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Abstract

A theta graph is denoted by 8(a,b,c),a < b < c. It is obtained
by subdividing the edges of the multigraph consisting of 3 parallel
edges a times, b times and c¢ times each. In this paper, we show that
the theta graph is matching unique when a > 2 or a = 0, and all
theta graphs are matching equivalent when only one of the edges is
subdivided one time. We also completely characterize the relation
between the largest matching root A and the length of path a, b, ¢ of
a theta graph, and determine the extremal theta graphs.
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1 Introduction

Let G be a simple graph, V(G) and E(G) be its vertex set and edge set,
respectively. Let m(G, k) denote the number of k—element matching of G.
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For convenience, we set m(G,0) = 1. In addition, m(G,1) = |E(G)| is the
number of edges. In [3], E. J. Farrell defines the matching polynomial as

n/2

Mg(z) = (-1)*m(G, k)z"~%*. (1)
k>0

The matching polynomial was defined formally in the framework of the
theory of monomer-dimer systems (see in [2]). If Mg(z) = My(x), then
we say G and H are comatching graphs. A graph G is said to be matching
unique if it has no comatching graphs. So far, only a few classes of matching
unique graph have been shown to be matching unique. In [9], Beezer and
Farrell have shown some classes of matching unique graphs.

Let P,,C, be the path and cycle of length n. D(s,t) be the graph is
obtained by joining a one degree vertex of P, to a two degree vertex of Cs.
T: j.x be the graph that is obtained by coinciding three one degree vertices
of P;,P;,P.. A theta graph denoted by 8(a,b,c),a < b < c is obtained
by subdividing each edge of the multigraph consisting of 3 parallel edges
a times, b times and c times. D(a,b,c) be the graph that is obtained by
connecting two cycles C, and C, by a path P,. In this paper, we show
that the theta graph is matching unique when ¢ > 2 or @ = 0, an all
theta graphs are matching equivalent when only one of edges is subdivided
one time. We also study the largest root of matching polynomial of theta
graphs, and determine the extremal graphs with respect to the largest
matching root.

2 Basic lemmas

In general, calculate the matching polynomial of an outerplanar graph
can be determined in polynomial time, but for general graphs it is NP-
complete. The following Lemmas 2.1, 2.2 and 2.3 are quite helpful to
calculate the matching polynomial of a graph.

Lemma 2.1 [3]/8] If G1,Ga,...,G are the components of G, then

i=k
Mg(z) = [] Ma.(2)-
=1

Lemma 2.2 [3/[8] Suppose n,r € z*, then
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1. Mp" (:L‘) = r;o(_l)r ("‘:")xn—Zr’.

2 Mo, () = T (1) 2 (7).
r>0

Lemma 2.3 [4] Let G be a graph and suppose uwv € E(G). Then

1. Mc(z) = Mg_wo(z) — Mg—(u,v}();

2. Mg_y(z) =zMg_u(z)— 3 MG_{uu_)(:L‘).
u;ENg(u)

The following Lemmas 2.4, 2.5 and 2.6 give some properties of the coef-
ficients of matching polynomial, and it is very important for characterizing
the comatching graphs.

Lemma 2.4 [10] Let (d,ds, .. .,ds) be the degree sequence of G, and (d,+
ti,dy +t2,...,d, +t,) be the degree sequence of H. If Mg(z) = Mu(z),
then the following equations hold.

1. t; are integral numbers;

2. zt,’ = 0,'
i

3. f:(t? +2d;t;) = 0.

i=]

Lemma 2.5 [11] Let ag,a1,az,a3 be the first four coefficients of Mg(x).
Then

1. ag=1;

2. |ai| = m, the number of edges;
3 —_ [(m 2 d.‘ .

a= (D)~ 5 ()

boas=(P)-m-2) 3 (4423 (§)+ (di=1)(d;=1)-1(B),

ij€1,2,...,n
where t(4) is the number of triangle of G.
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Lemma 2.6 Let Mp (x) be the matching polynomial of P,. Then
Mp,(2)=n+1.

Proof. We apply induction on the number of vertices. For a path on

small number of vertices, we can easily check it. We only prove a path on

large number of vertices. Suppose that result is correct for P; and P, that

is Mp,(2) = s+1 and Mp,(2) =t + 1. Let us calculate P, ;(2). Form the
basic Lemma 2.4, we have

Mp,,.(z) = Mp,(z)Mp,(z) — Mp,_,(z)MPp,_, ().
By our assumption
Mp,,,(2) = Mp,(2)Mp,(2) — Mp,_,(2)Mp,_, (2)

=(s+1)(t+1)—st=s+t+1.

Hence Lemma 2.6 is proved.

Similarly, we have an interesting result for cycles.

Lemma 2.7 Let Mc, (z) be the matching polynomial of C,. Then
Mc,(2)=2.
Lemma 2.8 Let G and H are simple graphs. Mg(z) and My (x) are the
matching polynomial of G and H. If Mg(z) < My(z) for any z > X(G),
then M(G) > A(H).
Proof. Since My(z) — Mg(z) > 0, when z > A(G), so
Mpu(MG)) — Mc(MG)) >0,

that is
My(M@G)) > 0.

Hence
A(G) > MH).
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3 Main results

In this section, we show the matching uniqueness and matching equiva-
lence of theta graphs, and study the largest root of the matching polynomial
of theta graphs.

Py
< P, > Ca P, c.
....................... v : R
P, T
P(a, b, C) D(a, b) C)

Fig. 1. Two type of graphs

3.1 The matching polynomial of 8(a,b,c) and D(a,b,c)

For the sake of simplicity and symbol convenience, in this
section, we denote the matching polynomial Mp (A) by P.. For
convenience, let P_y = -1,P_; =0,F = 1,P, = z. By Lemma 2.1 and
Lemma 2.3, the matching polynomial of 8(a, b, ¢) is

Moo p,c)(A) = NPy PyP; — 2A(Pac1 PoP. + Po Py P. + P, PyP._,)
+(Po—2PoPe+ Pa_1Poi Pe 4+ Po | PyPey)
H(Poc1Py—1Pe+ PoPo 2P + Pa Py Pey)
+(Pac1PoPey + PoPy_ Py + P PP, )

and by Lemma 2.6, the valueon A =2 is
M9(a,b.c)(2) = 4((1 + 1)(b + 1)(0 + 1)
—4la(b+1)(c+ 1)+ (a+1)b(c+ 1) + (a + 1)(b+ 1)
+[(a —1)}(b+ 1)(c+ 1)+ ablc+ 1) + a(b+1)c]
+[able+ 1)+ (a + 1)(b—1)(c+ 1) + (a + 1)bc]
+la(b+1)e+(a+1)be+(a+1)(b+1)(c—1)] = 1—a—b—c—ab—bec—ac—abe.

As in {13}, when G is a forest the matching polynomial and the characteris-
tic polynomial are same, so by Lemma 2.4, we have a recurrence expression
of the matching polynomial of a P,

P.=AP,_, — P, .
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By solving this recurrence equation, we have:
22, ()

where z satisfies the equation 2 — Az + 1 = 0. Hence

Ma(a,b,c) (A)xa+b+c(x6 _ 31.4 + 3:2.'2 _ 1) — x2a+2b+2c+8 _ 6x2a+2b+2c+6
+9x2a+2b+2c+4 _ 4z2a+2c+2 - 4x2b+2c+2 _ 4x2a+2b+2 + $2a+4 + x2b+4

+x2c+4 + 2x20+2 + 2$2b+2 + 2x2c+2 + xza + :L'Zb + m2c _ 10:82. (3)

Similarly, we have matching polynomial of D(a,b,c). From Lemma 2.1
and Lemma 2.3,

Mp(a,c)(A) = (APacy — 2Pa_2)(APoPeey — Poo1Peoy — 2PsPe_)
—Pa1(APy—1Pecy — 2Py 1 Po—p — Pp—2Fe).
From Lemma 2.6,
D(a,b, ¢)(2) = 2(b-+1)e— be— 2(b+1)(c— 1) — a(2be — 2b(c— 1) — (b— 1)c)
=2 4 2b — 2ab — bc — ac + abe.
D(a,b,c)(\)ze+b+e(z — 3z + 3% — 1) = g2a+2b+2c+6

_6z2a+2b+2c+4 + gx2a+2b+2c+2 - x2b+2c+8 _ x2a+25+8 + 2x2a+2b+6
+$2b+6 _ 3x2a+2b+2 _ 31‘26+2c+2 _ 4x20+2c

+4x2a+2 + 4$2c+2 + 2z2b+4 + x2b+2 _ 21.4’ (4)

where z satisfies the equation z2 — Az +1 =0.

3.2 The possible matching equivalent graphs

P; F;
......... By L
P Py

H, 2

Fig. 2. Two graphs in Theorem 3.1

Theorem 3.1 If graph H is matching equivalent to a theta graph 6(a,b,c),
then H must be a theta graph or the graph D(a,b,c) (see in Fig.1).
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Proof. For convenience, let n = a+b+c+2, and H be matching equivalent
to G, with a degree sequence D(H) = (d; +t3,d3 +ta,...,d, +t,). Then
by Lemma 2.4, we have

n+4-2
> =0, (5)
i=1
and
n+2
D ot —2dit;) =o0. (6)
i=1
From Equation (4), we have
n+2
Z t? -4 th —6tp41 — 6ty =0. (7)
i=1
From the Equation (3), we have ) t; = ~tn4+1 — tn4+2 and substitute it
=1

into (7), we have

n+2
Zt - 2tn+1 2tn+2 = zt + tn+1 + tn+2 2tn+1 —2pyo = 0, (8)

i=1 i=1

n
set 7 = Y 2 + (tn41 — 1)2 > 0 and substitute it into (5), we have
i=1
t2,0 = Unp2+r—1=0. 9)

By solving this equation, we have t,42 = 1++/2 —r, for all t; are integers,
sor=1,2 and t,,;5 =0,1,2. We discuss in different cases.
case 1: If t, 42 =0, then from (6), we have

D 4l 2ns =0 (10)
i=1
case 2: If ¢, =1, form (6), we have
n
S B +t2, —2p—1=0. (11)
i=1
case 3: If t,,,2 = 2, then from (6), we have

S 4k, -2 =0. (12)
i=1

483



By applying the same discussion on the equations (8)-(10), finally we have
the possible degree sequences of H are:

D, = (dy,...,dn,3,3),di =2,0<i<n;
Dy = (dy,...,dn,5,3),di =2,0 < i< n;
D3 = (dy,...,di-1,di £1,diy1,...,dn,4,3),di =2,0< i< n;
Dy = (dy,...,di-1,di £1,diy1,...,dn,3,4),di =2,0<i < m;
Ds = (dy,...,di-1,di £1,di1,...,ds,5,4),di =2,0< i < m;
Dg =(dy,...,di—1,di £ 1,dit1,...,d; £1,...,dn,4,4),di =2,0 <i <
Dy =(dy,...,di—1,di £1,diy1,...,dn,4,5),di =2,0<i <m;
Dg = (dy,...,dn,5,5),di =2,0<i<n;
Dy = (dy,...,dn,3,5),di =2,0<i<n,

n+2
in above cases we need )_ t; = 0, and the degree sequence of 0(a,b,c) is
=1
D =(2,2,...,2,3,3), so Dy, Ds, D7, Dg, Dy are impossible to be a degree
sequence of a comatching graph of 8(a,b,c). The possible cases are
D1=(2,2,...,2,3,3); D2 =(2,...,2,1,2,...,2,4,3);
D3=(2,2,...,2,1,2,...,2,1,2,...,2,4,4),
these graphs are Hj, Hs in Fig.2 and D(a,b,c¢) in Fig.1.
By the Lemma 2.5 the number of edges of G is a + b+ ¢+ 3, and the
number of edges of H is a’ + ' + ¢/ + 3. If H is a comatching graph of G,

thena+b+c+3=a +b++3=n+2.
For graph H,, we have

a+btc+3)  Ed o+ +c +3) , & d,
()2 (3= )2 6G)
n+6=n—-1+3+86.

It is a contradiction.
For graph H», we have

a+bte+3)  Id o+ +c +3\ T2 /d,

()2 ()= 6)
i=1 i=1
n+6=n-2+6+6.

It is a contradiction. So the only comatching graphs of 6(a, b, c) are theta
graphs 8(a’, V', ') and D(a,b,c).



3.3 No 0(a,b,c) are matching equivalent when a > 2

In this section, we characterize the matching equivalent and matching
unique theta graphs.

Theorem 3.2 If 2 < a < b < ¢, then the graph 6(a,b,c) is matching
unique.

Proof. It is obvious that 8(a, b, c) and D(a’, V', ¢’} are not matching equiv-
alent. Since from each matching polynomial (3) and (4), we find the coef-
ficients of the lowest exponent of = are different.

Now, we prove that two non-isomorphic theta graphs are not matching
equivalent when a > 2.

Suppose that G = #(a,b,c) and H = 8(a’,b’,¢') are matching equiva-
lent. For convenience, let a < b < cand o’ <¥ < ¢'. Since G and H have
the same number of vertices, we have

a+b+c=ad +b +¢,
and from Lemma 2.6, we have:
l—-a—~b—c—ab—ac—bc—abc=1-a' -V - —a'b' —a'c' - b'c' —a'b'c.

That is:
ab+ac +bc+abc = a'b’' +a'd +b'd +a't'c. (13)

From (3), we have
Mo(a 5) (/\)xa+b+°(:t6 _ 31.4 + 3:1.‘2 _ 1) = m2a+2b+2c+8 . 6z2a+2b+2c+6
+gx20+2b+2c+4 — 4x20+2c+2 _ 4x2b+2c+2 _ 4z2a+2b+2 + p2ot+d + $2b+4
fx2etd  Qp20+2 4 9p2642  9g2042 4 p2a 4 426 4 g2¢ 1022, (14)
and
M0(a’,b’,c’)(A)$a,+bl+CI (.'1:6 — 324 + 372 — 1) = x2a'+2b’+2c’+8
—pg2a’ +2b'+2c'+6 + 9x2a'+2b'+2c'+4 — 4p20’+2c+2 _ 41.2b’+2c'+2
—4p2a’+2b 42 + 20’ +4 + xzb’+4 + 22¢'+4 + 2x2a'+2
+2326'+2 4 9p2¢'+2 | g2a" 4 g2 4 g2¢" _ 102, (15)
(14)-(15), we have
(Mo(a,5.6)(X) = Mogarr,en(\)a*+*+(a® - 324 + 322 — 1) =
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4($2a'+2c’+2 _ w2c+2c+2) + 4($2b’+2c"+2 _ x2b+2c+2) +4( z2a'+2b’+2 _ :L‘2°+2b+2)
+(x2a+4 _ x2a'+4) + (I2b+4 _ xab’+4) + ($2°+4 _ $2°'+4) + 2(x2a+2 _ $2°,+2)
+2(x2b+2_x2b'+2)+2(1,2c+2_x2c'+2)+(x2a_z2a')+(22b_x2b')+(x2c_$2c')‘

If 6(a, b, c) and 8(a’, b'c’) are matching equivalent, then the above equation
is equal to 0. Hence in the above equation we only need to show a = a’,b =
b.

The smallest exponent of = in above equation is 2a or 2a 4+ 2. We have
the following cases:(1)2a = 2a/, (2)2e = 2a’ + 2, (3)2a + 2 = 2a'.
case 1: If 2< a=a’, then b+c= b +¢. From (13), we have

al(b+c) — (¥ + )]+ (a+1)(bc — b'c'y = (a + 1) (be - b'c') = 0.

Hence be = b'¢/, and with b = b’ 4+ ¢’ — ¢, we have (V' + ¢ —¢)c = b'c/,
c(c' —c)=¥(c —c). We have b =c.

If o’ = 1, then the coefficient of lowest exponent of z in (14) is -10 and in
the (15) is -9, so 8(a, b,c) can not comatching with 6(a’, ¥, ).

case 2: If2<a=a'+1,then b+c= b +¢ — 1. The second highest
exponent term in (15) is —4z%/+2¢+2 = _4g2(+)+4 while the second
highest exponent in (14) is —422>+2¢+2, It is impossible since two matching
polynomial should be equal. The last case is the same as Case 2.

3.4 The matching equivalent of 4(1,b,c)

Fig. 3. 6(1,b,¢)

Theorem 3.3 For theta graphs if b+c=r + s, then 8(1,b,c) comatiching
with 6(1,r, s), where a or b can be 0 but not both.

Proof. For 6(1,b,c) we take an edge e as Fig. 3 show, and by Lemma 2.3

Mo(1,5,¢)(%) = MDp@+et2,1)(T) — MPyyca (%),
for any 6(1,r, s) the matching polynomial is

Mﬂ(l,r.S)(x) = MD(1'+8+2,1)($) - MPr+u+l (:1:)
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Ifb+c=r7+s,then D(b+c+2,1) 2 D(r+s+2,1) and Pojet1 = Prystr-
Hence theorem holds.

3.5 The largest matching root of matching polynomial
of theta graphs

In this section, we study the largest matching root of theta graphs.
Theorem 3.4 For a theta graph 6(a,b,c),0<a<b<ec,n=a+b+c+2.

1. Ifa =0, then X is a decreasing function on |b— c|;
2. Ifa = 1, then the largest of matching root of all theta graphs are equal;

3. Ifa > 2 Then X is an increasing function in |b — c|.

Proof. (1) If a =0, then
(Mp0,6-1,c41)(A) — Mp(0,6,0) (/\))ch(xz -1)= (332c+2 +$%_2) - (5t2c +x2b)
= 2222 — 1) — 22=2(22 — 1) = (2? — 1)(2% — 22072),
Since £ > 2,b < ¢, then
(Mo(,6-1,c+1)(A) — Mpop.c)(N)zb+e = (2% — 222) > 0.

By Lemma 2.8, we have A(6(0,b,¢)) > A(8(0,b —1,c + 1)).
(2) It is obvious by Theorem 3.3.
(3) If a > 2, then
(Mp(a,b,c)(A) — Mp(a,p—1,c41)(N)2*Fo7¢(2? — 1) = —dg2et2et?

—4132°+2b+2 +$2b+4 + 2'.2c+4 + 2x2b+2 + 2x2c+2 + IL‘2b + 2
+4x2a+2c+4 + 4x20+2b _ x2b+2 — g2c+6 _ 2x2b — 2x2c+4 _ x2b—2

—$2°+2
= 4x20+2(x2c - x2b—2) _ (2:2"' _ $26—2)($2 _ 1)2
= (I2c _ x2b—2)[4x2a+2 - (:1:2 _ 1)2]’ (16)

When z > 2,b > 2 the above Equation (16)
(Mop(a,b,c)(A) — Moa,p—1,c41)(A)) > 0.
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Hence by Lemma 2.8
Amaz(0(a,b,¢)) < Amaz(0(a,b—1,c+1)).

Corollary 3.5 For 8(a,b,c), when 2 < a < b < ¢ and a,b,c are almost
equal 8(a,b,c) has the minimal matching root; when a = 0 and b,c are
almost equal 6(0,b,c) has the largest matching root.

Proof.

(Mp(2,2,n-6)(A) — Mp(2,1,n-5)(N))z" (22 — 1)* =
_4x2n—6 - 4m2n—6 _ 49210 + z8 + :L.B + x2n—8 + 22.6 + 246 + 2:1:2"_10

+224 + (84 + x2n—12 + 42:211—4 + 43:2”—6 + 4:38 — x8 _ 1.'6 _ x2n—-6

—2.'1:6 - 22:4 _ 2x2n—8 — :B4 — 3:2 - x2n-10
= 4z27—6(z2 — 1) — 42%(2? — 1) + (2% — 1) — 2®"~8(2? — 1)
+2z4(22 — 1) — 2227~ 10(22 — 1) + 2%(2? — 1) — 2" 12(22 - 1)
— (42275 — 4z 4 26 _ 2278 4 94 — 2g%n10 4 52 _ g20-12)

(z2-1)
= (22712 — z?)(42? + 322 + 1) (2% — 1)2. (17)
When n > 6,
(Mp(2,2.n-6)(X) — Ma(2,1,n-5)(A))z"~2(? — 1)

= (212 — z?)(4z* + 32% +1) > 0.

Hence from Lemma 2.8, we have:
AO(2,5,n—4—1)) <... < A0(2,2,n —6)) < A(0(1,2,n - 5))
= A6(1,i,n—i-3))(i > 3).

(Mo(2,0,n—1)(N) — Mo2,1,n—5)(N)z"%(a? — 1)% = —4a?"~2 — 4z?"~F
—4a8 + 28 + % + 220t + 225 + 222 + 2026 4 2t 4 20 4 2278
+4g2n—4 4 47276 4 4g8 _ 28 — g8 — o216 _ 240 _ 94 — g8

gt _ g2 _ g2n—10
= —4z?~4(22 — 1) + 425(22 — 1) — z*(2? - 1) + 22" ~8(2? - 1)
—9g2(z? — 1) + 22278(a? = 1) — (2% — 1) + 22" 10(z% — 1)
= (=422 4 428 — 2% 4 2?78 — 272 + 2z "8 — 1 4 £?710)
(z2-1)
= (—z?"~10 4 1)(42* + 322 + 1)(z? - 1)? (18)
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When n > 5, we have:
(Mp(2,0,n—12)(A) — Mo(2,1,n—5)(N))z"~2(2® — 1)
= (2?19 + 1)(4z? +32% + 1) < 0.

Hence from Lemma 2.8, we have:

A(6(1,2,n — 5)) < A(8(0,2,n — 4)),

(A(B(2,3,n — i —4))(i > 3) < A(0(2,2,n - 4)) < A(6(1,2,n — 5)) =
A(0(1,i,n ~3 —14))(i > 3) =0(0,1,n — 3) < A(6(0,i,n — 2 —9))(i > 2)
< ’\(0(0) Z,J))('L +j=n-2, Il - JI < l)‘
From above argument, when 2 < a < b < ¢ and a,b,c are almost equal

6(a,b,c) has the minimal matching root; when a = 0 and b, ¢ are almost
equal, 6(0, b, ¢) has the largest matching root.

Corollary 3.6 The theta graph 6(0,b,¢),0 < b < ¢ are matching unique.

Proof. By the argument in the subsection 3.1, the matching polynomi-
als of two graphs My(o,c)(%) # Mp(a',pr,y(z). Then the only possible
comatching graphs of 8(0,b,c) are 8(a’,b’,c’), where b+c = o’ + b +¢.
By the Theorem 3.4 and Corollary 3.5, any change of the length of the
paths F,, P, and P, will change the largest matching root of theta graphs
so 8(0, b, c) are matching unique graphs.
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