A FAMILY OF CHROMATICALLY UNIQUE K_4 -HOMEOMORPHS

YAN-LING PENG

Department of Mathematics, The University of Idaho, Moscow, ID 83844, USA Department of Mathematics, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China

Abstract: We discuss the chromaticity of one family of K_4 -homeomorphs which has girth 7 and has exactly 1 path of length 1, and give a sufficient and necessary condition for the graphs in the family to be chromatically unique.

keywords: Chromatic polynomial, K_4 -homeomorph, Chromatic Uniqueness

1. Introduction

In this paper, we consider graphs which are simple. For such a graph G, let $P(G; \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent, denoted by $G \sim H$, if $P(G; \lambda) = P(H; \lambda)$. A graph G is chromatically unique if for any graph H such that $H \sim G$, we have $H \cong G$, i.e., H is isomorphic to G.

A K_4 -homeomorph is a subdivision of the complete graph K_4 . Such a homeomorph is denoted by $K_4(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ if the six edges of K_4 are replaced by the six paths of length $\alpha, \beta, \gamma, \delta, \varepsilon, \eta$, respectively, as shown in Fig.1.

So far, the study of the chromaticity of K_4 -homeomorphs with at least 2 paths of length 1 has been fulfiled(see[2],[4],[5],[12]). And the study of the chromaticity of K_4 -homeomorphs which have girth 3,4,5 or 6 has been fulfiled. When referring to the chromaticity of K_4 -homeomorphs which has girth 7, we showed before that only three types of K_4 -homeomorphs, $K_4(1,2,4,\delta,\varepsilon,\eta),K_4(3,2,2,\delta,\varepsilon,\eta),K_4(1,3,3,\delta,\varepsilon,\eta)$ need to be solved. The type of $K_4(1,3,3,\delta,\varepsilon,\eta)$ was already solved([8]). In order to complete the study of the chromaticity of K_4 -homeomorphs with girth 7,in this paper, we study another type $K_4(3,2,2,\delta,\varepsilon,\eta)$ (as Fig.2).

Project Supported by the National Natural Science Foundation of China (10671090).

Fig.1 $K_4(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$

Fig.2 $K_4(3,2,2,\delta,\varepsilon,\eta)$

2. Auxiliary results

In this section we cite some known results used in the sequel.

Proposition 1. Let G and H are chromatically equivalent. Then

(1) |V(G)| = |V(H)|, |E(G)| = |E(H)| (see [3]);

the graphs G and H coincide (see [10]).

(2) G and H have the same girth and same number of cycles with the length equal to their girth(see [11]);

(3) If G is a K_4 -homeomorph, then H is a K_4 -homeomorph as well(see [1]); (4) If G and H are homeomorphic to K_4 , then both the minimum values of parameters and the number of parameters equal to this minimum value of

Proposition 2 (Ren[9]). Let $G = K_4(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ (see Fig.1) when exactly three of $\alpha, \beta, \gamma, \delta, \varepsilon, \eta$ are the same. Then G is not chromatically unique if and only if G is isomorphic to $K_4(s, s, s - 2, 1, 2, s)$ or $K_4(s, s - 2, s, 2s - 2, 1, s)$ or $K_4(t, t, 1, 2t, t + 2, t)$ or $K_4(t, t, 1, 2t, t - 1, t)$ or $K_4(t, t + 1, t, 2t + 1, 1, t)$ or $K_4(1, t, 1, t + 1, 3, 1)$ or $K_4(1, 1, t, 2, t + 2, 1)$, where $s \geq 3$, $t \geq 2$.

Proposition 3 (Peng[7]). Let K_4 -homeomorphs $K_4(1,3,3,\delta,\varepsilon,\eta)$ and $K_4(3,2,2,\delta',\varepsilon',\eta')$ be chromatically equivalent, then $K_4(1,3,3,\delta,\varepsilon,\eta)$ is isomorphic to $K_4(3,2,2,\delta',\varepsilon',\eta')$.

Proposition 4 (Peng[6]). Let K_4 -homeomorphs $K_4(3,2,2,\delta,\varepsilon,\eta)$ and $K_4(3,2,2,\delta',\varepsilon',\eta')$ be chromatically equivalent, then $K_4(3,2,2,\delta,\varepsilon,\eta)$ is isomorphic to $K_4(3,2,2,\delta',\varepsilon',\eta')$.

3. Main results

Lemma. If $G \cong K_4(3,2,2,\delta,\varepsilon,\eta)$ and $H \cong K_4(1,2,4,\delta',\varepsilon',\eta')$, then we have

(1)
$$P(G) = (-1)^{n+1} [r/(r-1)^2] [-r^2 - r^3 - r^4 - r^{n+1} + 2 + Q(G)]$$
, where

$$Q(G) = -2r^{3} - r^{\delta} - r^{\epsilon} - r^{\eta} - r^{\delta+1} - r^{\epsilon+1} - r^{\eta+1} + 3r + r^{\epsilon+2} + r^{\eta+2} + r^{\delta+3} + r^{\delta+4} + r^{\epsilon+5} + r^{\eta+5} + r^{\delta+\epsilon+\eta}$$

where $r = 1 - \lambda$, n is the number of vertices of G.

(2)
$$P(H) = (-1)^{m+1} [r/(r-1)^2] [-r^2 - r^3 - r^4 - r^{m+1} + 2 + Q(H)]$$
, where

$$Q(H) = -r^{5} - r^{\delta'} - r^{\epsilon'} - r^{\eta'} - r^{\epsilon'+1} - r^{\eta'+1} + 2r + r^{\eta'+2} + r^{\epsilon'+3} + r^{\epsilon'+4} + r^{\eta'+5} + r^{\delta'+6} + r^{\delta'+\epsilon'+\eta'}$$

where $r = 1 - \lambda$, m is the number of vertices of H.

(3) If
$$P(G) = P(H)$$
, then $Q(G) = Q(H)$.

Proof(1). Let $r = 1 - \lambda$. From [10], we have the chromatic polynomial of K_4 -homeomorph $K_4(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ as follows

$$P(K_4(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)) = (-1)^{n+1} [r/(r-1)^2] [(r^2 + 3r + 2) - (r+1)$$

$$(r^{\alpha} + r^{\beta} + r^{\gamma} + r^{\delta} + r^{\varepsilon} + r^{\eta}) + (r^{\alpha+\delta} + r^{\beta+\eta} + r^{\gamma+\varepsilon} + r^{\alpha+\beta+\varepsilon} + r^{\beta+\delta+\gamma} + r^{\alpha+\gamma+\eta} + r^{\delta+\varepsilon+\eta} - r^{n+1})]$$

Then

$$\begin{split} P(G) &= P(K_4(3,2,2,\delta,\varepsilon,\eta)) \\ &= (-1)^{n+1} [r/(r-1)^2] [(r^2+3r+2)-(r+1)(r^3+r^2+r^2+r^\delta+r^\delta+r^6+r^\eta)+(r^{\delta+3}+r^{\eta+2}+r^{\varepsilon+2}+r^{\varepsilon+5}+r^{\delta+4}+r^{\eta+5}+r^{\delta+\varepsilon+\eta}-r^{n+1})] \\ &= (-1)^{n+1} [r/(r-1)^2] [-r^{n+1}+3r+2-r^2-3r^3-r^4-r^\delta-r^\varepsilon+r^\eta-r^{\delta+1}-r^{\varepsilon+1}-r^{\eta+1}+r^{\varepsilon+2}+r^{\eta+2}+r^{\delta+3}+r^{\delta+4}+r^{\varepsilon+5}+r^{\eta+5}+r^{\delta+\varepsilon+\eta}] \\ &= (-1)^{n+1} [r/(r-1)^2] [-r^2-r^3-r^4-r^{n+1}+2+Q(G)] \end{split}$$

where

$$Q(G) = -2r^{3} - r^{\delta} - r^{\epsilon} - r^{\eta} - r^{\delta+1} - r^{\epsilon+1} - r^{\eta+1} + 3r + r^{\epsilon+2} + r^{\eta+2} + r^{\delta+3} + r^{\delta+4} + r^{\epsilon+5} + r^{\eta+5} + r^{\delta+\epsilon+\eta}$$

Proof(2).We can handle this case in the same fashion as case(1), and get the result(2).

Proof(3). If P(G) = P(H), then it is easy to see that Q(G) = Q(H).

Theorem. K_4 -homeomorphs $K_4(3,2,2,\delta,\varepsilon,\eta)$ (see Fig.2) which has exactly 1 path of length 1 and has girth 7 is not chromatically unique if and only if it is $K_4(3,2,2,a,1,a+3)$, $K_4(3,2,2,b,1,5)$, where a>3, b>3 and

$$K_4(3,2,2,a,1,a+3) \sim K_4(1,2,4,a+2,2,a)$$

$$K_4(3,2,2,b,1,5) \sim K_4(1,2,4,4,b,2)$$

Proof. Let $G \cong K_4(3,2,2,\delta,\varepsilon,\eta)$. If there is a graph H such that P(H) = P(G), then from Proposition 1, we know that H is a K_4 - homeomorph $K_4(\alpha',\beta',\gamma',\delta',\varepsilon',\eta')$ which has exactly 1 path of length 1, and the girth of H is 7. So H must be one of the following four types: Type 1:

$$K_4(1,2,\gamma',2,\varepsilon',2)(\varepsilon'\geq 4,\gamma'\geq 4)$$

Type 2:

$$K_4(3,2,2,\delta',\varepsilon',\eta')(\delta'+\varepsilon'\geq 5,\varepsilon'+\eta'\geq 4,\delta'+\eta'\geq 5)$$

Type 3:

$$K_4(1,3,3,\delta',\varepsilon',\eta')(\delta'+\varepsilon'\geq 4,\varepsilon'+\eta'\geq 6,\delta'+\eta'\geq 4)$$

Type 4:

$$K_4(1,2,4,\delta',\varepsilon',\eta')(\delta'+\varepsilon'\geq 5,\varepsilon'+\eta'\geq 6,\delta'+\eta'\geq 3)$$

We now solve the equation P(G) = P(H) to get all solutions.

If H has Type 1, then from Proposition 2, we know that H is chromatically unique. Since $G \sim H$, we have $G \cong H$. But it is obvious that G is not isomorphic to H. This is a contradiction.

If H has Type 2, then from Proposition 4, we know G is isomorphic to H.

If H has Type 3, then from Proposition 3, we know G is isomorphic to H.

Suppose that H has Type 4, We solve the equation Q(G) = Q(H). From Lemma, we have

$$Q(G) = -2r^{3} - r^{\delta} - r^{\epsilon} - r^{\eta} - r^{\delta+1} - r^{\epsilon+1} - r^{\eta+1} + 3r + r^{\epsilon+2} + r^{\eta+2} + r^{\delta+3} + r^{\delta+4} + r^{\epsilon+5} + r^{\eta+5} + r^{\delta+\epsilon+\eta}$$

$$Q(H) = -r^{5} - r^{\delta'} - r^{\epsilon'} - r^{\eta'} - r^{\epsilon'+1} - r^{\eta'+1} + 2r + r^{\eta'+2} + r^{\epsilon'+3} + r^{\epsilon'+4} + r^{\eta'+5} + r^{\delta'+6} + r^{\delta'+\epsilon'+\eta'}$$

We denote the lowest remaining power by l.r.p. and the highest remaining power by h.r.p.. We can assume $\varepsilon \leq \eta$ and $min\{\delta', \varepsilon', \eta'\} \geq 2$. From Proposition 1, we have

$$\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta' \tag{1}$$

Since $K_4(3,2,2,\delta,\varepsilon,\eta)$ has exactly 1 path of length 1 and $\varepsilon \leq \eta$, we have $\delta = 1$ or $\varepsilon = 1$. There are two cases to be considered.

Case 1 If $\delta = 1$, then $\varepsilon > 1$ and $\eta > 1$. We obtain the following after simplification:

$$Q(G): -r^2 - 2r^3 - r^{\epsilon} - r^{\eta} - r^{\epsilon+1} - r^{\eta+1} + r^4 + r^5 + r^{\epsilon+2} + r^{\eta+2} + r^{\epsilon+5} + r^{\eta+5}$$

$$Q(H): -r^5 - r^{\delta'} - r^{\varepsilon'} - r^{\eta'} - r^{\varepsilon'+1} - r^{\eta'+1} + r^{\eta'+2} + r^{\varepsilon'+3} + r^{\varepsilon'+4} + r^{\eta'+5} + r^{\delta'+6}$$

Comparing the l.r.p. in Q(G) and the l.r.p. in Q(H), we have $\delta'=2$ or $\varepsilon'=2$ or $\eta'=2$.

Case 1.1 If $\delta' = 2$, then we obtain the following after simplification:

$$Q(G): -2r^3 - r^{\varepsilon} - r^{\eta} - r^{\varepsilon+1} - r^{\eta+1} + r^4 + r^5 + r^{\varepsilon+2} + r^{\eta+2} + r^{\varepsilon+5} + r^{\eta+5}$$

$$Q(H): -r^5 - r^{\epsilon'} - r^{\eta'} - r^{\epsilon'+1} - r^{\eta'+1} + r^{\eta'+2} + r^{\epsilon'+3} + r^{\epsilon'+4} + r^{\eta'+5} + r^8$$

Since $-2r^3$ can't be cancelled by the terms in Q(G), there are two terms in Q(H) which are equal to $-r^3$. So we have $\varepsilon' = \eta' + 1 = 3$ or $\varepsilon' = \eta' = 3$ or $\varepsilon' + 1 = \eta' = 3$ or $\varepsilon' + 1 = \eta' + 1 = 3$.

If $\varepsilon' = \eta' + 1 = 3$, then we obtain the following after simplification:

$$Q(G) : -2r^3 - r^{\epsilon} - r^{\eta} - r^{\epsilon+1} - r^{\eta+1} + r^4 + r^5 + r^{\epsilon+2} + r^{\eta+2} + r^{\epsilon+5} + r^{\eta+5}$$

$$Q(H)$$
: $-r^2-2r^3-r^5+r^6+2r^7+r^8$

Comparing the l.r.p. in Q(G) and the l.r.p. in Q(H), we have $\varepsilon = 2$. From $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$ (from equation(1)), and $\delta = 1$ and $\delta' = 2$, we have $\eta = 4$. So $Q(G) \neq Q(H)$, a contradiction.

If $\varepsilon' = \eta' = 3$ or $\varepsilon' + 1 = \eta' = 3$ or $\varepsilon' + 1 = \eta' + 1 = 3$, we can handle these cases in the same fashion as above and get $Q(G) \neq Q(H)$, a contradiction.

Case 1.2 If
$$\varepsilon' = 2$$
, From $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$, and $\delta = 1$, we have $\varepsilon + \eta = \delta' + \eta' + 1$ (2)

After simplifying, we have

$$Q(G) \ : \ -r^3 - r^\epsilon - r^\eta - r^{\epsilon+1} - r^{\eta+1} + r^4 + r^{\epsilon+2} + r^{\eta+2} + r^{\epsilon+5} + r^{\eta+5}$$

$$Q(H)$$
 : $-r^5 - r^{\delta'} - r^{\eta'} - r^{\eta'+1} + r^6 + r^{\eta'+2} + r^{\eta'+5} + r^{\delta'+6}$

comparing the h.r.p. in Q(G) and the h.r.p. in Q(H), we have $\eta+5=\eta'+5$ or $\eta+5=\delta'+6$.

If $\eta + 5 = \eta' + 5$, from equation(2), we have $\varepsilon = \delta' + 1$. We obtain the following after simplification:

$$Q(G) \quad : \quad -r^3 - r^{\varepsilon} - r^{\varepsilon+1} + r^4 + r^{\varepsilon+2}$$

$$Q(H) : -r^5 - r^{\delta'} + r^6$$

It is easy to see that $\delta' = 3$ and $\varepsilon = 4$. So G is isomorphic to H.

If $\eta + 5 = \delta' + 6$, from equation(2), we have $\varepsilon = \eta'$. We obtain the following after simplification:

$$Q(G)$$
 : $-r^3 - r^{\eta} - r^{\eta+1} + r^4 + r^{\eta+2}$

$$Q(H) : -r^5 - r^{\delta'} + r^6$$

It is easy to see that $\delta'=3$ and $\eta=4$. We get G is isomorphic to H.

Case 1.3 If $\eta'=2$, From $\delta+\varepsilon+\eta=\delta'+\varepsilon'+\eta'$, and $\delta=1$, we have

$$\varepsilon + \eta = \delta' + \varepsilon' + 1 \tag{3}$$

After simplifying, we have

$$Q(G) : -r^3 - r^{\varepsilon} - r^{\eta} - r^{\varepsilon+1} - r^{\eta+1} + r^5 + r^{\varepsilon+2} + r^{\eta+2} + r^{\varepsilon+5} + r^{\eta+5}$$

$$Q(H) : -r^5 - r^{\delta'} - r^{\epsilon'} - r^{\epsilon'+1} + r^7 + r^{\epsilon'+3} + r^{\epsilon'+4} + r^{\delta'+6}$$

comparing the h.r.p. in Q(G) and the h.r.p. in Q(H), we have $\eta + 5 = \varepsilon' + 4$ or $\eta + 5 = \delta' + 6$, where $\delta' \geq 2$, $\varepsilon' \geq 2$.

If $\eta + 5 = \varepsilon' + 4$, then $\varepsilon' = \eta + 1$. From equation(3), we have $\varepsilon = \delta' + 2$. We obtain the following after simplification:

$$Q(G)$$
 : $-r^3 - r^{\epsilon} - r^{\eta} - r^{\epsilon+1} + r^5 + r^{\epsilon+2} + r^{\eta+2} + r^{\epsilon+5}$

$$Q(H) : -r^5 - r^{\delta'} - r^{\varepsilon'+1} + r^{\varepsilon'+3} + r^7 + r^{\delta'+6}$$

Consider $r^{\eta+2}$ in Q(G) and $-r^{\varepsilon'+1}$ in Q(H). It is due to $\varepsilon \leq \eta$ and $\eta > 1$ that $r^{\eta+2}$ can cancel none of the negative terms in Q(G). Thus, no term in Q(G) is equal to $-r^{\varepsilon'+1}$ (noting $\varepsilon' = \eta + 1$) in Q(H). Therefore, $-r^{\varepsilon'+1}$ must be cancelled by the positive term in Q(H) and $r^{\eta+2}$ must equal the

positive term in Q(H). So, $\eta + 2 = \varepsilon' + 1 = 7 = \delta' + 6$. Thus $\delta' = 1$ which contradicts $\delta' \geq 2$.

If $\eta + 5 = \delta' + 6$, then $\eta = \delta' + 1$. From equation(3), we have $\varepsilon = \varepsilon'$. We obtain the following after simplification:

$$Q(G) \ : \ -r^3 - r^{\eta} - r^{\eta+1} + r^{\varepsilon+2} + r^{\eta+2} + r^5 + r^{\varepsilon+5}$$

$$Q(H) : -r^5 - r^{\delta'} + r^7 + r^{\varepsilon'+3} + r^{\varepsilon'+4}$$

It is easy to see that $\delta'=3$ and $\eta=4$. So, $\eta=4=\varepsilon+2$ and $\varepsilon=\varepsilon'=2$. We get G is isomorphic to H.

Case 2 If $\varepsilon = 1$, then we obtain the following after simplification:

$$Q(G) = -r^2 - r^3 - r^{\delta} - r^{\eta} - r^{\delta+1} - r^{\eta+1} + r^6 + r^{\eta+2} + r^{\delta+3} + r^{\delta+4} + r^{\eta+5}$$

$$\begin{array}{lll} Q(H) & = & -r^5 - r^{\delta'} - r^{\epsilon'} - r^{\eta'} - r^{\epsilon'+1} - r^{\eta'+1} + r^{\eta'+2} + r^{\epsilon'+3} + r^{\epsilon'+4} \\ & & + r^{\eta'+5} + r^{\delta'+6} \end{array}$$

Comparing the l.r.p. in Q(G) and the l.r.p. in Q(H), we have $\varepsilon' = 2$ or $\delta' = 2$ or $\eta' = 2$. There are three cases to be considered.

Case 2.1 If $\varepsilon' = 2$, From $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$, and $\varepsilon = 1$, we have

$$\delta + \eta = \delta' + \eta' + 1 \tag{4}$$

After simplifying, we have

$$Q(G) = -r^{\delta} - r^{\eta} - r^{\delta+1} - r^{\eta+1} + r^{\eta+2} + r^{\delta+3} + r^{\delta+4} + r^{\eta+5}$$

$$Q(H) = -r^{\delta'} - r^{\eta'} - r^{\eta'+1} + r^{\eta'+2} + r^{\eta'+5} + r^{\delta'+6}$$

Comparing the l.r.p. in Q(G) and the l.r.p. in Q(H), we have $min\{\delta, \eta\} = min\{\delta', \eta'\}$.

If $\delta = \delta'$, then from equation(4), we have $\eta = \eta' + 1$. After simplifying, we have

$$Q(G) = -r^{\delta+1} - r^{\eta+1} + r^{\eta+2} + r^{\delta+3} + r^{\delta+4} + r^{\eta+5}$$

$$Q(H) = -r^{\eta'} + r^{\eta'+2} + r^{\eta'+5} + r^{\delta'+6}$$

Consider $-r^{\eta+1}$ in Q(G) and $r^{\eta'+2}$ in Q(H). It is due to $\eta=\eta'+1$ that no term in Q(H) is equal to $-r^{\eta+1}$. So, $-r^{\eta+1}$ must be cancelled by the term in Q(G) and $r^{\eta'+2}$ must equal one of the terms in Q(G). Therefore, there are two terms in Q(G) which are equal $r^{\eta'+2}$ (noting $\eta=\eta'+1$), a contradiction.

If $\delta = \eta'$, then from equation(4), we have $\eta = \delta' + 1$. After simplifying, we have

$$\begin{array}{lcl} Q(G) & = & -r^{\eta} - r^{\eta+1} + r^{\eta+2} + r^{\delta+3} + r^{\delta+4} \\ \\ Q(H) & = & -r^{\delta'} + r^{\eta'+2} + r^{\eta'+5} \end{array}$$

It is easy to see that $\eta=\delta+3$. Since $\delta=\eta'$, we have $\eta=\eta'+3$. So, $\delta'=\delta+2$ and $\delta'=\eta'+2$. After simplifying, we have Q(G)=Q(H). Let $\delta=a(a>3)$. We obtain the solution where G is isomorphic to $K_4(3,2,2,a,1,a+3)$ and H is isomorphic to $K_4(1,2,4,a+2,2,a)$. That is

$$K_4(3,2,2,a,1,a+3) \sim K_4(1,2,4,a+2,2,a)$$

If $\eta = \delta'$, then from equation(4), we have $\delta = \eta' + 1$. After simplifying, we have

$$\begin{array}{lcl} Q(G) & = & -r^{\delta+1} - r^{\eta+1} + r^{\eta+2} + r^{\delta+3} + r^{\eta+5} \\ Q(H) & = & -r^{\eta'} + r^{\eta'+2} + r^{\delta'+6} \end{array}$$

Consider $-r^{\delta+1}$ in Q(G) and $r^{\eta'+2}$ in Q(H). It is due to $\delta=\eta'+1$ that no term in Q(H) is equal to $-r^{\delta+1}$. So, $-r^{\delta+1}$ must be cancelled by the term in Q(G) and $r^{\eta'+2}$ must equal one of the terms in Q(G). Therefore, there are two terms in Q(G) which are equal $r^{\eta'+2}$ (noting $\delta=\eta'+1$), a contradiction.

If $-r^{\eta} = -r^{\eta'}$, then from equation(4), we have $\delta = \delta' + 1$. After simplifying, we have

$$\begin{array}{lcl} Q(G) & = & -r^{\delta} - r^{\delta+1} + r^{\delta+3} + r^{\delta+4} \\ Q(H) & = & -r^{\delta'} + r^{\delta'+6} \end{array}$$

It is easy to say that $Q(G) \neq Q(H)$, this is a contradiction.

Case 2.2 If $\eta'=2$, From $\delta+\varepsilon+\eta=\delta'+\varepsilon'+\eta'$, and $\varepsilon=1$, we have

$$\delta + \eta = \delta' + \varepsilon' + 1 \tag{5}$$

After simplifying, we have

$$\begin{array}{lll} Q(G) & : & -r^{\delta} - r^{\eta} - r^{\delta+1} - r^{\eta+1} + r^{6} + r^{\eta+2} + r^{\delta+3} + r^{\delta+4} + r^{\eta+5} \\ Q(H) & : & -r^{5} - r^{\delta'} - r^{\varepsilon'} - r^{\varepsilon'+1} + r^{4} + r^{7} + r^{\varepsilon'+3} + r^{\varepsilon'+4} + r^{\delta'+6} \end{array}$$

comparing the h.r.p. in Q(G) and the h.r.p. in Q(H), we have $\delta+4=\varepsilon'+4$ or $\eta+5=\delta'+6$ or $\delta+4=\delta'+6$ or $\eta+5=\varepsilon'+4$. There are four cases to be considered.

Case 2.2.1 If $\delta + 4 = \varepsilon' + 4$, from equation(5), we have $\eta = \delta' + 1$. We obtain the following after simplification:

$$Q(G)$$
 : $-r^{\eta} - r^{\eta+1} + r^{6} + r^{\eta+2}$
 $Q(H)$: $-r^{5} - r^{\delta'} + r^{4} + r^{7}$

It is easy to see that $\eta=5$. So, $\delta'=4$. After simplifying, we have Q(G)=Q(H). Let $\delta=b(b>3)$. We obtain the solution where G is isomorphic to $K_4(3,2,2,b,1,5)$ and H is isomorphic to $K_4(1,2,4,4,b,2)$. That is

$$K_4(3,2,2,b,1,5) \sim K_4(1,2,4,4,b,2)$$

Case 2.2.2 If $\eta + 5 = \delta' + 6$, then $\eta = \delta' + 1$. From equation(5), we have $\delta = \varepsilon'$. Thus, this case can be handled in the same fashion as case 2.2.1 and we get the same result as above.

Case 2.2.3 If $\delta + 4 = \delta' + 6$, then $\delta = \delta' + 2$. From equation(5), we have $\varepsilon' = \eta + 1$. We obtain the following after simplification:

$$Q(G)$$
 : $-r^{\eta} - r^{\delta} - r^{\delta+1} + r^{6} + r^{\eta+2} + r^{\delta+3}$

$$Q(H)$$
 : $-r^5 - r^{\delta'} - r^{\epsilon'+1} + r^4 + r^7 + r^{\epsilon'+3}$

Consider $r^{\eta+2}$ in Q(G) and $-r^{\varepsilon'+1}$ in Q(H). It is due to $\varepsilon'=\eta+1$ that $-r^{\varepsilon'+1}$ must be equal one of $-r^{\delta}$ and $-r^{\delta+1}$. So, $r^{\eta+2}$ must be equal one of r^4 and r^7 . Thus, we have $\delta=\varepsilon'+1=\eta+2=4$ or $\delta=\varepsilon'+1=\eta+2=7$ or $\delta+1=\varepsilon'+1=\eta+2=7$.

If $\delta = \varepsilon' + 1 = \eta + 2 = 4$, then G is isomorphic to H.

If $\delta = \varepsilon' + 1 = \eta + 2 = 7$, then $Q(G) \neq Q(H)$. This a contradiction.

If $\delta+1=\varepsilon'+1=\eta+2=4$, then $\delta=3$. From $\delta=\delta'+2$, we have $\delta'=1$ which contradict $\delta'\geq 2$.

If $\delta+1=\varepsilon'+1=\eta+2=7$, after simplifying, we have Q(G)=Q(H). So, we obtain the solution where G is isomorphic to $K_4(3,2,2,6,1,5)$ and H is isomorphic to $K_4(1,2,4,4,6,2)$. That is

$$K_4(3,2,2,6,1,5) \sim K_4(1,2,4,4,6,2)$$

Case 2.2.4 If $\eta + 5 = \varepsilon' + 4$, then $\eta + 1 = \varepsilon'$. From equation(5), we have $\delta = \delta' + 2$. Thus, this case can be handled in the same fashion as case 2.2.3 and we get the same result as above.

Case 2.3 If $\delta' = 2$, From $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$, and $\varepsilon = 1$, we have

$$\delta + \eta = \varepsilon' + \eta' + 1 \tag{6}$$

After simplifying, we have

$$Q(G) = -r^3 - r^{\delta} - r^{\eta} - r^{\delta+1} - r^{\eta+1} + r^{6} + r^{\eta+2} + r^{\delta+3} + r^{\delta+4} + r^{\eta+5}$$

$$\begin{array}{rcl} Q(H) & = & -r^5 - r^{\varepsilon'} - r^{\eta'} - r^{\varepsilon'+1} - r^{\eta'+1} + r^{\eta'+2} + r^{\varepsilon'+3} + r^{\varepsilon'+4} + r^{\eta'+5} \\ & & + r^8 \end{array}$$

comparing the h.r.p. in Q(G) and the h.r.p. in Q(H), we have $\delta+4=\varepsilon'+4$ or $\delta+4=\eta'+5$ or $\delta+4=8$ or $\eta+5=\varepsilon'+4$ or $\eta+5=\eta'+5$ or $\eta+5=8$. There are six cases to be considered.

Case 2.3.1 If $\delta + 4 = \varepsilon' + 4$, from equation(6), we have $\eta = \eta' + 1$. We obtain the following after simplification:

$$Q(G) \ = \ -r^3 - r^{\eta+1} + r^6 + r^{\eta+2} + r^{\eta+5}$$

$$Q(H) = -r^5 - r^{\eta'} + r^{\eta'+2} + r^{\eta'+5} + r^8$$

It is due to $\eta > 1$ that no term in Q(G) can cancel $-r^3$ in Q(G). So, $r^3 = -r^{\eta'}$. We get $\eta' = 3$ and $\eta = 4$. Thus, $Q(G) \neq Q(H)$. This a contradiction.

Case 2.3.2 If $\delta + 4 = \eta' + 5$, then $\delta = \eta' + 1$. From equation(6), we have $\eta = \varepsilon'$. We obtain the following after simplification:

$$Q(G) = -r^3 - r^{\delta+1} + r^6 + r^{\eta+2} + r^{\delta+3} + r^{\eta+5}$$

$$Q(H) = -r^5 - r^{\eta'} + r^{\eta'+2} + r^{\varepsilon'+3} + r^{\varepsilon'+4} + r^8$$

It is due to $\eta > 1$ and $\delta > 1$ that no term in Q(G) can cancel $-r^3$ in Q(G). So, $r^3 = -r^{\eta'}$. We get $\eta' = 3$ and $\delta = 4$. After simplifying Q(G)=Q(H) and comparing the degrees of both the sides of Q(G)=Q(H), we have $\eta = 3$ and $\varepsilon' = 3$. Thus, we get G is isomorphic to H.

Case 2.3.3 If $\delta + 4 = 8$, then $\delta = 4$. From equation(6), we have $\eta + 3 = \varepsilon' + \eta'$. We obtain the following after simplification:

$$Q(G) = -r^3 - r^4 - r^{\eta} - r^{\eta+1} + r^6 + r^7 + r^{\eta+2} + r^{\eta+5}$$

$$Q(H) = -r^{\epsilon'} - r^{\eta'} - r^{\epsilon'+1} - r^{\eta'+1} + r^{\eta'+2} + r^{\epsilon'+3} + r^{\epsilon'+4} + r^{\eta'+5}$$

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have $\varepsilon'=3$ or $\eta'=3$ or $\eta=\varepsilon'$ or $\eta=\eta'$. Noting $\eta+3=\varepsilon'+\eta'$ and comparing the degrees of both the sides of Q(G)=Q(H), we get Q(G)=Q(H), and G is isomorphic to H.

Case 2.3.4 If $\eta + 5 = \varepsilon' + 4$, then $\varepsilon' = \eta + 1$. From equation(6), we have $\delta = \eta' + 2$. We obtain the following after simplification:

$$Q(G) = -r^3 - r^{\delta} - r^{\eta} - r^{\delta+1} + r^{6} + r^{\eta+2} + r^{\delta+4}$$

$$Q(H) = -r^5 - r^{\eta'} - r^{\varepsilon'+1} - r^{\eta'+1} + r^{\eta'+2} + r^{\varepsilon'+3} + r^8$$

By considering $-r^3$ in Q(G), we have $-r^3 = -r^{\eta'}$ or $-r^3 = -r^{\varepsilon'+1}$ or $-r^3 = -r^{\eta'+1}$.

If $-r^3 = -r^{\eta'}$, then $\eta' = 3$ and $\delta = 5$. After simplifying Q(G)=Q(H) and comparing the degrees of both the sides of Q(G)=Q(H), we have $\eta = 4$ and $\varepsilon' = 5$. Thus, $Q(G) \neq Q(H)$, a contradiction.

If $-r^3 = -r^{\varepsilon'+1}$, then $\varepsilon' = 2$. By $\varepsilon' = \eta + 1$, we have $\eta = 1$ which contradicts $\eta > 1$.

If $-r^3 = -r^{\eta'+1}$, then $\eta' = 2$ and $\delta = 4$. After simplifying Q(G)=Q(H) and comparing the degrees of both the sides of Q(G)=Q(H), we have $\eta = 2$ and $\varepsilon' = 3$. Thus, we get Q(G) = Q(H), and G is isomorphic to H.

Case 2.3.5 If $\eta + 5 = \eta' + 5$, then $\eta = \eta'$. From equation(6), we have $\delta = \varepsilon' + 1$. We obtain the following after simplification:

$$Q(G) = -r^3 - r^{\delta+1} + r^6 + r^{\delta+4}$$

$$Q(H) = -r^5 - r^{\epsilon'} + r^{\epsilon'+3} + r^8$$

it is easy to see that $\varepsilon'=3$ and $\delta=4$. Thus, we get G is isomorphic to H. Case 2.3.6 If $\eta+5=8$, then $\eta=3$. From equation(6), we have $\varepsilon'+\eta'=\delta+2$. We obtain the following after simplification:

$$\begin{array}{lll} Q(G) & = & -2r^3-r^4-r^\delta-r^{\delta+1}+r^5+r^6+r^{\delta+3}+r^{\delta+4} \\ \\ Q(H) & = & -r^5-r^{\epsilon'}-r^{\eta'}-r^{\epsilon'+1}-r^{\eta'+1}+r^{\eta'+2}+r^{\epsilon'+3}+r^{\epsilon'+4}+r^{\eta'+5} \end{array}$$

Consider $-2r^3$ and $-r^4$ in Q(G). We have $\varepsilon' = \eta' = 3$ or $\varepsilon' = \eta' + 1 = 3$ or $\varepsilon' + 1 = \eta' = 3$.

If $\varepsilon' = \eta' = 3$, from $\varepsilon' + \eta' = \delta + 2$, we have $\delta = 4$. Thus, G is isomorphic to H.

If $\varepsilon' = \eta' + 1 = 3$, from $\varepsilon' + \eta' = \delta + 2$, we have $\delta = 3$. Thus, $Q(G) \neq Q(H)$, this is a contradiction.

If $\varepsilon' + 1 = \eta' = 3$, from $\varepsilon' + \eta' = \delta + 2$, we have $\delta = 3$. Thus, $Q(G) \neq Q(H)$, this is a contradiction.

So far, we have solved the equation P(G) = P(H) and got the solution as follows:

$$K_4(3,2,2,a,1,a+3) \sim K_4(1,2,4,a+2,2,a)$$

 $K_4(3,2,2,b,1,5) \sim K_4(1,2,4,4,b,2)$

where a > 3, b > 3.

The proof is completed.

REFERENCES

- C.Y.Chao, L.C.Zhao, Chromatic polynomials of a family of graphs, Ars Combin. 15(1983) 111-129.
- Zhi-Yi Guo, Earl Glen Whitehead Jr, Chromaticity of a family of K₄-homeomorphs, Discrete Math.172(1997) 53-58.
- [3] K.M.Koh, K.L.Teo, The search for chromatically unique graphs, Graph and Combin. 6(1990) 259-285.
- [4] W.M.Li, Almost every K₄-homeomorph is chromatically unique, Ars Combin. 23(1987) 13-36.
- [5] Yanling Peng, Ruying Liu, Chromaticity of a family of K₄-homeomorphs, Discrete Math. 258(2002)161-177.
- [6] Yanling Peng, Chromatic equivalence of a family of K_4 homeomorphs, J.Shanghai Normal Univ.4(2004)9-11.
- [7] Yanling Peng, Zengyi, On the chromatic equivalence of Two Families of K₄-homeomorph, J.Suzhou Science and Technology Univ. 4(2004)31-34.
- [8] Yanling Peng, Chromatic uniqueness of a family of K_4 -homeomorphs, Discrete Math. 308(2008), 6132-6140.
- [9] Haizhen Ren, On the chromaticity of K₄-homeomorphs, Discrete Math. 252(2002)247-257.
- [10] E.G.Whitehead Jr., L.C.Zhao, Chromatic uniqueness and equivalence of K₄-homeomorphs, J.Graph Theory 8(1984) 355-364.
- [11] S.Xu, A lemma in studying chromaticity, Ars Combin.32(1991)315-318.
- [12] S.Xu, Chromaticity of a family of K₄-homeomorphs, Discrete Math. 117(1993) 293-297.