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Abstract
We consider the class ER{n.d, A) of edge-regular graphs for some
n > d > A ie., graphs regular of degree d on n vertices, with
each pair of adjacent vertices having A common neighbors. It has
previously been shown that for such graphs with A > 0 we have
n 2 3(d — A) and much has been done to characterize such graphs
when equality holds.
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Here we show that n > 3(d — A) + 1 if A > 0 and d is odd and
contribute to the characterization of the graphs in ER(n,d, A), A > 0,
n = 3(d—A) 41 by proving some lemmas about the structure of such
graphs, and by classifying such graphs that satisfy a strong additional
requirement, that the number t = t(u,v) of edges in the subgraph
induced by the A common neighbors of any two adjacent vertices u
and v is positive, and independent of u and v. The result is that
there are exactly 4 such graphs: K, and 3 strongly regular graphs.

1 Introduction

For integers n > d > A > 0, let ER(n, d, A) denote the collection of (simple)
graphs G = (V,E) = (V(G), E(G)) such that |V| = n, G is regular of
degree d, and if uv € E, then |N(u,v)| = A, where N(u,v) denotes the
subset of V of vertices adjacent to both u and v. (Our notation is fairly
standard; we follow [11].) The notation “ER” is chosen because in [1] such
graphs are called “edge-regular.” These graphs might also be called “nearly
strongly regular.” A strongly regular graph is a graph G € ER(n,d, }), for
some n, d, and A, neither complete nor empty, such that for some integer
4 > 0, any two distinct non-adjacent vertices in G have exactly 4 common
neighbors. Let the collection of such strongly regular graphs be denoted
SR(n,d, A. u).

If G € ER(n.d. ), then p = n — 2d + X is the number of mutual non-
neighbors of any two adjacent vertices in G. It has proven unexpectedly
effective to approach the analysis of the edge-regular graphs with the indices
n, A, and p in various categories. The first result of this approach, in (3], is
that the edge-regular graphs with p = 0 are the regular Turdn graphs. In
[4] it is shown that the edge-regular graphs with p = 1 are strongly regular;
they are, in fact, the complements of the famous and mysterious Moore
graphs, which may constitute an infinite family, although only three are
known to exist. In [5] the edge-regular graphs with p = 2 and A = 0 are
characterized; except for two small non-bipartite graphs, these turn out to
be regular bipartite graphs of the appropriate degree, n/2 — 1. In [7] this
result is generalized: If A = 0 < p and n is sufficiently large (n > 5p), then
if p is odd, ER(n, %52, 0) is empty, and if p is even, and G € ER(n, %5E,0),
then G is bipartite.

In 5] it is noted that if A > 0 and p = 2 then n < 3A+6 if ER(n, 2=3%2, )
is non-empty. and in [6] the graphs in ER(n, l‘—f—f,—“ﬂ, A) satisfying n = 3246
are completely characterized: there is only one, obtained by removing the
edges of a 2-factor consisting of IKy’s from the complete tripartite graph
Ki2.a4+2.a+2- There is an intriguing formal connection of this result with
the results mentioned above on the case A = 0: every regular non-empty bi-
partite graph is obtainable by removing 1-factors from a complete bipartite
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graph.

In (8] it is shown that if A > 0 and ER(x, "—'2L+’5, A) is non-empty, then
n < 3 + 3p. (We shall reprove this result in passing, in the next section.)
Further, a result analogous to the result above, when p = 2, is proven for
p > 0, even: if A is sufficiently large (depending on p), n = 3p + 3), and
ER(n, "—"‘2"*—*,/\) is non-empty, then p/2 divides A and there is only one
(unlabelled) graph in ER(n, "—',L,"'L’\, A), obtained by removing the edges of
a p-factor consisting of K,/2 /2 p72’s from Ky yp x4p rtp-

In fact, in the result quoted above, it is shown that ER(n, "—‘g—"’—*, A) =
ER(3A+-3p.2A 4 p, ) is non-empty only if p is even. Our work here departs
from this fact, to be reproved in the next section: if A > 0, p is odd, and
ER(n, ff:!_,ﬂ. A) is non-empty, then n < 3X + 3p — 2. Our main interest is
in the case n = 3\ + 3p — 2, whether p is odd or even.

2 Results

A clique of G is a subset of vertices that are mutually adjacent. A clique
of size 3 is a triangle, a clique of size 4 induces a subgraph isomorphic to
the complete graph Ky on 4 vertices and shall be simply called ‘a K’ in
what follows.

Lemma 1 Let G € ER(n,d,\) for some n, d, and X such that A > 0.
Then

1. n>3(d- ).

2. n = 3(d — A) if and only if every vertexr of G is adjacent to either 1
or 2 vertices of every triangle in G.

3. If n =3(d - ) then d must be even.
4. Afn=3(d = A\) + 1 then every triangle belongs to at most one K.

Proof :  As A > 0 the graph contains at least one triangle. Consider a
triangle T and denote by n; the number of vertices of V — T adjacent to
exactly i vertices of T. Then

ng + np 4+ ne + nzg = n-3,
ng + 22 + 3ng = 3(d-2), 1)
ny + 3nz = 3(A-1).

Indeed, the first equation simply counts the number of elements of V — T
in two ways. the second equation counts the number of adjacent pairs (a, b)
with a € T, b € V — T, and the third equation counts the number of
triangles aa’b witha,a’ € T, becV - T.
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Adding the first and last equation and subtracting the second, we obtain
ng +n3 =n—3(d - M), 2)

which yields statement 1 of this lemma, because ng,n3 > 0. Note that
equality occurs if and only if ng = n3 = 0, whence statement 2.

The number of edges of G is equal to nd/2 and hence nd must be
even. Note that the subgraph induced on the neighbors of a vertex is a
regular graph of order d and degree A, hence also dA must be even. When
n = 3(d—\) we therefore find that nd = 3d> — 3dA must be even, and hence
d? must be even, yielding statement 3.

Finally, if n = 3(d — \) + 1 then by (2) no + n3 = 1 and hence n3 <1,
yielding statement 4. [

Note that the inequality 7 > 3(d — A) can also be expressed in terms of
n, p and A, yielding n < 3(A + p). Similarly, if n = 3(d — A) then p and d
have the same parity, also n = 3(d — A) +1 is equivalent to n = 3(A+p) —2.
Lemma 1 therefore gives an alternative proof to some of the results of [8].

As explained in the introduction, a good start has been made towards
describing the edge-regular graphs with A > 0, n = 3(d — A). Our aim here
is to begin work on the apparently more difficult problem of describing
edge-regular graphs with A > 0, n = 3(d — A) + 1. By Lemma 1 these
graphs are “extremal” for the case of odd degree. These graphs are also
“extremal” in case p is odd, for if n = 3(d — A) then d is even, by Lemma
1, so n and X have the same parity, and so p =n —2d + A is even.

Lemma 2 Let G € ER(n,d,)\) for some n, d, and A such that A > 0.
Assume G contains at least one K,. Then

1. n>4(d+1) - 6A.

o

n = 4(d+1) — 6 if and only if every vertex of G is adjacent to either
1 or 2 vertices of every Ky of which it is not an element.

3. Ifn=4(d+1)—6X, then A < d/3 +1.

4. n = 4(d+ 1) —6) and A = d/3 + 1 if and only if every vertez of
G is adjacent to exactly 2 vertices of every Ky of which it is not an
element.

Proof : Let K denote a Ky in G. Denote by N; the number of vertices
of V — K adjacent to exactly i vertices of K. Then, using similar counting
arguments as in the proof of Lemma 1. we obtain

No + Ny + No + N3y + Ny = n-4
Ni + 2N, + 3N; + 4Ny = 4(d- 3), (3)
Ny + 3N; + 6Ny = 6(/\ - 2)
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and then
No+ N3+ 3Ny =n - (4d+4-6A). (4)

This proves the first two statements of the lemma. Note that n = 4d+4—6\
implies Ny = N3 = N = 0, allowing (3) to be solved for N; and N,. We
find No = 6(A—2) and Ny = n+8—06A = 4(d+3—3)). The latter equation
proves the last two statements of the lemma. n

Lemma 3 Let G € ER(n,d,\) for some n, d, and X such that A > 0
and n = 3(d — A) + 1. Suppose that G contains at least one Ky. Then
d =3(A—1), n = 6\ — 8. and the hypothesis of statement 4 of Lemma 2 is
satisfied.

Proof : Let K denote a Ky in G, and let Ny, ..., N, be as in the proof of
Lemma 2. As in that proof, we have Ny + N3 + 3Ny =n — (4d + 4 — 6A).
By the last statement in Lemma 1 we conclude that N3 = Ny = 0, so
No=n—(4dd +4 —6A).

Let T be any one of the 4 triangles in K and let ng, n;, n2, and ng
be as in the proof of Lemma 1. As in that proof we have that ng + ng =
n—3(d—-A) = 1. But n3 is at least 1 because T is in K. Therefore
0= >Ny 20,5 Ny =n-(4d + 4 — 6A) = 0. Putting this together
with n = 3(d — A) + 1 and solving for n and d in terms of A, the conclusions
of this lemma are easily obtained. n

Let K (m: : 2) denote the Kneser graph whose vertices are the 2-subsets
of an m-set, with two vertices adjacent if and only if they are disjoint. The
complement of K(m : 2) is called the triangular graph on m points, and
will be denoted T'(m).

Lemma 4 Suppose that G satisfies the hypothesis of Lemma 3 and is strongly
reqular. Then A € {3.4,6} and G is one of

1. T(5). which is also known as the complement of the Petersen graph,
and is the only graph in SR(10.6.3.4);

2. the two graphs in SR(16,9,4,6). which are the complements of the
4 x 4 grid and of the Shrikhande graph [9];

3. the four graphs in SR(28,15,6,10), one of which is K(8 : 2); the
other 3 ure the complements of the Chang graphs.

Proof : By Lemma 3, d = 3(A — 1) and n = 6A — 8. From this and
well known relations among n, d, A, and g when SR(n,d, A, ) is non-
empty (see. for instance, [2]), it is easy to see that A divides 12 and u =
2(A - 1). In case A = 2 we have d = 3 and n = 4, so G would have
to he Iy, which is not strongly regular. When A = 3, 4, 6, we get the
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graphs mentioned in 1, 2, and 3; see [2], Section VI.5.2. In the case A =
12, (n,d, A\ p) = (64,33,12,22) do not satisfy the absolute bound (see [2]
again), so SR(64, 33,12,22) is empty. =

Theorem 1 Let G € ER(6)—8,3\—3,)) with A > 0, and suppose that for
some t > 0 every edge belongs to exactly t cliques of size 4. Then A =2,3,4
or 6 and G is isomorphic to one of the following 4 graphs:

1. The complete graph K, on 4 vertices. (n=4,d=3,A=2,t=1.)

2. The graph T(5), i.e., the complement of the Petersen graph. (n = 10,
d=6.2=3.t=1.)

3. The complement of the 4 x 4 grid. (n=16,d=9, A =4,t=2.)
4. K(8:2). m=28,d=15 A=6,t=3.)
In all cases but the first G is strongly regular.

Proof : Let u be a vertex of G and consider the “local geometry” G(u)
with points the neighbors of u and lines the triangles in N(u) (which when
joined to u are precisely all K,’s through u). By statement 4 of Lemma
1, any two points of G(u) lie on at most one line (and hence G(u) is a
partial linear space). Moreover, the conditions of this theorem imply that
every point of G(u) lies on exactly ¢ lines. The number of points of G(u) is
d = 3(A — 1) and the number of lines is dt/3 = (A — 1)t.

Consider a line of G(u) and a vertex v of G, v # u. By statement 4
of Lemma 2, we know that either v belongs to the given line, is adjacent
to exactly 1 point of that line (when u and v are adjacent) or to exactly 2
points of that line (when u and v are not adjacent).

This property allows us to count the number p of vertices = adjacent to
hoth u and v, which we will do for the case that u and v are not adjacent.
We count in two ways the number N of pairs (z, L) such that « is a point
of G(u) adjacent to v and L is a line of G(u) containing z. For each of
the u points adjacent to hoth u and v there are exactly ¢ lines of this type.
Hence N = ut. On the other hand, for each of the (A — 1)t lines of G(u)
there are exactly two such points. Hence N = 2(\ — 1)t.

This yields ¢ = 2(A — 1), independent of the choice of u and v, proving
that G is strongly regular (unless G is a complete graph, in which case G
must be isomorphic to Kj).

The conclusion of the theorem now follows from Lemma 4. (The 4
graphs mentioned in Lemma 4 other than T'(5), the complement of the
4 x 4 grid, and K(8 : 2) do not satisfy the requirement that every edge is
in exactly ¢ Ky's. for some t.) =
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It is surely worthy of note that of the 8 graphs mentioned in Lemma
4 and the Theorem. only for T'(5), the complement of the Petersen graph,
is p=mn-—-2d+ X odd. To sum up, Lemma 4 and the Theorem settle the
question of which graphs are edge-regular with parameters n, d, and A > 0
satistying n = 3(d—A)+1 (an extremal condition when d or p is odd) under
the strong additional requirements that either

1. the graph contains a K and is strongly regular, or

2. there is a number ¢ > 0 such that every edge of the graph is in exactly
t I\’.-g ’s.

There turn out to be 7 graphs in the first group and 4 in the second,
with an overlap of 3. for a total of 8. Whether there are infinitely many,
or any. such graphs that do not satisfy one or the other of these special
requirements is an open question.
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