Some Extremal Problems for Edge-Regular Graphs

K. Coolsaet

Department of Applied Mathematics and Computer Science
Ghent University
Krijgslaan 281–S9
B-9000 Gent
Kris.Coolsaet@UGent.be

P. D. Johnson, Jr.
Department of Mathematics and Statistics
Auburn University, AL 36849, U.S.A.
johnspd@auburn.edu

K. J. Roblee
Department of Mathematics and Physics
Troy University
Troy, AL 36082, U.S.A.
kroblee@troy.edu

T. D. Smotzer
Department of Mathematics and Statistics
Youngstown State University
Youngstown, OH 44555, U.S.A.
tsmotzer@math.ysu.edu

Abstract

We consider the class $\mathrm{ER}(n,d,\lambda)$ of edge-regular graphs for some $n>d>\lambda$, i.e., graphs regular of degree d on n vertices, with each pair of adjacent vertices having λ common neighbors. It has previously been shown that for such graphs with $\lambda>0$ we have $n\geq 3(d-\lambda)$ and much has been done to characterize such graphs when equality holds.

Here we show that $n \geq 3(d-\lambda)+1$ if $\lambda>0$ and d is odd and contribute to the characterization of the graphs in $\mathrm{ER}(n,d,\lambda)$, $\lambda>0$, $n=3(d-\lambda)+1$ by proving some lemmas about the structure of such graphs, and by classifying such graphs that satisfy a strong additional requirement, that the number t=t(u,v) of edges in the subgraph induced by the λ common neighbors of any two adjacent vertices u and v is positive, and independent of u and v. The result is that there are exactly 4 such graphs: K_4 and 3 strongly regular graphs.

1 Introduction

For integers $n > d > \lambda \ge 0$, let $\mathrm{ER}(n,d,\lambda)$ denote the collection of (simple) graphs G = (V,E) = (V(G),E(G)) such that |V| = n, G is regular of degree d, and if $uv \in E$, then $|N(u,v)| = \lambda$, where N(u,v) denotes the subset of V of vertices adjacent to both u and v. (Our notation is fairly standard; we follow [11].) The notation "ER" is chosen because in [1] such graphs are called "edge-regular." These graphs might also be called "nearly strongly regular." A strongly regular graph is a graph $G \in \mathrm{ER}(n,d,\lambda)$, for some n, d, and λ , neither complete nor empty, such that for some integer $\mu > 0$, any two distinct non-adjacent vertices in G have exactly μ common neighbors. Let the collection of such strongly regular graphs be denoted $\mathrm{SR}(n,d,\lambda,\mu)$.

If $G \in \mathrm{ER}(n,d,\lambda)$, then $p=n-2d+\lambda$ is the number of mutual nonneighbors of any two adjacent vertices in G. It has proven unexpectedly effective to approach the analysis of the edge-regular graphs with the indices n,λ , and p in various categories. The first result of this approach, in [3], is that the edge-regular graphs with p=0 are the regular Turán graphs. In [4] it is shown that the edge-regular graphs with p=1 are strongly regular; they are, in fact, the complements of the famous and mysterious Moore graphs, which may constitute an infinite family, although only three are known to exist. In [5] the edge-regular graphs with p=2 and $\lambda=0$ are characterized; except for two small non-bipartite graphs, these turn out to be regular bipartite graphs of the appropriate degree, n/2-1. In [7] this result is generalized: If $\lambda=0 < p$ and n is sufficiently large (n>5p), then if p is odd, $\mathrm{ER}(n,\frac{n-p}{2},0)$ is empty, and if p is even, and $G \in \mathrm{ER}(n,\frac{n-p}{2},0)$, then G is bipartite.

In [5] it is noted that if $\lambda > 0$ and p = 2 then $n \leq 3\lambda + 6$ if $\mathrm{ER}(n, \frac{n-2+\lambda}{2}, \lambda)$ is non-empty, and in [6] the graphs in $\mathrm{ER}(n, \frac{n-2+\lambda}{2}, \lambda)$ satisfying $n = 3\lambda + 6$ are completely characterized: there is only one, obtained by removing the edges of a 2-factor consisting of K_3 's from the complete tripartite graph $K_{\lambda+2,\lambda+2,\lambda+2}$. There is an intriguing formal connection of this result with the results mentioned above on the case $\lambda = 0$: every regular non-empty bipartite graph is obtainable by removing 1-factors from a complete bipartite

graph.

In [8] it is shown that if $\lambda > 0$ and $\mathrm{ER}(n, \frac{n-p+\lambda}{2}, \lambda)$ is non-empty, then $n \leq 3\lambda + 3p$. (We shall reprove this result in passing, in the next section.) Further, a result analogous to the result above, when p=2, is proven for p>0, even: if λ is sufficiently large (depending on p), $n=3p+3\lambda$, and $\mathrm{ER}(n, \frac{n-p+\lambda}{2}, \lambda)$ is non-empty, then p/2 divides λ and there is only one (unlabelled) graph in $\mathrm{ER}(n, \frac{n-p+\lambda}{2}, \lambda)$, obtained by removing the edges of a p-factor consisting of $K_{p/2, p/2, p/2}$'s from $K_{\lambda+p, \lambda+p}$.

In fact, in the result quoted above, it is shown that $\text{ER}(n, \frac{n-p+\lambda}{2}, \lambda) = \text{ER}(3\lambda + 3p, 2\lambda + p, \lambda)$ is non-empty only if p is even. Our work here departs from this fact, to be reproved in the next section: if $\lambda > 0$, p is odd, and $\text{ER}(n, \frac{n-p+\lambda}{2}, \lambda)$ is non-empty, then $n \leq 3\lambda + 3p - 2$. Our main interest is in the case $n = 3\lambda + 3p - 2$, whether p is odd or even.

2 Results

A clique of G is a subset of vertices that are mutually adjacent. A clique of size 3 is a triangle, a clique of size 4 induces a subgraph isomorphic to the complete graph K_4 on 4 vertices and shall be simply called 'a K_4 ' in what follows.

Lemma 1 Let $G \in ER(n,d,\lambda)$ for some n, d, and λ such that $\lambda > 0$. Then

- 1. $n \geq 3(d-\lambda)$.
- 2. $n = 3(d \lambda)$ if and only if every vertex of G is adjacent to either 1 or 2 vertices of every triangle in G.
- 3. If $n = 3(d \lambda)$ then d must be even.
- 4. If $n = 3(d \lambda) + 1$ then every triangle belongs to at most one K_4 .

Proof: As $\lambda > 0$ the graph contains at least one triangle. Consider a triangle T and denote by n_i the number of vertices of V - T adjacent to exactly i vertices of T. Then

$$n_0 + n_1 + n_2 + n_3 = n-3,$$

 $n_1 + 2n_2 + 3n_3 = 3(d-2),$
 $n_2 + 3n_3 = 3(\lambda - 1).$ (1)

Indeed, the first equation simply counts the number of elements of V-T in two ways, the second equation counts the number of adjacent pairs (a, b) with $a \in T$, $b \in V-T$, and the third equation counts the number of triangles aa'b with $a, a' \in T$, $b \in V-T$.

Adding the first and last equation and subtracting the second, we obtain

$$n_0 + n_3 = n - 3(d - \lambda),$$
 (2)

which yields statement 1 of this lemma, because $n_0, n_3 \ge 0$. Note that equality occurs if and only if $n_0 = n_3 = 0$, whence statement 2.

The number of edges of G is equal to nd/2 and hence nd must be even. Note that the subgraph induced on the neighbors of a vertex is a regular graph of order d and degree λ , hence also $d\lambda$ must be even. When $n=3(d-\lambda)$ we therefore find that $nd=3d^2-3d\lambda$ must be even, and hence d^2 must be even, yielding statement 3.

Finally, if $n = 3(d - \lambda) + 1$ then by (2) $n_0 + n_3 = 1$ and hence $n_3 \le 1$, yielding statement 4.

Note that the inequality $n \geq 3(d-\lambda)$ can also be expressed in terms of n, p and λ , yielding $n \leq 3(\lambda+p)$. Similarly, if $n=3(d-\lambda)$ then p and d have the same parity, also $n=3(d-\lambda)+1$ is equivalent to $n=3(\lambda+p)-2$. Lemma 1 therefore gives an alternative proof to some of the results of [8].

As explained in the introduction, a good start has been made towards describing the edge-regular graphs with $\lambda>0$, $n=3(d-\lambda)$. Our aim here is to begin work on the apparently more difficult problem of describing edge-regular graphs with $\lambda>0$, $n=3(d-\lambda)+1$. By Lemma 1 these graphs are "extremal" for the case of odd degree. These graphs are also "extremal" in case p is odd, for if $n=3(d-\lambda)$ then d is even, by Lemma 1, so n and λ have the same parity, and so $p=n-2d+\lambda$ is even.

Lemma 2 Let $G \in ER(n,d,\lambda)$ for some n, d, and λ such that $\lambda > 0$. Assume G contains at least one K_4 . Then

- 1. $n \ge 4(d+1) 6\lambda$.
- 2. $n = 4(d+1) 6\lambda$ if and only if every vertex of G is adjacent to either 1 or 2 vertices of every K_4 of which it is not an element.
- 3. If $n = 4(d+1) 6\lambda$, then $\lambda \le d/3 + 1$.
- 4. $n = 4(d+1) 6\lambda$ and $\lambda = d/3 + 1$ if and only if every vertex of G is adjacent to exactly 2 vertices of every K_4 of which it is not an element.

Proof: Let K denote a K_4 in G. Denote by N_i the number of vertices of V - K adjacent to exactly i vertices of K. Then, using similar counting arguments as in the proof of Lemma 1. we obtain

$$N_0 + N_1 + N_2 + N_3 + N_4 = n-4,$$

 $N_1 + 2N_2 + 3N_3 + 4N_4 = 4(d-3),$
 $N_2 + 3N_3 + 6N_4 = 6(\lambda - 2).$ (3)

and then

$$N_0 + N_3 + 3N_4 = n - (4d + 4 - 6\lambda). \tag{4}$$

This proves the first two statements of the lemma. Note that $n=4d+4-6\lambda$ implies $N_0=N_3=N_4=0$, allowing (3) to be solved for N_1 and N_2 . We find $N_2=6(\lambda-2)$ and $N_1=n+8-6\lambda=4(d+3-3\lambda)$. The latter equation proves the last two statements of the lemma.

Lemma 3 Let $G \in ER(n,d,\lambda)$ for some n, d, and λ such that $\lambda > 0$ and $n = 3(d - \lambda) + 1$. Suppose that G contains at least one K_4 . Then $d = 3(\lambda - 1)$, $n = 6\lambda - 8$, and the hypothesis of statement 4 of Lemma 2 is satisfied.

Proof: Let K denote a K_4 in G, and let N_0, \ldots, N_4 be as in the proof of Lemma 2. As in that proof, we have $N_0 + N_3 + 3N_4 = n - (4d + 4 - 6\lambda)$. By the last statement in Lemma 1 we conclude that $N_3 = N_4 = 0$, so $N_0 = n - (4d + 4 - 6\lambda)$.

Let T be any one of the 4 triangles in K and let n_0 , n_1 , n_2 , and n_3 be as in the proof of Lemma 1. As in that proof we have that $n_0 + n_3 = n - 3(d - \lambda) = 1$. But n_3 is at least 1 because T is in K. Therefore $0 = n_0 \ge N_0 \ge 0$, so $N_0 = n - (4d + 4 - 6\lambda) = 0$. Putting this together with $n = 3(d - \lambda) + 1$ and solving for n and d in terms of λ , the conclusions of this lemma are easily obtained.

Let K(m:2) denote the Kneser graph whose vertices are the 2-subsets of an m-set, with two vertices adjacent if and only if they are disjoint. The complement of K(m:2) is called the triangular graph on m points, and will be denoted T(m).

Lemma 4 Suppose that G satisfies the hypothesis of Lemma 3 and is strongly regular. Then $\lambda \in \{3, 4, 6\}$ and G is one of

- T(5), which is also known as the complement of the Petersen graph, and is the only graph in SR(10, 6, 3, 4);
- 2. the two graphs in SR(16, 9, 4, 6), which are the complements of the 4×4 grid and of the Shrikhande graph [9];
- 3. the four graphs in SR(28, 15, 6, 10), one of which is K(8:2); the other 3 are the complements of the Chang graphs.

Proof: By Lemma 3, $d=3(\lambda-1)$ and $n=6\lambda-8$. From this and well known relations among n, d, λ , and μ when $SR(n,d,\lambda,\mu)$ is non-empty (see, for instance, [2]), it is easy to see that λ divides 12 and $\mu=2(\lambda-1)$. In case $\lambda=2$ we have d=3 and n=4, so G would have to be K_4 , which is not strongly regular. When $\lambda=3$, 4, 6, we get the

graphs mentioned in 1, 2, and 3; see [2], Section VI.5.2. In the case $\lambda = 12$, $(n, d, \lambda, \mu) = (64, 33, 12, 22)$ do not satisfy the absolute bound (see [2] again), so SR(64, 33, 12, 22) is empty.

Theorem 1 Let $G \in ER(6\lambda - 8, 3\lambda - 3, \lambda)$ with $\lambda > 0$, and suppose that for some t > 0 every edge belongs to exactly t cliques of size 4. Then $\lambda = 2, 3, 4$ or 6 and G is isomorphic to one of the following 4 graphs:

- 1. The complete graph K_4 on 4 vertices. (n = 4, d = 3, λ = 2, t = 1.)
- 2. The graph T(5), i.e., the complement of the Petersen graph. $(n = 10, d = 6, \lambda = 3, t = 1.)$
- 3. The complement of the 4×4 grid. $(n = 16, d = 9, \lambda = 4, t = 2.)$
- 4. K(8:2). $(n=28, d=15, \lambda=6, t=3.)$

In all cases but the first G is strongly regular.

Proof: Let u be a vertex of G and consider the "local geometry" G(u) with points the neighbors of u and lines the triangles in N(u) (which when joined to u are precisely all K_4 's through u). By statement 4 of Lemma 1, any two points of G(u) lie on at most one line (and hence G(u) is a partial linear space). Moreover, the conditions of this theorem imply that every point of G(u) lies on exactly t lines. The number of points of G(u) is $d = 3(\lambda - 1)$ and the number of lines is $dt/3 = (\lambda - 1)t$.

Consider a line of G(u) and a vertex v of G, $v \neq u$. By statement 4 of Lemma 2, we know that either v belongs to the given line, is adjacent to exactly 1 point of that line (when u and v are adjacent) or to exactly 2 points of that line (when u and v are not adjacent).

This property allows us to count the number μ of vertices x adjacent to both u and v, which we will do for the case that u and v are not adjacent. We count in two ways the number N of pairs (x, L) such that x is a point of G(u) adjacent to v and L is a line of G(u) containing x. For each of the μ points adjacent to both u and v there are exactly t lines of this type. Hence $N = \mu t$. On the other hand, for each of the $(\lambda - 1)t$ lines of G(u) there are exactly two such points. Hence $N = 2(\lambda - 1)t$.

This yields $\mu = 2(\lambda - 1)$, independent of the choice of u and v, proving that G is strongly regular (unless G is a complete graph, in which case G must be isomorphic to K_4).

The conclusion of the theorem now follows from Lemma 4. (The 4 graphs mentioned in Lemma 4 other than T(5), the complement of the 4×4 grid, and K(8:2) do not satisfy the requirement that every edge is in exactly t K_4 's, for some t.)

It is surely worthy of note that of the 8 graphs mentioned in Lemma 4 and the Theorem, only for T(5), the complement of the Petersen graph, is $p=n-2d+\lambda$ odd. To sum up, Lemma 4 and the Theorem settle the question of which graphs are edge-regular with parameters n, d, and $\lambda>0$ satisfying $n=3(d-\lambda)+1$ (an extremal condition when d or p is odd) under the strong additional requirements that either

- 1. the graph contains a K_4 and is strongly regular, or
- there is a number t > 0 such that every edge of the graph is in exactly t K₄'s.

There turn out to be 7 graphs in the first group and 4 in the second, with an overlap of 3, for a total of 8. Whether there are infinitely many, or any, such graphs that do not satisfy one or the other of these special requirements is an open question.

References

- A.E. Brouwer, A.M. Cohen, A. Neumaier: Distance Regular Graphs, Springer Verlag, 1989.
- [2] A.E. Brouwer, Strongly Regular Graphs, Chapter VI.5 in The CRC Handbook of Combinatorial Designs, (C.J. Colbourn, J.H. Dinitz; eds), CRC Press, New York, 1996, 667-685,
- [3] C.E. Edwards, P.D. Johnson, Jr., Zs. Tuza: Another extremal property of some Turán graphs, European J. Comb. 8, 27-28 (1987).
- [4] D.G. Hoffman, P.D. Johnson, Jr.: An extremal family of strongly regular graphs, Congressus Numerantium 78, 119-122 (1990).
- [5] P.D. Johnson, Jr., K.J. Roblee: More extremal graphs for a maximumjoint-neighborhood, average-triangles-per-edge inequality. Congressus Numerantium 140, 87-95 (1999).
- [6] P.D. Johnson, Jr., K.J. Roblee: On an extremal subfamily of an extremal family of nearly strongly regular graphs, Australasian Journal of Combinatorics 25, 279-284 (2002).
- [7] K.J. Roblee: Triangle-free regular graphs as an extremal family, Ars Combinatoria LXIX, 249-253 (2003).
- [8] K.J. Roblee, T.D. Smotzer: Some extremal families of edge-regular graphs, European Journal of Combinatorics Volume 25, Issue 7, 927-933 (2004).

- [9] Sharad-Chandra S. Shrikhande: The uniqueness of the L_2 association scheme, Ann. Math. Statist. 30 (1959).
- [10] Edward Spence: Strongly regular graphs on at most 64 vertices, at http://www.maths.gla.ac.uk/~es/srgraphs.html
- [11] D.B. West: Introduction to Graph Theory, 2nd edition, 2001, Prentice Hall, Upper Saddle River, NJ, 07458, ISBN 0-13-014400-2.