The List Point Arboricity of Some Complete Multi-partite Graphs

Nini Xue * Wei Wang
College of Information Engineering, Tarim University,
Alar, Xinjiang, 843300, P.R.China

Abstract

Let G be a graph. The point arboricity of G, denoted by $\rho(G)$, is the minimum number of colors that can be used to color the vertices of G so that each color class induces an acyclic subgraph of G. The list point arboricity $\rho_l(G)$ is the minimum k so that there is an acyclic L-coloring for any list assignment L of G which $|L(v)| \geq k$. So $\rho(G) \leq \rho_l(G)$. Zhen and Wu conjectured that if $|V(G)| \leq 3\rho(G)$, then $\rho_l(G) = \rho(G)$. Motivated by this, we investigate the list point arboricity of some complete multi-partite graphs of order slightly larger than $3\rho(G)$, and obtain $\rho(K_{m(1),2(n-1)}) = \rho_l(K_{m(1),2(n-1)})$ (m=2,3,4).

Keywords: List point arboricity, Complete multi-partite graphs.

1 Introduction

All graphs considered here are finite, undirected and simple. We refer to [9] for unexplained terminology and notations. We say n graphs $G_1, G_2, ..., G_n$ are vertex disjoint if they have no vertex in common and denote their join by $G_1 + G_2 + ... + G_n$, which is obtained from their union by joining each vertex of G_i to the each vertex of G_j $(i \neq j)$.

The point arboricity of G, denoted by $\rho(G)$, is the minimum number of colors that can be used to color the vertices of G so that each color class induces an acyclic subgraph of G. The notion of list coloring of graphs was introduced by Vizing [8] and independently by Erdös et. al [4]. Borodin et. al [1] defined a similar concept for the point arboricity of a graph. A list assignment of a graph G is a function E defined on E0 such that E1 is the list of colors available for the vertex E2 is the list of colors available for the vertex E3.

^{*}Corresponding author: xuenini19222@163.com

positive integer k, if |L(v)| = k for every vertex $v \in V(G)$, we say L is a k-list assignment of G. For a list assignment L of G, we say c is an L-coloring if $c(v) \in L(v)$ for every vertex $v \in V(G)$. Set $c(L) = \{c(v)|v \in V(G)\}$, that is the set of colors chosen for the vertices of G under c. An L-coloring c is called acyclic if for each color $i \in c(L)$, $G[V_i]$ is acyclic, or is a forest, where V_i is the set of vertices v of G with c(v) = i. In this case, we say G is acyclic L-colorable. If G is acyclic L-colorable for any possible k-list assignment L, G is called acyclic k-list colorable. The list point arboricity of a graph G, denoted by $\rho_l(G)$, is the minimum number k for which G is acyclic k-list colorable.

It is trivial that $\rho(G) \leq \rho_l(G)$. Ohba [5] conjectured that if a graph G has the chromatic number k and at most 2k+1 vertices, then the chromatic number of G coincides with its list chromatic number. Enomoto et.al [3], Shen [7] and Cranston [2] have verified that the conjecture is true for some complete multi-partite graphs. Therefore it is significant to investigate the condition or find some graph classes, in which each graph satisfies $\rho_l(G) = \rho(G)$. Seymour [6] proved that $\rho_l(G) = \rho(G)$ hold if G is the line graph of any graph. Zhen and Wu [10] have the following results.

Theorem 1.1. ([10]) For any graph G, there exists a non-negative integer $n_0 = n_0(G)$ such that $\rho(G + K_n) = \rho_l(G + K_n)$, for any integer n with $n \ge n_0$.

Theorem 1.2. ([10]) If $|V(G)| \le 2\rho(G) + \sqrt{2\rho(G)} - 1$, then $\rho(G) = \rho_l(G)$.

Conjecture 1.3. ([10]) If $|V(G)| \leq 3\rho(G)$, then $\rho(G) = \rho_l(G)$.

We construct a graph $G = T_1 + T_2 + ... + T_i + ... + T_n$, where $T_i(1 \le i \le n)$ is a nontrivial tree. $G = T_1 + T_2 + ... + T_i + ... + T_n$ is an edge maximal graph such that $\rho(G) = n$. If we can prove equation $\rho(G) = \rho_l(G)$ holding for G, then the equation $\rho(G') = \rho_l(G')$ can also hold for the subgraph G' of G with $\rho(G') = n$.

2 Some Lemmas

For a graph G = (V, E) and a subset $X \subseteq V$, let G[X] denote the subgraph of G induced by X. For a list assignment L of G, let $L|_X$ denote L restricted to X, and L(X) denote the union $\bigcup_{u \in X} L(u)$. If A is a set of colors, let $L \setminus A$ denote the list assignment from L by deleting the colors in A from each L(u) with $u \in V(G)$. When A consists a single color a, we write $L \setminus a$.

Lemma 2.1. ([10]) If a graph G is not acyclic L-colorable, then there exists a set $X \subseteq V(G)$ such that 2|L(X)| < |X|.

Clearly, the following lemma can also hold.

Lemma 2.2. Let L be a list assignment for a graph G. If $2|L(X)| \ge |X|$ for every subset $X \subseteq V(G)$, then G is acyclic L-colorable.

Lemma 2.3. Let L be a list assignment for a graph G = (V, E) and let $X \subseteq V(G)$ be a maximal non-empty subset such that 2|L(X)| < |X|. If G[X] is acyclic $L|_{X}$ - colorable, then G is acyclic L-colorable.

Proof. Let X be a maximal subset of V such that $X \neq \emptyset$ and 2|L(X)| < |X|. Let C = L(X). By the maximality of X, every subset $Y \subseteq V \setminus X$ satisfies $2|L(Y) \setminus C| \geq |Y|$. Let $L'(v) = L(v) \setminus C$ for every $v \in V \setminus X$. Note that $G[V \setminus X]$ and L' satisfy Lemma 2.2. Hence $G[V \setminus X]$ is acyclic L'-colorable. By hypothesis, G[X] is acyclic $L|_{X}$ -colorable. Since none of the colors used on X are used on $V \setminus X$, we can combine the two colorings to give an acyclic L-colloring of G.

Lemma 2.4. A graph G = (V, E) is acyclic k-list colorable if G is acyclic L-colorable for every k-list assignment L such that 2|L(V)| < |V|.

Proof. We show the hypothesis of Lemma 2.3 holds. Let L be a k-list assignment for V and let X be a maximal non-empty subset of V such that 2|L(X)| < |X|. We construct a new list assignment L'(V) such that L'(x) = L(x) for each $x \in X$. Choose an arbitrary vertex $u \in X$, for each vertex $u \notin X$, let L'(u) = L(u). Note that $2|L'(V)| = 2|L(X)| < |X| \le |V|$, by hypothesis G is acyclic L'-colorable. So G[X] is acyclic $L'|_{X}$ -colorable, and hence G[X] is acyclic $L|_{X}$ -colorable. The lemma follows from Lemma 2.3.

3 Main results

Theorem 3.1. Let G = (V, E) be a graph with $G = T_1 + T_2 + ... + T_i + ... + T_n$. If $|T_i| = 3$ (i = 1, 2, ...n), then $\rho(G) = \rho_l(G) = n$.

Proof. We induct on n. The case n=1 is easy. By Lemma 2.4 we may assume that 2|L(V)| < |V| = 3n, then each three vertices of T_i has a color in common. If this is not true, each color in $L(T_i)$ appears in the lists of at most 2 vertices of T_i , and hence $2|L(V)| \ge 2|L(T_i)| \ge 3n$, a contradiction. Then we can use this common color on three vertices and proceed by induction.

We use the notation $K_{2(n)}$ to denote a complete n-partite graph in which each part has 2 vertices. Analogously, the notation $K_{m(1),2(n-1)}$ to denote a complete n-partite graph, in which one part has m vertices and n-1 parts have 2 vertices.

Corollary 3.2. [10] $\rho_l(K_{2(n)}) = \rho(K_{2(n)}).$

Proof. Since $\lceil \frac{2n}{3} \rceil = \rho(K_{2(n)}) \leq \rho_l(K_{2(n)})$, it suffices to show that $\rho_l(K_{2(n)}) \leq \lceil \frac{2n}{3} \rceil$. The graph $K_{2(n)}$ is the subgraph of $G = T_1 + T_2 + ... + T_{\lceil \frac{2n}{3} \rceil}$, where $|T_1| = |T_2| = ... = |T_{\lceil \frac{2n}{3} \rceil - 1}| = 3$, $|T_{\lceil \frac{2n}{3} \rceil}| \leq 3$, so $\rho_l(K_{2(n)}) \leq \rho_l(G) = \lceil \frac{2n}{3} \rceil$.

Lemma 3.3. Let H be a graph with $H = T_1 + T_2 + ... + T_i + ... + T_n$ and $T_1 = \{x\}$, $T_i = \{u_i, v_i, w_i\} (2 \le i \le n)$. Suppose that L is a list assignment of H satisfying that

- $(1)|L(x)| \geq n;$
- $|L(u_i)| = |L(v_i)| \ge n 1, |L(w_i)| \ge n \text{ for } i = 2, 3, ..., n;$
- $(3)L(u_i)\cap L(v_i)\cap L(w_i)=\emptyset \text{ for } i=2,3,...,n;$

Then H is acyclic L-colorable.

Proof. We shall prove that L satisfy Lemma 2.2. Assume to the contrary that there exists a subset $S \subseteq V(H)$ such that 2|L(S)| < |S|.

Case 1. There exists some $T_i \subseteq S$. Since $L(u_i) \cap L(v_i) \cap L(w_i) = \emptyset$, then $2|L(T_i)| \ge (n-1) + (n-1) + n = 3n-2$. From the hypothesis 2|L(S)| < |S|, hence $3n-2 \le 2|L(T_i)| \le 2|L(S)| < |S| \le 1 + 3(n-1) = 3n-2$, a contradiction.

Case 2. Each $T_i \nsubseteq S$. Since each $T_i \nsubseteq S$, $|S| \le 2(n-1)+1=2n-1$. On the other hand, $|L(v)| \ge n-1$ for any $v \in V(H)$, combining the hypothesis, $2(n-1) \le 2|L(v)| \le 2|L(S)| < |S|$, that is $|S| \ge 2(n-1)+1$. Then S must contain vertex x, hence $|S| > 2|L(S)| \ge 2|L(x)| = 2n$, a contradiction. \square

Theorem 3.4. Let G = (V, E) be a graph with $G = T_1 + T_2 + ... + T_i + ... + T_n$, $T_1 = \{u_1, v_1, w_1, x\}$, $T_i = \{u_i, v_i, w_i\} (2 \le i \le n)$, then $\rho(G) = \rho_l(G) = n$.

Proof. If any part of size 3 or 4 has a color that appears on all its vertices, we use that color on these vertices and proceed by induction. So we may assume that no part of size 3 or 4 has a common color.

By Lemma 2.4 we may assume that 2|L(V)| < |V| = 3n+1, then there exist three vertices of T_1 having a common color. If this is not true, each color in $L(T_1)$ appears in the lists of at most 2 vertices of T_1 , and hence $2|L(V)| \geq 2|L(T_1)| \geq 4n > 3n+1(n>1)$, a contradiction. So there are three vertices in T_1 , call them u_1, v_1 and w_1 , that share a common color c. Use color c on u_1, v_1 and w_1 . Now for each $v \in V \setminus \{u_1, v_1, w_1\}$, let $L'(v) = L(v) \setminus c$. Because no part of size 3 or 4 has a common color, then $|L'(x)| \geq n$, $|L'(u_i)| = |L'(v_i)| \geq n-1$, $|L'(w_i)| \geq n$, by Lemma 3.3, we conclude the result.

It is easy to see that $\rho(K_{3(1),2(n-1)}) = \lceil \frac{2n}{3} \rceil$. Moreover, $K_{3(1),2(n-1)}$ is subgraph of $T_1 + T_2 + ... + T_{\lceil \frac{2n}{3} \rceil}$, where $|T_1| = 4$, $|T_2| = ... = |T_{\lceil \frac{2n}{3} \rceil - 1}| = 3$, $|T_{\lceil \frac{2n}{3} \rceil}| \leq 3$. Therefore, the following corollary holds.

Corollary 3.5. $\rho_l(K_{3(1),2(n-1)}) = \rho(K_{3(1),2(n-1)}) = \lceil \frac{2n}{3} \rceil$.

Let G=(V,E) be a graph with $G=T_1+T_2+...+T_i+...+T_n$, $T_1=\{u_1,v_1,w_1,x,y\},\ T_i=\{u_i,v_i,w_i\}(2\leq i\leq n)$. We can conclude $\rho(G)=\rho_l(G)$ from a similar argument with Theorem 3.4 for $n\geq 4$. It is also trivial to be verified for $n\leq 3$. Therefore, we obtain the following corollary.

Corollary 3.6. $\rho_l(K_{4(1),2(n-1)}) = \rho(K_{4(1),2(n-1)}) = \lceil \frac{2n}{3} \rceil$.

Acknowledgement

The authors are much indebted to the referee for his/her valuable suggestions and corrections that improved the initial version of this paper.

References

- O.V. Borodin, A.V. Kostochka, B. Toft, Variable degeneracy: extensions of Brooks' and Gallai's theorems, Discrete Math. 214 (2000): 101-112.
- [2] D.W. Cranston, Ohba's conjecture is true for graphs with independence number 3, http://citeseerx.ist.psu.edu.
- [3] H. Enomoto, K. Ohba, K. Ota, J. Sakamoto, Choice number of some complete multi-partite graphs, Discrete Math. 244 (2002): 55-66.
- [4] P. Erdös, A.L. Rubin, H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979): 125-157.
- [5] K. Ohba, On chromatic-choosable graphs, J. Graph Theory 40 (2002): 130-135.
- [6] P.D. Seymour, A note on list arboricity, J. Combin. Theory Ser.B 72 (1998): 150-151.
- [7] Y.F. Shen, W.J. He, G.P. Zheng, Ohba's conjecture and graphs with independence number at most three, Appl. Math. Lett. 22 (2009): 938-942.
- [8] V.G. Ving, Coloring the vertices of a graph in prescribed colors, Diskret. Anal. 29 (1976): 3-10.
- [9] D.B. West, Introduction to Graph Theory, second edition, Prentice-Hall, Upper Saddle River, NJ, 2001.

[10] L.Y. Zhen, B. Wu, List point arboricity of dense graphs, Graph Combinator. 25 (2009): 123-128.