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Abstract
All parabolic ovals in affine planes of even order ¢ < 64 which
are preserved by a collineation group isomorphic to AT'L(1,q) are
determined. They are either parabolas or translation ovals.

1 Introduction

In an affine plane a of order n, a parabolic oval is point-set contained in
an oval in the projective closure @ of a. In other words, a parabolic oval
in a extends to an oval in @ by adding a point at infinity. As the classical
example of an oval is the irreducible conic in the projective Desarguesian
plane, so the classical example of a parabolic oval is the parabola in the
Desarguesian affine plane.

A parabolic oval Q of « is called doubly transitive if the collineation
group of a which preserves €2 induces a doubly transitive permutation group
on the set of all points of Q. The known examples of doubly transitive
parabolic ovals are the parabolas in Desarguesian planes, the translation
ovals in the Desarguesian planes of even order, and the ovals consisting of
the absolute points of an orthogonal polarity in commutative twisted field
planes of odd order. The problem of finding other examples or prove their
non-existence is still open.

In this paper, affine planes of even order n with a doubly transitive
parabolic oval Q are considered. For this case, Biliotti, Jha and Johnson
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[1] showed that 7 is a power of 2 and that the collineation group preserving
Q is a subgroup of AI'L(1,n). Concerning translation planes of even order,
Biliotti, Jha and Johnson used their result to characterise the Desarguesian
plane as the unique generalised twisted field plane—as well as the unique
André plane—which contains a doubly transitive parabolic oval. They also
proved that the Desarguesian plane is the unique affine plane of even order
n # 64 containing two distinct doubly transitive parabolic ovals with two
distinct common affine points. The smallest putative non Desarguesian
plane of even order with a doubly transitive parabolic oval has order 32.
Our main result is the proof of the following theorem.

Theorem 1. Let Q be a doubly transitive parabolic oval in an affine plane
a of order q < 64. If the collineation group of o preserving Q is AT'L(1, q)
then « is Desarguesian and §2 is either a parabola or a translation oval.

2 Conics and translation ovals in Desar-
guesian planes of even order

From results due to Segre [14], Payne [10] and, independently, Hirschfeld
[5], in the affine Desarguesian plane of order ¢ = 2" every parabolic oval
preserved by a translation group of order n acting on its points as a sharply
transitive permutation group has the following equation in a suitable co-
ordinate system:

Y = X" (1)

with ged(n,h) = 1. Let  denote such a parabolic oval. When n =1 or
n = h—1, Q is a parabola; otherwise 2 is called a (proper) translation oval.
The collineation group G of « preserving §2 consists of all collineations

7’ =az? +b
yl = a2"y2‘ + 2"
with a,b € GF(g), a # 0, and t € {0,1,...,h — 1}. Therefore, G =

ATL(1,q) and G acts on the affine points of 2 as AT'L(1,¢q) in its usual
doubly transitive permutation representation on the affine line over GF(q).

3 Abstract ovals

Let @ be a parabolic oval in an affine plane a of even order n. In the
projective closure @ of a, let Y., denote the unique point of  at infinity.
Since the line at infinity ¢, is tangent to €2, the nucleus of Q, say X,
is also a point at infinity. Each affine point P of a external to {2 may be
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identified by an involutory permutation pp on the set of affine points of
. The fixed points of ¢p are the points A, B such that {P, X, A} and
{P,Yw, B} are collinear triples, while (C, D) is a transposition in ¢p if and
only if {P,C, D} is a collinear triple, see Figure 1.

Yo
Q
B
P

A

C boo
»p(C)

Xoo

Figure 1: The involution pp on 2

For two distinct points P, Q of a both outside Q2 the product ¢ = pgep
may have a few fixed points. In general, ¢ has at most two fixed points,
with some exceptions, namely

(I) » has at three fixed points when PQ is a chord of Q and either
{Q, X, B} or {Q, Yo, A} but not both are collinear triples.

(IT)  has four fixed points when PQ is a chord of Q and both {Q, X, B}
and {Q, Y., A} are collinear triples.

Let g be any collineation of a preserving Q. If P is an affine point
external to Q and P’ = g(P), then ¢p = gppg~!. In particular, the
collineation group G of « preserving Q has a natural action on the set

P={pp| Pea;P¢Q},
see Figure 2.
Let ® = {¢p | P € a\ N}. The pair (2, ®) is called a parabolic

abstract oval. Two abstract parabolic ovals (Q2, ®) and (2, ®') are called
isomorphic if there is a permutation p € Sym(Q2) such that & = pdp~!,
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9(P) vp(Q)

Figure 2: The action of a collineation of €2 on its involutory permutations

Lemma 2. In the Desarguesian plane AG(2,q) let Q be a parabola and
(Q, D) the associated abstract parabolic oval. If (2, ®') is an abstract para-
bolic oval of an affine plane o of order q then (2, ) = (R, ®') implies
a = AG(2,q).

Proof. This is a corollary to a theorem due to Bruen and Thas [2], and
independently to Segre and Korchméros [15], see also [8]. a

Lemma 3. Let Q be a parabolic oval in o. A collineation group G of o
preserving  is doubly transitive on the set of points of Q if and only if it
acts transitively on P. Further, G is sharply doubly transitive on the set of
affine points of Q if and only if it is sharply transitive on P.

Proof. 1t may be that some collineation in G interchanges X, and Y. If
this is the case, let H be the subgroup of G of index two which consists of
all collineations fixing both X, and Y.

Suppose that G is doubly transitive on 2. Then

1G] = |2U(I92 - 1)IG 4,5l

for any two distinct points A, B € Q. We show that H is still doubly
transitive on Q. Since H is a normal subgroup of G, H is transitive on .

Hence

|H| = Q||| H a8
where ' is the orbit of B under the stabiliser H4 of A in H. Since |G| =
2|H| and Ha p is a subgroup of G4, g, this implies that either |G4 5| =
2|Ha,p| and || = || or Gao,p = Ha.p and || — 1 = 2|Q'|. Actually, the
latter case cannot occur as || is even. Therefore, |?] — 1 = || showing
that H is also doubly transitive.
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Figure 3: The oval in affine coordinates

Now, let P, P’ be two points external to 2. Let A, B be the fixed points
of pp and arrange the notation such that A = PX,,NQ and B = PY NN,
Define A’ and B’ similarly.

Doubly transitivity of H on §2 implies the existence a collineation h € H
that sends A to A’ and B to B’. Since h fixes both X, and Y, we see
that A sends P to P,

Conversely, if G is transitive on P then some collineation g € G sends
the unordered pair {4, B} to the unordered pair {A4’, B'}. Therefore G is
doubly-homogeneous on 2. Since |P| = n(n — 1) is even, this implies the
doubly transitivity of G on 2, by a result due to W.M. Kantor [7], see also
[6, Theorem 6.5].

Since P and a sharply doubly transitive group of degree n have the same
size n(n — 1), the second part of the claim is a straightforward consequence
of the first part. 0

Corollary 4. Let Q) be a parabolic oval in an affine plane o of order g = 2*.
Suppose that a collineation group G of a preserving Q is isomorphic to
ATL(1,q9). If G acts on Q as ATL(1,q) in its doubly transitive permuta-
tion representation on the affine line over the Galois field GF(q), then the
subgroup of G isomorphic to AGL(1,q) acts on the points of o outside
as a sharply transitive permutation group.

4 Doubly transitive parabolic ovals in affine
planes of order ¢ = 2"

With the notation as in the previous section, assume that a has order a
power of 2, say ¢ = 2". Then the affine points of 2 may be identified
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with the elements of the Galois field GF(g). Doing so, the involutory per-
mutations in P are certain mappings on GF(g), and hence each ¢p has
a polynomial representation over GF(g). In the Desarguesian plane, such
polynomials can be computed directly. Choose an appropriate affine frame
as in Figure 3 where

Q= {(z,z¥",1) |z € GF(g) },

and consider its involutory permutation ¢p, with P = (0,1). Projecting
 onto itself from P, collinearity of the points A, B and P with A,B € Q
and A # B yields

1 n "
R S

(1 + 22 g ot (2)
from which
n 2" +1\"
(zy + 22)@" D = (—-—xlx-'_ ) with u € Z,.
1
On the other hand
(z1 +22)®" "V withv € Z.
Therefore,
2n u
(z1 + xz)(zn_l)u+(2ﬂ_1)v = ("”_1;;"_1) . (3)
1

To put (3) in a suitable form, we use the following well known result [13].

Lemma 5. For every prime integer p,
pEI) — 1 = ged(p™ — 1,p" - 1).

Lemma 5 applied to p = 2 together with the condition ged(n,h) = 1
imply ged(2™ —1,2" — 1) = 1. Choose u,v € Z such that (2" — 1)u + (2" —

1)v = 1; from (3), - .
1
To = (ml + ) + . (4)

2" -2

Finally, using (4) and z = z~! for r € GF(g) and z # 0, a polynomial
F" representing ¢4 on Q:Y = X" is

F(X) = (XQ"“’(X?" + 1))u +X if u>0; (5)

FM(X) = (XX +1)"72) "+ X if u < 0. (6)
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Reducing the powers of X modulo 2" — 1, this becomes a polynomial
F(")(X) € GF(2)[X] with deg F(™(X) < 2"~1 and F(™(0) = 0, F(™)(1) =
1. Note that Q is a parabola if and only if either n = 1 and F()(X) =

h— h 2
X2 orn=~h-1and F=-1D(X) = (X(X2 '+ 1)? -2) + X, with

u=-2andv=1.

Lemma 6.
(2" -2)/2 2
F(h—l)(x) = Z Xi .
i=1
Proof. We need to show that
_ . 2 N
(X(th "+ 1)2"2) +X =X+ X'+ + X2

Expanding the left side of the above equality, we obtain

-1 h 2 - -2
(X(X2" +1)2’-2) +X=(-;(-(X2" '+1)) +X=

X2 X2 X2 X
crrye AT xat AT x T
Put X +1 - t. From Xf_l.:ﬁt:—l=1+-tl-=1+t2"‘2weobtain

2" -2
X 2!1_2 2"‘2 i
— =1
T =1t (X +1) +Z( . )X,

=0 t
and hence the claim. O
If n =2 then u = —1(2" — 2), v = 1 and hence by (6)

L(2h-2)
)X

FO(X) = (X(Xs +1)2"-1
Ifn=h—2thenu=4(2"-5),v= —$(2"72 - 2) and hence by (5)

}(2"-5)
) 3

Fh=2(x) = (xz“-2(x2""2 +1) + X.
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5 Polynomials

The above discussion suggests an approach to the study of collineation
groups of parabolic ovals in any affine plane a of order ¢ = 2" by means
of the polynomials representing the involutory permutations in P. As far
as the collineation group is large enough—and the order of the plane is
small enough—an exhaustive search of such polynomials may be possible.
The aim is to work out this approach for doubly transitive parabolic ovals
preserved by ATL(1,q). To do this, label such a doubly transitive para-
bolic oval Q with the elements of GF(g) so that AT'L(1,q) consists of all
semilinear permutations on 2

X—aX’+p

with a, 8 € GF(2"), a # 0, 0 € Aut GF(2").

As in Section 3, let P be the common point of the lines OY, and EX
where O and E are the points of  associated to the elements 0 and 1 of
GF(q). Let F(X) be a permutation polynomial representing the involutory
permutation ¢p. Then

(i) deg F(X) < q
(i) F(0)=0, F(1)=1;
(iii) F(F(z)) = z for every z € GF(2");
(iv) F(z) # z for every z € GF(2")\ {0,1};
Two further properties of F/(X) are described in the following result.
Lemma 7.
(v) F(X) e GF(2)[X].
(vi) For anya, B € GF(q) with a # 8 and o # 0 the equation F(aX+8) =
aF(X) + B has at most two solutions in GF(2")

Proof. The map € : = — z2 is in A'L(1,9) and it fixes both 0 and 1.
Therefore, the corresponding collineation g € G fixes the points O and
E. Since g fixes X and Y, the point P is also fixed by g. Hence, the
permutations pp and € commute, see Figure 2. In terms of F(X), this
means that F(z2) = F(z)? for every z € GF(g). By (i), this implies the
polynomial equation F(X2) = F(X)? whence (v) follows.

To show (vi), assume on the contrary that z,,z2,z3 € GF(g) are pair-
wise distinct solutions of the equation (vi) for some o, € GF(g) with
a #0. Then, fori=1,2,3,

flozi+8)—f _

«

f(z:)- (7
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The permutation § : z +— az + b is in AGL(1,q). The corresponding
collineation g in G sends O and E to the points A and B associated to 3
and a + B, respectively. Therefore, if Q is the image of P under g, and
G(X) the polynomial representing ¢g, then

o) - FleX 4 =2
From (7),
G(zi) = F(z;) for i=1,2,3. (8)

Note that as both a, b are supposed to be distinct from 0, 1, neither (I) nor
(IT) occurs. Since pp and @g are the projections of Q onto itself from P
and @, (8) yields P = Q. But then Lemma 4 implies that ¢ is the identity
of AGL(1, q). 0

Property (v) of Lemma 7 is required for if an involution ¢ € ATL(1, q)
is to map 2 onto itself, then the coefficients of the corresponding F(X)
must be preserved by any o € Aut GF(g).

6 AT'L(1,q)-invariant doubly transitive para-
bolic ovals in affine planes of even order
g < 64

Since ¢ is a power of 2, the possibilities for q are 2,4, 8, 16,32 and 64. The
case ¢ = 2 is trivial. If the plane is desarguesian and the parabolic oval is
a parabola, then it is doubly transitive with collineation group AT'L(1, q).
This is the case for every parabolic oval when g = 4.

Case ¢ =38

Up to isomorphism, the unique affine plane of order 8 is AG(2,8), see
[3]. In AG(2,8), there exist parabolic ovals which are not parabolas. In
the projective closure PG(2,8), each of these consists of seven points of
a conic C together with the nucleus N of C. Since any collineation of
PG(2,8) preserving a subset of seven points of C must preserve the conic,
it follows that any collineation preserving a parabolic oval fixes a point of
it. Therefore, the unique doubly transitive parabolic ovals in AG(2, 8) are
the parabolas.

Case ¢ =16

The classification project of plancs of order 16 is still in progress. There are
known twenty-two examples, up to isomorphisms, see [9, 11, 12]. Just one
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of them, the Desarguesian plane, is consistent with our hypotheses. This
is confirmed by the following result.

Theorem 8. Let a be an affine plane of order 16 containing a doubly
transitive parabolic oval Q. If a collineation group G = AGL(1,16) of
preserving Q0 acts on the affine points of Q as AGL(1,16) in its doubly
transitive permutation group, then o is the Desarguesian plane and Q is o
parabola.

Proof. An exhaustive search performed by GAP [4] showed that here are
13 polynomials Fj(X) for which Properties (i)—(v) hold:
Fi(X) = X4+ X0+ X104 X124 X4
Fa(X) = X2+ XM + X1,
Fa(X) = X4+ X5+ X7+ X0 4 X1 4 X134 X4,
FaX)=X+X2+ X3+ X"+ X8+ X0+ X1 + XV + X1
Fs(X) = X + X2+ X%+ X4+ X6+ X0+ X1 4+ X124 X4,
Fs(X)=X*+ X3+ X+ X°+ XS+ X"+ X8+ X° + X' + X!
F X124 X184 x4,
FX)=X+X3+X*+X*+ X4+ X2+ X'
FRX)=X+X3+ X+ X%+ X8+ X0+ X1,
Fy(X) = X°+ X8 + X4,
Fio(X) =X+ X*+ X%+ X° + X',

7 2
Fll(X)=X2+X4+X6+X8+X10+X12+X14= (sz) :

Fio(X) =X+ X2+ X5+ X6+ X0+ X124+ X
Fis(X) = X'

but only F1;(X) and Fj3(X) satisfy also Property (vi). Since Fy;(X) =
F®)(X) by Lemma 6, the claim follows O

Case ¢ = 32

Using the approach described in Case ¢ = 16, an exhaustive search per-
formed by GAP returned only four polynomials satisfying all the properties
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(i)=(vi), namely:

Fi(X) = X%,
F2(X) = X22 +X24 +X30;
Fs(X) =XIO+X12+X14+X16+X26+X28+X80;

15 2
Fy(X) = (in) )
i=1

They represent all the possible doubly transitive parabolic ovals of order 32
admitting the prescribed collineation group. Comparing the polynomials
Fy, F5, F3 and Fy with those obtained by Equality (5) and using Lemma
6, we find the following correspondence:

Polynomial | Oval | Type |
Fi(X) Y = X* | parabola
F(X) |Y = X®| translation oval
F3(X) Y = X* | translation oval
Fy(X) |Y?=X | parabola

This proves the following result.

Theorem 9. Let a be an affine plane of order 32 containing a doubly
transitive parabolic oval Q2. If a collineation group G =2 AGL(1,32) of «
preserving 0 acts on the affine points of Q as AGL(1,32) in its doubly
transitive permutation group, then « is the Desarguesian plane and Q) is
either a parabola or a translation oval.

Case ¢ = 64

An exhaustive search using the above approach is also possible, although
some more effort is needed to exploit thoroughly the properties in Lemma
7. The essential idea is to use (v) in its equivalent form

(vii) If g is the permutation on  induced by o : X + X2 then g and pp
commute.

After identifying Q with the set {1,2,...,64}, the group AT'L(1, 64) may be
assumed to be the collineation group of 7 acting on Q as the permutation
group generated by
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a1 = (1,64,48,19,54,13,49,6,11, 2,17, 36, 27,63, 26, 34, 9, 58, 42, 31, 50)
(3,60, 62,40, 43, 20, 10, 39, 35, 23, 51, 24, 4,47, 41, 14, 12, 22, 15, 37, 33)
(5,25, 28,59,61, 56,8, 30,52, 46, 55, 53, 7, 21, 38, 44, 16, 45, 32, 29, 18);

g2 = (1, 34,16,29, 6,28, 48, 20,52, 38, 73, 36, 22, 54, 27, 47, 55, 46, 58,41, 2,
13,57, 33, 25,43, 60, 4,53, 7,56, 9, 8,44, 3, 26, 62,15, 23, 39, 17, 50, 24,
11, 35,51, 59, 12, 49, 63, 30, 40, 32, 19, 5, 21, 45, 14, 31, 10,42, 18, 61);

g3 = (1,27,24, 26,13, 45)(2, 5, 10, 48, 60, 29)(3, 41, 32, 21, 18, 37)(4, 28, 25,
61,22, 23)(6,57,31)(7, 38, 8,47, 35,39)(9, 54, 17)(11, 15, 43, 34, 55, 59)
(12,51, 50,44, 46, 49)(14, 16, 58, 30, 40, 19)(20, 53)(33, 42, 52, 56, 36, 62)

Doing so, the subgroup AGL(1,64) of AT'L(1, 64) is the collineation group
acting on § as the permutation group generated by g; and g>. Since the

fixed points of g3 are 63 and 64, we may assume that A = 64, B = 63.

Therefore, the fixed points of @p are 64 and 65. Also, g% is a planar

collineation of order 4 fixing the points 20,53,64,63. Since g% and ¢p

commute, this implies that ¢p(20) = 53, ¢p(53) = 20.

Furthermore, g = g3 is a Baer involution fixing the points 6, 9, 17, 31,
54, 57, 63 and 64. Let 7 be the (affine) Baer subplane of g. Then 7 is a sub-
plane of 7 isomorphic to AG(2, 8) such that Q = {6,9, 17,31, 54,57, 63,64}
is a parabolic oval in 7. The centralizer C of g in ATL(1,64) has order 336
and the factor group G = C/(g) is a collineation group of 7 preserving the
parabolic oval . Therefore, the result for Case 8 applies. More precisely,
G = ATL(1,8) and G acts on Q as AT'L(1,8) in its natural doubly trans-
itive permutation. A system of generators of G consists of the following
three permutations on Q:

hy = (6,57)(9,17)(31, 64)(54, 63);
ho = (9,64,54)(17,31,63);
hs = (6,9,17)(31, 64, 63).
Therefore, the action of pp on § is (6,9)(17, 31)(54, 57)(63, 64).
It remains to compute the action of wyp on the set Q¢ consisting of the
other 54 points in 2. From (vii), ¢p is an involutory permutation belonging

to the centralizer C(g) of g in the symmetric group on Q. The order of
C(g) is equal to 3656994324480; more precisely

C(g) =(Ce x --- x Cg) x Sq.
9 times

A Sylow 2-subgroup S, of C(g) has order 216, and it contains 4127 invol-
utions. Some computations performed by GAP show however that S; and
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hence C(g) has only five pairwise non-conjugate involutions under C(g),
namely g3 and

k1 = (1,26)(2,18)(3, 10)(4, 40)(5, 37)(7, 46)(8, 12)(11, 36)(13, 27)(14, 25)
(15,62)(16, 61)(19, 28)(21, 29)(22, 58)(23, 30)(24,45)(32, 60) (33, 43)
(34,42)(35, 50)(38, 49) (39, 44) (41, 48)(47, 51)(52, 55)(56, 59);

k2 = (1,26)(2,7)(3,16)(4,43)(5, 38)(8, 10)(11, 22)(12, 44)(13, 27)(14, 37)
(15,23)(18, 19)(21,40) (24, 45)(25, 55)(28, 34)(29, 39) (30, 32)(33, 56)
(35,60)(36,42)(41, 58)(46, 51)(47, 48)(49, 50)(52, 62)(59, 61);

ks = (1,26)(2,7)(3,21)(4,43)(5, 38)(8, 10)(11, 22)(12, 44) (13, 27)(14, 30)
(15, 23)(16,40)(18,41)(19, 58)(24, 45)(25, 55)(28, 34)(29, 39)(32, 37)
(33,56)(35, 60)(36, 42)(46, 51)(47, 48)(49, 50)(52, 62) (59, 61);

ks = (1,26)(2,22)(3, 21)(4, 10)(5, 23)(7, 47)(8, 39)(11, 34)(12, 44) (13, 27)
(14,30)(15, 55)(16,40)(18, 41)(19, 58)(24, 45)(25, 60)(28, 48) (29, 61)
(32,37)(33, 56)(35, 38)(36, 42) (43, 59) (46, 51)(49, 50)(52, 62);

ks = (1,26)(2,48)(3, 21)(4, 61)(5, 60)(7, 47)(8, 39)(10, 29)(11, 34) (12, 44)
(13,27)(14, 30)(15, 55)(16, 40)(18, 41)(19, 58)(22, 28)(23, 25)(24, 45)
(32,37)(33, 56)(35, 38)(36, 42) (43, 59)(46, 51)(49, 50) (52, 62).

The classes Kjcontaining ki, i € {1,2,3,4,5}, have the following sizes:
[Kh| = 1224720, | K3| = 272160, |K3| = 13608, |K4| = 216, |K5| = 1.

It turns out that the restriction of ¢p on g is one of the above in-
volutions, up to conjugacy in C(g). This allows to perform the exhaustive
search of pp by means of a test based on (vi). It is convenient to per-
form such a test in terms of abstract hyperoval oval. For this purpose, add
65 = X and 66 = Y, to © in such a way that ' = QU {65,66} be a
hyperoval in the projective closure of =.

Now, from an involutory permutation j on £y, define an involutory
permutation j' on ' = QU {65,66} by the following rule:

7 = j *(6,9)(17,31)(54, 57)(63, 66)(64, 65).

Also, extend the action of AT'L(1,64) on £’ assuming both extra-points to
be fixed points. Then the test consists in selecting the involutory permuta-
tions j' with j ranging over the above four classes such that for every non-
trivial permutation 9 € AGL(1,64) the number of fixed points of 5'4~15'
be at most two. The exhaustive search performed by GAP returned only
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one permutation for yp:

(1,26)(2,47)(3, 34)(4, 52)(5, 35)(6, 9)(7, 48)(8, 29)(10, 39)(11, 21)
(12,40)(13, 27)(14, 50)(15, 18)(16, 44)(17, 31)(19, 51)(20, 53)(22, 33)
(23,42)(24, 45)(25, 36)(28, 56)(30, 49)(32, 59)(37, 43)(38, 60)(41, 55)
(46, 58)(54, 57)(61, 62)(63, 66)(64, 65).

Therefore, there exist only two polynomials having all properties (i)-(vi),
namely:

F(X) = X%,
31 2
FO(X) = (Z X") :
i=l

They represent all the possible doubly transitive parabolic ovals of order
64 admitting the prescribed collineation group. Hence, the following result
is proven.

Theorem 10. Let o be an affine plane of order 64 containing a doubly
transitive parabolic oval Q. If a collineation group G = AGL(1,64) of &
preserving ) acts on the affine points of Q@ as AGL(1,64) in its doubly
transitive permutation group, then o is the Desarguesian plane and Q is a
parabola.

Acknowledgement

The authors wish to thank Tim Penttila for helpful discussions.

References

(1] M. Biliotti, V. Jha, and N. L. Johnson, Two-transitive parabolic ovals,
J. Geom. 70 (2001), no. 1-2, 17-27.

(2] A. A. Bruen and J. A. Thas, Flocks, chains and configurations in finite
geometries, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)
59 (1976), 744-748.

[3] P. Dembowski, Finite geometries, Classics in Mathematics, Springer-
Verlag, Berlin, 1997, Reprint of the 1968 original.

[4] The GAP Group, GAP - Groups, Algorithms, and Programming, Ver-
sion 4.4, 2006, (http://www.gap-systen.org).

432



(5] J. W. P. Hirschfeld, Ovals in desarguesian planes of even order, Ann.
Mat. Pura Appl. (4) 102 (1975), 79-89.

(6] R. Huppert and N. Blackburn, Finite groups i, first ed., Grundlehren
der matematischen Wissenshaften, vol. 243, Springer Verlag, Springer,
1982.

(7] W. M. Kantor, k-homogeneous groups, Math. Z 124 (1972), 261-265.

[8] G. Korchméros, Segre-type theorems in finite geometry, Rend. Mat.
Appl. (7) 26 (2006}, no. 1, 95-120.

[9] G. E. Moorhouse, On projective planes of order less than 32, Finite
geometries, groups, and computation, Walter de Gruyter GmbH & Co.
KG, Berlin, 2006, pp. 149-162.

(10] S. E. Payne, A complete determination of translation ovoids in finite
Desarguian planes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.
Natur. (8) 51 (1971), 328-331 (1972).

[11] T. Penttila, G. F. Royle, and M. K. Simpson, Hyperovals in the known
projective planes of order 16, J. Combin. Des. 4 (1996), no. 1, 59-65.

[12] G. Royle, Projective planes of order 16, ,
(http://people.csse.uwa.edu.au/gordon/remote/planesi6).

[13] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desar-
guesiane, Ann. Mat. Pura Appl. (4) 64 (1964), 1-76.

[14] B. Segre and U. Bartocci, Ovali ed altre curve nei piani di Galois di
caratteristica due, Acta Arith. 18 (1971), 423-449.

[15] B. Segre and G. Korchméros, Una proprietd degli insiemi di punti di
un piano di Galois caratterizzante quelli formati dai punti delle singole
rette esterne ad una conica, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis.
Mat. Natur. (8) 62 (1977), no. 5, 613-619.

433



