(M,,) < 4. It is natural to ask for the
characterization of regular graphs with constant metric dimension.

Note that in [19] Melter and Tomescu gave an example of infinite regular
graphs (namely the digital plane endowed with city-block and chessboard
distances, respectively) having no finite metric basis. We close this section
by by raising a question that naturally arises from the text.

Open Problem: Find the exact value of metric dimension of Mébius lad-
der M,, when n = 2(mod 8).
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