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Abstract

In this paper, we consider the relationship between toughness
and the existence of [a,b]-factors. We obtain that a graph G has an
[a, b)-factor if ¢(G) > a — 1 + 23 with > a > 1. Furthermore, it is
showed that the result is best possible in some sense.
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1 Introduction

All graphs considered are finite simple graphs. Let G be a graph with vertex
set V(G) and edge set E(G). For z € V(G), the degree of x in G is denoted
by dg(z). For any S C V(G), we denote by Ng(S) the neighborhood set
of S in G. We use G[S) and G — S to denote the subgraph of G induced by
S and V(G) — S, respectively. A subset S of V(G) is called an independent
set (a covering set) of G if every edge of G is incident with at most (at
least) one vertex of S. We refer the readers to [1] for the terminologies
not defined here. Let g and f be two integer-valued functions defined on
V(G) with g(z) < f(z) for any = € V(G). A spanning subgraph F of G is
called a (g, f)-factor if g(z) < dr(z) < f(z) holds for any vertex z € V(G).
Moreover, a (g, f)-factor is called an [a, b]-factor if g(z) = a and f(z) = b,
an [a, b]-factor is called a k-factor if a = b = k. Let h : E(G) — [0, 1] be
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a function and k > 1 be an integer. If 3,5, h(e) = & holds for each vertex
z € V(G), we call G[Fy] a fractional k-factor of G with indicator function
h where Fy = {e € E(G)| h(e) > 0}. A fractional 1-factor is also called a
fractional perfect matching [11].

Chvital (4] first introduced the concept of toughness, denoted by t(G) =
nnn{m-cl.’.g_lT) : § € V(G), w(G-S) = 2}, where w(G—S) denotes the num-
ber of components of G—S and G is not a complete graph. If G is complete,
then £(G) = co. A graph G is k-tough if t(G) > k. Chvaital mainly studied
the relations between toughness and the existence of Hamilton cycles and
k-factors. He conjectured that every k-tough graph G has a k-factor if
k|V(G)| is even. Enomoto et al. in [6] confirmed Chvatal’s conjecture and
showed that the result is sharp.

Theorem 1 (Enomoto et al. [6]) LetG be a graph and k > 2. If(G) 2
k, [V(G)| > k + 1 and k|V(G)| even, then G has a k-factor.

Katerinis in [8] generalized Theorem 1 to [a,b]-factors. And Liu ob-
tained a lower bound in [10] for fractional k-factors.

Theorem 2 (Liu [10]) Let k > 2 be an integer. A graph G with |V(G)| =
k+1 has a fractional k-factor if t(G) > k — }.

Theorem 3 (Katerinis (8]) Let G be a graph and a, b be two positive
integers such that b > a. Ift(G) > (a —1) + § and a|V(G)| is even when
a =b, then G has an [a, b]-factor.

Much work has been contributed to the relations between toughness
and the existence of factors of a graph [2, 3, 5, 9]. In this paper, we get a
better result about [a, b}-factors when b > a.

Theorem 4 Let G be a graph and a, b be two positive integers such that
b>a>1. Ift(G) > (a—1) + 23, then G has an [a,b]-factor.

2 Preliminary lemmas

We first give the characterization of (g, f)-factors due to Heinrich [7].

Lemma 5 (Heinrich [7]) Let G be a graph and g, f be integer-valued
functions defined on V(G). If g(z) < f(z) for every x € V(G), then G
has a (g, f)-factor if and only if g(T) — dg—s(T) < f(S) for any set S of
V(G), where T = {z| z € V(G) — S, dg-s(z) < g(z)}.

Lemma 6 (Chviétal [4]) If a graph G is not complete, thent(G) < 36(G).

The following Lemma improves the result in Lemma 2.2 of [10].
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Lemma 7 Let G be a graph and H = G[T| such that dg(z) = k — 1
for every x € V(H) and no component of H is isomorphic to K where
T C V(G), k > 2. Then there erists an independent set I and the covering

k=2
set C = V(H) — I of H satisfying |V(H)| < (k — )/l + X (G + 1)i,
i=0

|C| S (k—1-gIl'+ Z Jij, where I' = {z|z € I, dy(z) = k -1},
=|{zlzel"=I-1T, dH(-'L')"J}I

Proof. Suppose that H has m components. For each component H,,, let
I, be a maximal independent set of H,. It is obvious that some vertices
of I, have degree k — 1 in H,, and some have degree less than k — 1. Let
I, = I, u I where I, = {z|z € I, dy,(z) = dg(z) = k — 1} and
Il =1I,-1I, = {z|z € I, du,(z) < de(z) = k — 1}. Thus for each vertex

k=2
€I, dy,(z) < k-2. Setdy, (z) =5 (0 < j < k-2). Then |I]| = 3 4],
=0

k-2
and |Ny, (I))| £ ) jij,, where ij = |{z|z € I}, dy,(x) = j}I.
3j=0

Claim. For each vertex z € I}, there exists y € I, — {z} such that
Ny, (z) O Na, (y) # 0.
For this, we show that H,[Ng, (z)] is not complete. Otherwise, H,, =
H,[{z} U Ny, (z)] = Ki. Since H, is connected and for every vertex
x € V(Hy,), du, (z) < k—1, it follows that H, = H}, = K}, a contradiction.
Therefore there exist two vertices =’ and y’ in H,p[Ny, (z)] that are not
adjacent. Now if for any y € I, — {z}, Ny, () n Ny _(y) = 0, then y
is not adjacent to z’ and y’. We can construct a new independent set
(In — {z}) U {2’, ¥’} of H,, that is larger than I, a contradiction.
Combined by the previous discussion about I" we have |V(H,)| <

kI = [+ T+ N, (B < (k= )T+ Z (G+1)i5,, (1 Sn<m).
Let I' = Z e I = ZI,’,’ and | = EIn=I’UI". Then I is a max-
n=1 n=1 n=1
imum independent set of H. Thus [V(H)| = i \V(Hy)| < f: (k-
n=1 n=1

k=2
=ML+ Z Z G+1)f, = (k- gD+ .Z%,(j + 1)}, where i} =
n=1 1=

z # = |{z}z € I", du(z) = j}|. Let C = V(H) - I. Then [C|

k=2
\V(H)] - | = V(H)| - [I'| - |I"] < (k=1 - gl + 2 Jij-
J=
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Lemma 8 (Liu [10]) LetG be a graph and let H = G[T) such that 6(H) >
landl <dg(z) <k-1 forz € V(H) where T CV(G) and k > 2. Let
Ty, -+, Tk—1 be a partition of the vertices of H satisfying dg(z) = j for
z € T; where we allow some T, to be empty. If each component of H has a
vertex of degree at most k—2 in G, then H has a mazimal mdependent set ]

and a covering set C = V(H)~—I such that E (k=3)c; < Z (k—2)(k—3)ij,
where ¢; = |CNTj| and i; = |InT|for1 <_7 <k-1.

3 Proof of the main result

Proof of Theorem 4. Suppose that G satisfies the conditions in Theorem
4, but G has no [a, b]-factors. Then, by Lemma 5 there exists S C V(G) sat-
isfying o|T|—dg—s(T) > b|S|, (1) where T = {z| x € V(G)-S, dg-s(z) <
a} since g(z) = a and f(z) = b for every z € V(G). In addition, sup-
pose that T is minimal with respect to (1). If there exists zo € T with
dg-s(zo) = a, obviously S, T—{zo} satisfy (1), contradicting the minimal-
ityof T. So T = {z|z € V(G)-3S, dg-s(z) £ a—1}. And §(G) 2 2t(G) >
a — 1 by Lemma 6. Therefore S # @ according to (1). Let H' = G[T. If
there exists components of H’ that are isomorphic to K,, let m be the
number of these components and Ty = {z € V(H')|dg-s(z) = 0}. Set
H = H'—-mK,—Ty, |To| = to. If |V(H)| = 0, by (1) we get ato+ma > bS],
that is, 1 < |S| < g(to + m). Hence w(G — S) > tp + m > 1, we have
HG) < 7L-L§5 < ;5L < 1. This contradicts that #G) > a—1+ 3L > 1.

Now we consider that |V(H)| > 0. Let H = H; U Hy where H, is
the union of components of H which satisfies that dg_g(z) = a — 1 for
any vertex z € V(H,) and H, = H — H;. By Lemma 7, H; has a max-
imal independent set J; and the covering set C; = V(H;) — I; such that

a—2
[V(H)| < (a— g+ ;0(1' +1)i, [C1| < (@ =1~ Z)l + Z i,

j
where I} = {z|z € I, dy,(z) = dg-s(z) = a— 1} and i |{:c|:t € I”
I — I, dg,(z) = j < dg-s(z) =a—1}].

On the other hand, we may assume that 6(H3) > 1. Since A(Hp) <
a-1,let Tj = {z € V(Hz)|dg-s(z) = j} for 1 < j < a—1. By the
definition of Hy we know that there exists one vertex with degree at most
a—2in G — 8 from each component of Hy. According to Lemma 8, H,
has a maximal independent set I3 and the covering set C; = V(H3) —

-1 -1
such that az (e —j)ej < az (@ —2)(a —j)i;, (2) where ¢; = |Co N Tj|
=1 ij=1

and i; = [IoNT}| for every j = 1,---,a—1. Set W =V(G)-S-T
and U = SUC; U (Ne(I{)N W)U Ca U (Ng(I2) n W). It follows that
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a—2 a-—1
Ul < S| +1C1| + Z‘a(a— 1-4)i + Zlﬁj, w(G-U) 2 (to +m) +
J= =

a—-2 a=—1
il + X 4 + 3 i;. Now we claim that |U| > ¢(G)w(G — U). It holds
obviously when w(G — U) > 1. When w(G — U) = 1, by the previous
discussion we obtain that ¢o = m = 0, then for every vertex z € T, |U| >

do-s(z)+1S| = 8(G) > 24(C). So |S] +|Ci| +:=Z_::(a —1— )i+ ,;1 ji; >
t(G)(to+m+|I{|+:§ z,+Jz;;: i;). 3)

From (1), a(to + m) + |V (H))] + Jz;:: (a — 5)i; + Jz;j: (@—)e; > blS|.
Combined with (3), a(to-+m) +|V(H, )l+b|01|+b:§: (a—1— j)i;-’+:=ill(a..
Ve > bt(G)(to+m+|I{|+:g:: i}’)+:§ (bt(G) —bj —a+)i;. And according
to the notation of t(G), we have |V (H;)| +b|01|+;§ bla—1 —j)i;.’—i-:g::(a_
e > bt(G)(]I{|+:g:: i;’)+:§ (BE(G) — bj —a+ )i; + (b(G) — a) (o +m) >
O+ )+ ng‘ (b(C) - b — a+ )i,

By Lemma 7, |V(H,)| +b|C)| +:§b(a—1 —§)if < (a= g +bla—1-
a-\;»uu{é:j (j+1+bj)i;'+:=z';:b(a-1-j)i;! = ((1+b)(a=1)+1- 122 I{|+
,§ (ba — b+ +1)i7. Combined with (2), g (a=2)(a - j)is + (ba—1) +
a— Ly1y) +:§ (ba—b-+j+1)i? > b(G)|I{| +bt(G) :z;:: i;’+:§ (b4(G) —
bj—a+)i; > b(a— 1+ 221)|Ij] + b(C) ]z;;:zj +:§(bt(o) —bj—a+3)i;.
That is g(a —2)(a - §)i; + :g: (ba—b+j+1)i > :g (bH(G) —bj— a +

a—-2
3)ij +b¢(G) 3 if. Thus at least one of the following two cases must hold.
j=0

Case 1. At least one j satisfying (a — 2)(a — 7) > bt(G) — bj — a + ;.
Then t(G) < ﬂif—'“—“ﬁ <a-1+ 2%t (j < a-1), a contradiction.
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Case 2. ba —b+j+1> bt(G) for some j€ {0, 1, 2, -+, a—2}.

In this case we have t(G) < a— 1+ 3L, contradicting to the toughness
condition of Theorem 4, completing the proof of the theorem.
Remark. The bound of toughness in Theorem 4 is sharp. To see this,
consider the graph G: V(G) = V(4) U V(B) U V(C) where A, B and C
are disjoint with A = Knpi1)(a-1)> B = (nb+1)K,-1 and C = Ky(q_-1)-
Since | V(A) |=| V(B) |, we set the edges between A and B are a perfect
matching between 4 and B. And we set each vertex of B is adjacent to all
the vertices of C. This follows that {(G) = ("b*'l)(‘:;_ll_)l"” n(a-1) < a-1+231,
t(G) —» a—1+23! when n — oco. But we can get that G has no [a, b]-factor
since (1) holds if we set S = C.
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