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Abstract

The clique graph of a graph G is the graph whose vertex set is
the set of cliques of G and two vertices are adjacent if and only if
the corresponding cliques have non-empty intersection. A graph is
self-clique if it is isomorphic to its clique graph. In this paper, we
present several results on connected self-clique graphs in which each
clique has the same size k for k = 2 and k = 3.

1 Introduction

Let G be a graph. By a cligue in G, we mean a maximal complete subgraph
of G. Let K(G) denote the set of all cliques in G. The clique graph of G,
denoted K(G), is the graph whose vertex set is X(G) and two vertices are
adjacent if and only if the corresponding cliques have non-empty intersec-
tion. A graph is self-clique if it is isomorphic to its clique graph. Self-clique
graphs have been the subject of much discussion lately (see [2], [3], [4], [5],
[9] and [10] for instance). This paper follows in the similar vein of thought
by confining the attention on those self-clique graphs whose clique sizes are
uniform.

Let G(k) denote the set of all connected self-clique graphs where each
clique is of size k. In the present section, we record some known results
concerning G(2) (Theorem 1). In the next section, while unable to deter-
mine all graphs in G(3), we turn to determine all those in G(3) which are
4-regular (Corollary 3) and all those in which the degree of any vertex is
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at most 4 (Theorem 3). In the subsequent sections, we show the existence
of 5-regular graphs and 6-regular graphs in G(3) by constructions (Proposi-
tions 2 and 3). In the final section, we examine the existence of a graph in
G(3) whose set of vertices admits two degrees r and s where 2 <r < s <6.
It is shown that, with the exceptions of s = 6 and r € {2, 5}, such graphs
do not exist in G(3) unless r = 4 and s = 5 (Propositions 4 to 7).

Let K,, C, and P, denote a complete graph, a cycle and a path on n
vertices respectively. If G is a graph and z is a vertex in G, let dg(z), or
just d(z) denote the degree of = in G.

Suppose G € G(2). In [6], Escalante showed that, if G is finite, then
G is the cycle C,, for some n > 4. It is easy to see that if the finiteness
condition is dropped, then the two graphs of Figure 1 are the only other
members of G(2). We omit the proof. However for completeness, we record
this fact here.

Theorem 1 A graph is in G(2) if and only if it is either the cycle C,, with
n > 4 or else one of the infinite paths of Figure 1.

Figure 1: Two infinite self-clique graphs.

2 4-regular graphs in G(3) and beyond

Let G be a graph and let z € V(G). Let N(z) denote the neighborhood
of z. Further, if A is a subset of V(G), let G[A] denote the subgraph of G
induced by the vertices in A.

Lemma 1 Let G € G(3). Then any edge in G is contained in at most two
cliques of G.

Proof: If there is an edge uv of G which is contained in s cliques of G,

then these s cliques will give rise to a K, in K(G). Since G € G(3), we
must have s < 3.
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Suppose s = 3. Then these three cliques give rise to an induced sub-
graph H in G consisting of three triangles overlapping at the common edge
uv. Since G is self-clique, K(G) must also contain an induced subgraph
isomorphic to H.

Let U, V and Q;, ¢ = 1, 2, 3 be some cliques of G which form an induced
subgraph H* of K(G) isomorphic to H. Assume further that {U,V,Q;},
t =1,2,3 are three cliques in K(G) that have UV as the common edge in
the subgraph H*.

Since UNQ; # B, and the Q,’s are pairwise disjoint in G, we may assume
that U = {z),z2,z3} and that Q; = {z;,w;,2}, i = 1,2,3. Now assume
that V = {y1,y2,y3}. There are two cases to consider.

Case (3): UNV|=2

In this case, assume that x; = y; and z3 = y,. Since Qs NV # 0, we
see that either y3 = ws or y3 = 23 (because z3 ¢ V and 27,22 € @3). In
either case, we have y; adjacent to x3 which means that {z,,zs,x3,ys} is
a K, in G, a contradiction.

Case (it): (UNV|=1

In this case, assume that z; = y;. Since @;NV # @, for i = 2,3, we may
assume that y; = w;. But this means that wy and w3 are both adjacent to
z; in G so that R; = {z),z;,w;}, 1 = 2,3, U and V are four cliques in G
all with the common vertex z;. This yields a K4 in K(G), a contradiction
because K(G) = G.

This completes the proof. O

Proposition 1 Suppose G € G(k) where k > 2. Then for any vertex
z € V(G), we have k -1 < d(z) < k(k-1).

Proof: It is clear that d(z) > k — 1 since each clique in G is of size k.

Since G is self-clique, at each vertex z, there are at most k cliques
containing z. Hence the degree of z is at most k(k — 1). O

Theorem 2 Suppose G € G(3) and let = be a vertex of degree r in G. Then
G[N(z)] is

(i) Prif2<r <4,

(i) PPUP; if r =5 and

(iii) 3Py if 7 = 6.

Proof: Let @,,...,Q: denote the set of cliques in G containing the vertex

z. Then clearly, 1 <t < 3 because these ¢ cliques form a complete subgraph
K, in K(G). Consequently, we have
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(O1) G[N(z)] contains at most 3 edges because each edge in G[N(z)],
together with the vertex z, induce a clique of size 3 in G.

Also, since G contains neither cliques of size 2 nor cliques of size 4, we
have

(02) G[N(z)] contains neither isolated vertices nor triangles.

These two observations immediately imply that G[N(z)] is P, if 2 <
r<3.

Suppose r = 4. If G[N(z)] is disconnected, then G[N(z)] = 2P, by
(02). In this case, t = 2 and @, and Q3 are such that @1Q2 forms a clique
of size 2 in K(G) which is impossible because K(G) = G. Hence G[N(z))
is connected.

By (01) and (02), G[N(z)) is a tree on 4 vertices. If G[N(z)] contains
a vertex v of degree 3, then the edge zv is contained in the three cliques
Q,,Q- and Q3, a contradiction to Lemma 1. Hence G[N(z)] = P;. This
proves (i).

Applying observations (O1) and (O2) to the cases 7 = 5 and 7 = 6 lead
to the conclusions (ii) and (iii). O

A consequence to the above theorem is the following.
Corollary 1 If there is an r-regular graph in G(3), then r > 4.

Proof: Let G be an r-regular graph in G(3). Clearly, r > 3.

Suppose 7 = 3. Let x be a vertex of degree 3 in G. By Theorem
2(i), we may assume that z,z2x3 is the path on 3 vertices in G[N(z)]. By
Theorem 2(i), we may assume that G[N(z,)] is the path xzoy for some
vertex y € V(G) where y # {z,z1,72,z3}. But then this means that
d(z3) > 4, a contradiction. Hence r > 4. O

Let G be a graph. The k-th power of G, denoted G¥, is the graph having
the same vertex set as G and two vertices u and v are adjacent in G* if and
only if the distance from u to v is no more than k. Let Z,, = {0,1,...,n—1}
and let Z denote the set of all integers.

We shall invoke the following result of Hall ([7], 4.9). Note that, under
the notation adopted in [7] (page 421), the infinite graph C2 is a special
case of C2.

Theorem 3 ([7]) Let G be a connected graph. Then G[N(x)] = Py for

any vertez z in G if and only if either G = C? for some n > 7 or else
GxC2.
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Figure 2: Two more infinite self-clique graphs.

Theorem 4 Let G be a graph with no vertices of degree 5 or 6. Then
G € G(3) if and only if G is either the graph C2 for some n > 7 or else one
of the infinite graphs C2Z, or P2 of Figure 2.

Proof: The sufficiency is by direct verification. We now prove the necessity
part.

First, we consider the case where G is 4-regular. By Theorem 2(i),
G[N(z)] is a path on 4 vertices for any vertex = in G. By Theorem 3,
either G = C2 for some n > 7 or else G 2 C2.

Now, consider the case where G is not 4-regular. In this case, G contains
vertices of degree 2,3 or 4.

Suppose G contains a vertex z; of degree 2 and let N(z;) = {z3,23}.
By Theorem 2(i), @1 = {z1, 2,23} is a clique of G, and further, d(z2) > 3
and d(z3) > 3.

If d(z2) = 3 = d(z3), then, by Theorem 2(i) again, G is isomorphic
to the graph obtained from K, by deleting an edge. But this means that
K(G) % G, a contradiction.

Hence assume that d(z3) = 4. Further, let N(z3) = {z1,%2,%4,25} so
that z,722475 is a path on 4 vertices and that Q; = {z;,Ti+1,Zi+2} is a
clique of G for each i = 2,3, by Theorem 2(i).

If d(z;) = 4, then by Theorem 2(i), G[N(z2)] is the path zz3z4z, for
some vertex z € V(G), z # =i, t = 1,2,...,5 and {29, 24, 2} is a clique of
G. But, on taking the clique graph of G, we see that K(G) contains a K,
which is absurd since K(G) & G. Hence d(z3) = 3.

Now, if d(z4) = 3, then d(z5) = 2 and we have a contradiction because
K(G) = K3 % G. Hence d(z4) = 4.

By Theorem 2(i), G[N(z4)] is the path zox3x576 for some vertex xs €
V(G) and 76 # z;, i = 1,2,...,5 so that Q4 = {4, 5, z6} is a clique of G.
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Now, if d(zs) = 3, then d(z¢) = 2 and we have a contradiction because
K(G) ¢ G. Hence d(zs) = 4.

Repeat the similar argument as before to the vertex xj successively, for
each k > 5 where z is adjacent to zx—; and zx4+; (and by noting that
G[N(zx)) is a path on 4 vertices in G), we see that G is an infinite graph
isomorphic to the graph PZ (shown in Fig. 2).

Hence we may assume that G contains no vertices of degree 2. In this
case, G contains only vertices of degree 3 or 4. By Proposition 6, G is not
in G(3), a contradiction.

This completes the proof. (]

Corollary 2 Suppose G is a 4-regular graph. Then G € G(3) if and only
if G is either the graph C2 for some n > 7 or else the infinite graph C2, of
Figure 2.

3 5-regular graphs in G(3)

Despite that 4-regular graphs in G € G(3) have been completely character-
ized, it seems to be the case that 5-regular graphs in G € G(3) are much
more difficult to characterize unless further restriction is imposed on them.
In this section, we shall only show the existence of 5-regular graphs in G(3)
by construction.

Definition 1 Let m, n > 2 be two integers. Let L(m,n) denote the graph
whose vertex set is the set of ordered pairs (i,j) where i = j (mod 2),
i € Zyyn and j € Zyy, and whose edge set is EyUE; where By = {(i,5)(k,1) :
i € Zam, j € Zan, Ji—k| =1=|j—1|} and Ep = {(2i,27)(2i +2,2j), (2i+
1,25 +1)(20+1,2j+3) : i € Zom, j € Zop, i+3j =1 (mod 2)}. Here, the
operations on the first (respectively second) index are reduced modulo 4m
(respectively modulo 4n).

The above definition gives a graph whose set of vertices is finite. We
may allow the second index to be any integer and obtain an infinite graph
L(m).

It might appear that these definitions look unnatural, but the general
drawing of L(m,n) on the torus can easily be extended in a natural way
from the smallest such graph L(2,2) which is depicted in Figure 3. Notice
that those edges that are ’horizontal’ or 'vertical’ are in E; whereas those
that are ’diagonal’ are in E,. It is routine to verify that L(2,2) is a 5-regular
self-clique graph all of whose cliques have size equal to 3. More generally,
we have the following result.



Proposition 2 For each m,n > 2, the graphs L(m,n) and L(m) are 5-
regular and are both in G(3).
Proof: Let G be the graph L(m,n) or L(m).

Let Q be a clique in G. Then Q is one of the following four types.

(i) (a+1,b—1)(a,b)(a+1,b+1), aeven,

(i) (@ —1,b—1)(a,b)(a —1,b+1), a even,

(iii) (@ — 1,b+ 1)(a,b)(a + 1,b+ 1), a odd, and

(iv) (@ —1,b—1)(a,d)(a+1,b—1), aodd.

Let ¢ be a mapping from V(K(G)) to V(G) defined by

P(Q) = (a+2,b).
Then it is readily checked that ¢ is an isomorphism from K(G) onto G. O

By allowing the first index of the vertex set of L(m) to include any
integers, we obtain another infinite 5-regular graph which is in G(3).

4 A

(0.0) (0,2) (0,4) (0,6)

(1.1) {1.3) {1.5) (3.7
(2.0) (2,2) (2,4) (2.0)

(3.1) {3,3) {3.5) {3.7)
(4.0) (4,2) (4,4) (4,6)

{5.1) {5.3) {5.5) (5.7
(6.0) (6,2) (6,4) (6,6)

{7.1) {7.3) (7.5) (7.7

Figure 3: The graph L(2,2) drawn on the torus.

4 6-regular graphs in G(3)

Likewise, in this section, we shall only show the existence of 6-regular graphs
in G(3) by construction. Let A, = {i € Z, : i # 0 (mod 4)}.
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Definition 2 Let n > 4 be an integer. Let M(n) denote the graph whose
vertex set is V} UV, and whose edge set is Ey U Ea U E3 U E4 where

(i) Vi = {(3,5): i € A12, j € Zgn, i =3 (mod 2)}
Vo = {332i+1 1 1€ Zn}.

(ZZ) E, = {('I.,])(k,l) : 4,k € Ay, J,l € Zap, I"' - kl =1= l.7 - ll}
E2 = {(7‘1])(1’.7 + 2)) (2,_7)1?] i€ A12v .7 € Z2ﬂa 7".7 =1 (mOd 2)}
E; = {(,5)(i +2,7): i € A12, j € Zon, i =3 (mod4), j =1
(mod 2)}
E4 = {(‘L,])(Z +41.7) : 1€ Al?s J € ZZVH 21.7 =0 (mOd 2)}

Here, the operations on the first (respectively second) index are reduced
modulo 12 (respectively modulo 2n).

The above definition gives a graph whose set of vertices is finite. We
may allow the second index to be any integer and obtain an infinite graph
M.

Figure 4 shows a toroidal drawing of the graph M (4). It is routine to

verify that M(4) is a 6-regular self-clique graph all of whose cliques have
size equal to 3. More generally, we have the following result.

Figure 4: The graph M(4) drawn on the torus.

Proposition 3 For each n > 4, the graphs M(n) and M are 6-regular and
are both in G(3).
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Proof: Let G be the graph M(n) or M.

Let Q be a clique in G. Then Q is one of the following four types.

(i) (e-1,b-1)a,b)(a—1,b+1),

(i) (a+1,b—1)(a,b)(a+1,b+1),

(iii) (a —4,b)(a,b)(a+4,b),

(iv) (a,b)(a +2,b)xs,
where a = 2 (mod 4), b = 0 (mod 2) for (i), (ii), (iii) and a = 3 (mod 4),
b=1 (mod 2) for (iv).

Let ¢ be a mapping from V(K(G)) to V(G) defined by
(e+1,b+1) if Q istype (i)
(a+3,b+1) if Q is type (ii)

Tpil if @ is type (iii)
(a+3,b+1) if Q istype (iv)

p(Q) =

Then it is readily checked that ¢ is an isomorphism from K(G) onto G. O

5 S-graphs in G(3)

In this section, we shall investigate the existence of graphs in G(3) whose
sets of vertices are of mixed degrees. By Proposition 1, if G € G(3), then
2 < d(z) < 6 for any vertex z in G. The more interesting case seems to be
those graphs in G(3) which are almost regular in the sense that, for every
vertex z in G, d(z) =r or d(z) = s for some 2 < r < s < 6.

Definition 3 If S is the set of degrees of G, then G is called an S-graph.

We shall now confine our attention to S-graphs in G(3) where |S| = 2.
Of course, one could also investigate S-graphs in G(3) where 3 < |S| < 6
but we feel that this could be done elsewhere.

Lemma 2 Let z be a vertex of degree 2 in a {2, s}-graph G € G(3) where
3 < s <6. Then z is adjacent to another vertex of degree 2 in G.

Proof: Let N(z) = {z;,z2}. By Theorem 2(i), Q@ = {z,z;,z2} is a clique
of G.

Suppose d(z;) = s = d(z2) and let N(z,) = {z,z2,%1,---,ys—2} and
let N(zp) = {z,z1,21,...,25—2}.

Suppose 3 < s < 4. Since G[N(z;)] and G[N(x2)] are both paths on s
vertices, by Theorem 2(i), we may assume that y; = z; so that {z;,z2,y1}
is a clique of G, and in addition, if s = 4, then so are {z1,%1,ys—2} and
{z2,91,2s—2}. Now, by taking the clique graph of G, we see that, if s = 3,
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then Q is a vertex of degree 1 in K(G), while if s = 4, then K(G) contains
a K. Either case is a contradiction since K(G) = G.

Suppose 5 < s < 6. By Theorem 2, (ii) and (iii), each of G[N(z,)]
and G[N(z2)] is a union of paths. Moreover, if t = |{y1,...,¥s—2} N
{21,...,2s—2}|, then ¢t <1 by Lemma 1.

Note that, if s = 6, then ¢ = 0 and that if s = 5, then either t = 0 or
t=1.

Ift = 01 then {ml’yl)yZ}’ {xlsya—:.’n ys—2}1 {32121’22} and {502,23_3,
253} are cliques of G, each has a non-empty intersection with Q so that
Q is a vertex of degree 4 in K(G).

If t = 1, we may take y; = z; so that {z1,y1,z2}, {z1,¥2,¥3} and
{z2, 22, 23} are cliques of G so that Q is a vertex of degree 3 in K(G).

In either case, we have a contradiction since K(G) = G.

This completes the proof. O

Proposition 4 There exist no {2, s}-graphs in G(38) for any 3 < s < 5.

Proof: Suppose there is a {2,s}-graph G € G(3). Let = be a vertex of
degree 2 in G and let N(z) = {y,2}. Then Q = {z,y, 2} is a clique in G,
by Theorem 2(i).

By Lemma 2, we may assume that d(y) = 2 in G. Then, clearly d(z) = s
for some 3 < s < 5. Suppose N(z) = {z,¥,41,...,¥Ys—2}-

By Theorem 2(i), we have s & {3,4}.

Therefore s = 5. Then, by Theorem 2(ii), we may assume that y;y2y3 is
a path on 3 vertices in G[N(2)), so that Q) = {z,%1,%2} and Q2 = {z,2,y3}
are cliques of G.

Clearly, d(y2) = 5. Let N(y2) = {2,%1,93,21, 22} so that Q3 = {y2, 21,
23} is a clique of G. By taking the clique graph of G, we see that the
subgraph of K(G) induced by Q, @1,Q2 and Qs is such that Q is a vertex
of degree 2 in K(G) not adjacent to any vertex of degree 2 in K(G). This,
however, contradicts Lemma 2 because K(G) = G. a

We now show that if G € G(3) is a {2,6}-graph, then G is an infinite
graph.
Proposition 5 There erist no finite {2,6}-graphs in G(3).

Proof: Suppose G is a {2,6}-graph in G(3). Assume that G has m vertices
of degree 2 and n vertices of degree 6. We shall obtain a contradiction by
showing that the number of triangles in G is less than m 4+ n.



Let = be a vertex of degree 2 in G and let N(z) = {y,2}. Then Q =
{z,y, 2} is a clique in G, by Theorem 2(i).

By Lemma 2, we may assume that d(y) = 2in G. Then, clearly d(z) = 6.
Suppose N(z) = {z,y,21,...,24}.

By Theorem 2(iii), we may assume that z; is adjacent to z; and that z3
is adjacent to z4 so that Q; = {z,21,22} and Q2 = {z, 23,24} are cliques
of G. As such, Q is a vertex of degree 2 which is contained in the clique
{Q, Q1,Q2} of K(G). By Lemma 2, we may assume that the degrees of Q;
and Q2 in K(G) are 2 and 6 respectively. But this implies that d(z3) =
6= d(24).

Suppose Q3 = {23,w;, w2} and Q4 = {23, w3, w4} (respectively Qs =
{24, Ws,
we} and Qg = {z4,wr,ws}) are the other two cliques containing the ver-
tex z3 (respectively z4). Since G = K(G), on taking the clique graph of
G, it follows from Lemma 2 that we may assume that ws,ws, w7, wsg are
vertices each of degree 6. We can then repeat the similar argument to the
cliques that are incident to the vertices ws, wg, w7, wg and continue in the
like manner.

Since G is a finite graph, this argument must terminate in a finite num-
ber of steps. In that case, G has the following property. Each triangle in G
contains either exactly two vertices of degree 2 or else exactly three vertices
of degree 6. But this implies that the number of triangles in G is at most
Z +n (which is less that m + n), a contradiction.

This completes the proof. O

On the other hand, the graph J defined below is an infinite {2, 6}-graph
in G(3).

Let N = {0,1,2,...} denote the set of all non-negative integers and
let 2N = {2z | z € N}. Let V(J) = Nx N and E(J) = E; U E; where
E) ={(a,b)(a+1,b) |a € 2N, be N} and E; = {(a,b)(4da +t,b—1) |a €
N, beN- {0}, t € {0,1,2,3}}.

Part of this graph is depicted in Figure 5.

Next, we observe that each triangle in J is given by Ta, p, = {(2a, b), (2a+
1,b),({5],b+1)} where a,b € N. Now, each T3, 5 becomes a vertex in K(J).
Let N = {Tsat2tp-1 | t € {0,1,2,3}} if b > 1 and let Ny = @ otherwise.
Then the neighborhood of Ty, in K(J) is given by

{T20+2,1,, TZI_-'&_I,H-I} UN, if a=0 (mod 2)

N(T2ap) =
{Tza_z,b, T2[%j,b+1} U N, if a=1 (mod 2).
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Hence, the mapping that sends the vertex (z,b) to the triangle Tp. 4 is an
isomorphism from J to K(J).

To see that J is an infinite {2,6}-graph in G(3), first we observe the
following. Let z,b € N and let Ny = {(dz +¢,b—-1) | t € {0,1,2,3}} if
b>1 and let N; = 0 otherwise. Then the neighborhood of each vertex in
J is given by

{(z+1,b), (15,b+1)}UN, if =0 (mod 2)

N((z,b)) = {
{(z—-1,b), (|5],0+1)}UN, if z=1 (mod 2).

Proposition 6 There ezist no {3, s}-graphs in G(3) for any 4 < s < 6.

Proof: Let = be a vertex of degree 3 in a {3,s}-graph G € G(3). Let
N(z) = {z1,72,73}. By Theorem 2(i), we may assume that zz273 is the
path on 3 vertices in G[N(z)] so that @, = {z,z1, 22} and Q2 = {z, T2, z3}
are cliques of G.

If d(z2) = 3 in G, then this implies that Q;Q> is a clique of size 2 in
K(G). But this is impossible because K(G) = G. Hence d(z2) = s.

Let N(xZ) = {.’13,131,333, N,y... 1ys—3}'

Now, s # 6, by Theorem 2(iii), because G[N(z2)] contains a path on 3
vertices.

Suppose s = 4. Since G[N(z)) is a path on 4 vertices by Theorem 2(i),
1, must be adjacent to 7, say. Then d(z3) must be either 3 or 4. Either
case leads to absurdity because G[N(z3)] is then either P3 or P; which is
impossible because d(z) = 3 and d(z2) = 4.

Suppose s = 5. Then Q3 = {z2,%1,%2} is a clique of G. Moreover,
d(z;) = 3 or 5. Let N(z;) = {z,22,21,...,2:} where t € {1,3}.

If t =1, then 2; = y; for some i € {1,2} because G[N(z1)] = P3 by
Theorem 2(i). But then Q1,Q2,Q3 and {z;,z2,%;} form a clique K4 in
K(G) which is impossible because K(G) = G.

Hence ¢t = 3. By Theorem 2(ii), we may take 22223 to be a path on 3
vertices in G[N(z1)] so that {z, 21,22} and {z), 22, 23} are cliques in G.
Taking the clique graph of G, we see that Q, is a vertex of degree 4 in
K(G). But this is impossible because K(G) = G.

This completes the proof. : a

Figure 6 depicts two {4, 5}-graphs all of whose cliques are of size 3. They
are both drawn on the torus. It is routine to check that these two graphs
are self-clique. These graphs can easily be extended to other {4, 5}-graphs
in G(3). Moreover there exist {4, 5}-graphs in G(3) which do not resemble



(0,2)

(CEM

(0.0) (10) (2.0) (3.0) (40) (5.0) (6.0) (7.0) (8,0) (9.0) (10,0) (11,0) (12,0 {13.0)

Figure 5: Infinite {2,6}-graph J in G(3)
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those shown in Figure 6. Further, one could easily modify these examples
to yield an infinite number of finite graphs and also an infinite number of
infinite ones.

Proposition 7 There ezist {4,5}-graphs in G(3).

a

Figure 6: Some {4, 5}-graphs in G(3) drawn on the torus.

Proposition 8 There exist no {4,6}-graphs in G(3).

Proof: Let x be a vertex of degree 4 in a {4,6}-graph G € G(3). Let
N(z) = {z1,%2,%3,24}. By Theorem 2(i), we may assume that 1727374
is the path on 4 vertices in G[N(z)] so that Q; = {z,x:,Ti11} is a clique
of G for each i =1,2,3.

Theorem 2(iii) implies that d(z2) = 4 = d(z3). Let N(z3) = {z, 21,23,
y1} and N(z3) = {z,%2,%4,y2}. Then y # ys, otherwise {z2,z3,11} is a
clique of G which, together with Q1,Q2 and @3, form a K in K(G) which
is impossible because K(G) = G.

Hence y; is adjacent to z;, and y2 is adjacent to z4. By Theorem 2,
(i) and (iii), d(z1) = 4 = d(z4). This implies that there exist vertices
21, 22 € V(G) — {z} such that zz2y12) and Tz3y222 are paths on 4 vertices
inG

Applying Theorem 2(iii) to the vertices ¥; and y2, and continue with
similar argument as before, we see that G is a 4-regular graph, a contra-
diction.

This completes the proof. O



6 Remark

The results in preceding sections lead to the following questions. (i) Can
5-regular graphs or 6-regular graphs in G(3) be classified? (ii) Does there
exist a {5,6}-graph in G(3)?
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