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Abstract

Let G be a graph. The point arboricity of G, denoted by p(G), is
the minimum number of colors that can be used to color the vertices
of G so that each color class induces an acyclic subgraph of G. The
list point arboricity p;(G) is the minimum k so that there is an acyclic
L—coloring for any list assignment L of G which |L(v)| > k. So
p(G) £ pi(G). Zhen and Wu conjectured that if |V(G)| £ 3p(G),
then p1(G) = p(G). Motivated by this, we investigate the list point
arboricity of some complete multi-partite graphs of order slightly
larger than 3p(G), and obtain p(Km(1),2(n-1)) = pt(Km(1)2(n-1))
(m=2,3,4).
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1 Introduction

All graphs considered here are finite, undirected and simple. We refer to (9]
for unexplained terminology and notations. We say n graphs Gy, Gs, ...,G,
are vertex disjoint if they have no vertex in common and denote their join
by G; + G2 + ... + G, which is obtained from their union by joining each
vertex of G; to the each vertex of G; (i # j).

The point arboricity of G, denoted by p(G), is the minimum number of
colors that can be used to color the vertices of G so that each color class
induces an acyclic subgraph of G. The notion of list coloring of graphs was
introduced by Vizing [8] and independently by Erdds et. al [4]. Borodin
et. al [1] defined a similar concept for the point arboricity of a graph. A
list assignment of a graph G is a function L defined on V(G) such that
L(v) C N is the list of colors available for the vertex v € V(G). For a given
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positive integer k, if |L(v)| = k for every vertex v € V(G), we say L is a k-
list assignment of G. For a list assignment L of G, we say c is an L-coloring
if ¢(v) € L(v) for every vertex v € V(G). Set ¢(L) = {c(v)|v € V(G)}, that
is the set of colors chosen for the vertices of G under ¢. An L-coloring ¢
is called acyclic if for each color i € ¢(L), G[V;] is acyclic, or is a forest,
where V; is the set of vertices v of G with ¢(v) = 7. In this case, we say
G is acyclic L-colorable. If G is acyclic L-colorable for any possible k-list
assignment L, G is called acyclic k-list colorable. The list point arboricity
of a graph G, denoted by pi(G), is the minimum number % for which G is
acyclic k-list colorable.

It is trivial that p(G) < pi(G). Ohba [5] conjectured that if a graph G
has the chromatic number k and at most 2k+1 vertices, then the chromatic
number of G coincides with its list chromatic number. Enomoto et.al [3],
Shen [7] and Cranston [2] have verified that the conjecture is true for some
complete multi-partite graphs. Therefore it is significant to investigate the
condition or find some graph classes, in which each graph satisfies p;(G) =
p(G). Seymour [6] proved that p;(G) = p(G) hold if G is the line graph of
any graph. Zhen and Wu [10] have the following results.

Theorem 1.1. ([10]) For any graph G, there exists a non-negative integer
ng = no(G) such that p(G + K,) = pi(G + Ky,), for any integer n with
n > ng.

Theorem 1.2. ([10]) If[V(G)| < 2p(G)+/20(G) -1, then p(G) = pi(G).

Conjecture 1.3. ([10]) If |V(G)| < 3p(G), then p(G) = pi(G).

We construct a graph G = Ty +To+...+T;+...4+Tp, where T;(1 < i < n)
is a nontrivial tree. G =Ty + T2 + ... + T; + ... + T, is an edge maximal
graph such that p(G) = n. If we can prove equation p(G) = p(G) holding
for G, then the equation p(G') = pi(G') can also hold for the subgraph G’
of G with p(G’) =n.

2 Some Lemmas

For a graph G = (V, E) and a subset X C V, let G[X] denote the subgraph
of G induced by X. For a list assignment L of G, let L| x denote L restricted
to X, and L(X) denote the union UyexL(u). If A is a set of colors, let
L\ A denote the list assignment from L by deleting the colors in A from
each L(u) with u € V(G). When A consists a single color a, we write L\ a.

Lemma 2.1. ([10]) If a graph G is not acyclic L—colorable, then there
exists a set X C V(G) such that 2|L(X)| < |X]|.

Clearly, the following lemma can also hold.
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Lemma 2.2. Let L be a list assignment for a graph G. If 2|L(X)| > | X|
for every subset X C V(G), then G is acyclic L—colorable.

Lemma 2.3. Let L be a list assignment for a graph G = (V, E) and let
X C V(G) be a mazimal non-empty subset such that 2|L(X)| < |X|. If
G|X] is acyclic L|x — colorable, then G is acyclic L—colorable.

Proof. Let X be a maximal subset of V' such that X # @ and 2|L(X)| <
|X|. Let C = L(X). By the maximality of X, every subset Y C V\ X
satisfies 2|L(Y) \ C| > |Y|. Let L'(v) = L(v) \ C for every v € V' \ X.
Note that G[V \ X] and L’ satisfy Lemma 2.2. Hence G[V \ X] is acyclic
L'-colorable. By hypothesis, G[X] is acyclic L|x —colorable. Since none of
the colors used on X are used on V' \ X, we can combine the two colorings
to give an acyclic L—colloring of G. O

Lemma 2.4. A graph G = (V, E) is acyclic k—list colorable if G is acyclic
L—colorable for every k—Ulist assignment L such that 2|L(V)| < |V].

Proof. We show the hypothesis of Lemma 2.3 holds. Let L be a k—list
assignment for V and let X be a maximal non-empty subset of V such
that 2JL(X)| < |X|. We construct a new list assignment L’(V') such that
L'(z) = L(z) for each x € X. Choose an arbitrary vertex u € X, for each
vertex v ¢ X, let L’(v) = L(u). Note that 2|L/(V)| = 2|L(X)| < | X| £ |V,
by hypothesis G is acyclic L' —colorable. So G[X] is acyclic L’| x —colorable,
and hence G|X] is acyclic L|x —colorable. The lemma follows from Lemma
2.3. a

3 Main results

Theorem 3.1. Let G = (V, E) be a graph with G = Ty +To+...+Ti+...+ ...
IfIT;| =3 (i =1,2,...n), then p(G) = pi(G) = n.

Proof. We induct on n. The case n = 1 is easy. By Lemma 2.4 we
may assume that 2|L(V)| < |V| = 3n, then each three vertices of T; has
a color in common. If this is not true, each color in L(T;) appears in the
lists of at most 2 vertices of T;, and hence 2|L(V)| > 2|L(T;)] > 3n, a
contradiction. Then we can use this common color on three vertices and
proceed by induction. O

We use the notation Ky, to denote a complete n—partite graph in
which each part has 2 vertices. Analogously, the notation K,,(1)2(n-1) to
denote a complete n—partite graph, in which one part has m vertices and
n — 1 parts have 2 vertices.

Corollary 3.2. [10] pi(K2ny) = p(K2(n))-
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Proof. Since [%"] = p(K3(n)) < pi(Ka(n)), it suffices to show that py(Ky(n)) <
[27"] The graph Kj(n) is the subgraph of G =Ty + T3 + ... + Tjapy, where
1Tl = |T2| = ... =|Tjzp1-1] =3, |Tjzpy| < 3, s0 pi(Kamy) < pi(G) = [3]

]

Lemma 3.3. Let H be a graph with H=T1+1T2+ ...+ T; + ...+ T,, and
T = {z}, T = {us,vi,w; }(2 < i < n). Suppose that L is a list assignment
of H satisfying that

(DIL(=z)] = n;

(2)IL(w;)| = |L(w:)| 2 n—1,|L(wi)| 2 n fori=2,3,...,n;

(3)L(w;) N L(v;) N L(w;) =0 fori=2,3,...,n;

Then H is acyclic L—colorable.

Proof. We shall prove that L satisfy Lemma 2.2. Assume to the contrary
that there exists a subset S C V(H) such that 2|L(S)| < |S|.

Case 1. There exists some T; C S. Since L(u;) N L(v;) N L(w;) = @, then
2|L(T3)| 2 (n = 1) + (n — 1) + n = 3n — 2. From the hypothesis 2|L(S)| <
|S|, hence 3n — 2 < 2|L(T;)] < 2IL(S)| < S| £ 143(n—-1)=3n—-2,a
contradiction.

Case 2. Each T; ¢ S. Sinceeach T; € S, |S| <2(n~1)+1=2n—1. On
the other hand, |L(v)| > n — 1 for any v € V(H), combining the hypothesis,
2(n—1) < 2|L(v)] < 2|L(S)| < |S], that is |S| > 2(n — 1) + 1. Then S must
contain vertex z, hence |S| > 2|L(S)| 2 2|L(z)| = 2n, a contradiction. 0[]

Theorem 3.4. Let G = (V, E) be a graph with G = Ty +Ta+...4+Ti+...4+ T,
Ty = {u1,v1,w1,z}, Ti = {u, v, w; }(2 < i < n), then p(G) = pi(G) = n.

Proof. If any part of size 3 or 4 has a color that appears on all its vertices,
we use that color on these vertices and proceed by induction. So we may
assume that no part of size 3 or 4 has a common color.

By Lemma 2.4 we may assume that 2|L(V')| < |[V| = 3n+ 1, then there
exist three vertices of T} having a common color. If this is not true, each
color in L(T}) appears in the lists of at most 2 vertices of T}, and hence
2|L(V)| > 2|L(T1)| = 4n > 3n + 1(n > 1), a contradiction. So there are
three vertices in T}, call them u;,v; and w;, that share a common color
¢. Use color ¢ on u;,v; and w;. Now for each v € V' \ {u;,v1, w1}, let
L'(v) = L(v) \ c. Because no part of size 3 or 4 has a common color, then
IL'(z)] 2 n, |L'(w)| = |L'(v:)] 2 n—1,|L(wi)| 2 n, by Lemma 3.3, we

conclude the result. O
It is easy to see that p(K3(1),2(n-1)) = [3321 Moreover, Ka(1),2(n~1) is
subgraph of Ty + T3 +... + Tj2py, where [Ty| = 4, [T3| = ... = |Tjzp14] =3,

T < 3. Therefore, the following corollary holds.
3]



Corollary 3.5. pi(K3),2(m-1) = A(K3)2(-1) = [F]-

Let G = (V,E)beagraph with G =Th + o + .. + i + ... + T;,,
Ty = {u1,v1,w1,7,v}, i = {ui,vi,w;}(2 < i < n). We can conclude
p(G) = pi(G) from a similar argument with Theorem 3.4 for n > 4. It
is also trivial to be verified for n < 3. Therefore, we obtain the following
corollary.

Corollary 3.6. Pl(K4(l),2(n—l)) = p(K4(1).2(n_1)) = [%‘]
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