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Abstract:  We discuss the chromaticity of one family of K4-homeomorphs
which has girth 7 and has exactly 1 path of length 1, and give a sufficient and
necessary condition for the graphs in the family to be chromatically unique.
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1. Introduction

In this paper, we consider graphs which are simple. For such a graph G,
let P(G; )) denote the chromatic polynomial of G. Two graphs G and H
are chromatically equivalent, denoted by G ~ H, if P(G;)) = P(H;}). A
graph G is chromatically unique if for any graph H such that H ~ G, we
have H 2 G, i.e., H is isomorphic to G.

A Ks-homeomorph is a subdivision of the complete graph K4. Such
a homeomorph is denoted by Ky4(a, B,7,96,¢,7) if the six edges of K4 are
replaced by the six paths of length «, 8,7, §, €, 7, respectively, as shown in
Fig.1.

So far, the study of the chromaticity of K4-homeomorphs with at least
2 paths of length 1 has been fulfiled(see(2],[4],[5],[12]). And the study of
the chromaticity of K4-homeomorphs which have girth 3,4,5 or 6 has been
fulfiled. When referring to the chromaticity of K4-homeomorphs which
has girth 7, we showed before that only three types of K4-homeomorphs,
K4(1,2,4,6,¢,1),K4(3,2,2,6,¢,7),K4(1,3,3,9,£,7) need to be solved. The
type of K4(1,3,3,4,¢,n) was already solved([8]). In order to complete the
study of the chromaticity of K4-homeomorphs with girth 7,in this paper,
we study another type K4(3,2,2,4,¢,7) (as Fig.2).

Project Supported by the National Natural Science Foundation of China(10671090).

ARS COMBINATORIA 105(2012), pp. 491-502



Fig.1 K4(o, B,7,0,6,1) Fig.2 K4(3,2,2,0,¢,7)

2. Auxiliary results

In this section we cite some known results used in the sequel.
Proposition 1. Let G and H are chromatically equivalent. Then

) V(G)| = [V(H)|, |E(G)| = |E(H)] (see [3]);

(2) G and H have the same girth and same number of cycles with the length
equal to their girth(see [11]);

(3) If G is a K4-homeomorph, then H is a K4-homeomorph as well(see [1]);
(4) If G and H are homeomorphic to Ky, then both the minimum values of
parameters and the number of parameters equal to this minimum value of
the graphs G and H coincide (see [10]).

Proposition 2 (Ren[9]). Let G = K4(a,B,7v,9,¢,m)(see Fig.1) when
exactly three of o,f,7v,0,€,n are the same. Then G is not chromati-
cally unique if and only if G is isomorphic to Kiy(s,s,s —2,1,2,s) or
Ka(s,s — 2,5,2s — 2,1,8) or K4(t,t,1,2t,t + 2,t) or Ky(t,t,1,2t,t — 1,t)
or Ky(t,t 4+ 1,¢,2t +1,1,¢t) or K4(1,¢,1,t +1,3,1) or K4(1,1,¢,2,t+2,1),
where s > 3,t > 2.

Proposition 3 (Peng[7]). Let K,-homeomorphs K4(1,3,3,4,¢,1) and
K4(3,2,2,8,€',1') be chromatically equivalent, then K4(1,3,3,4,¢, n) is i-
somorphic to K4(3,2,2,8,¢',7).

Proposition 4 (Peng[6]). Let Kj-homeomorphs K4(3,2,2,4,¢,7) and

K4(3,2,2,0',¢',7') be chromatically equivalent, then K4(3,2,2,4,¢, ) is i-
somorphic to K4(3,2,2,8,¢',71').

3. Main results
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Lemma. If G = K4(3,2,2,4,¢6,m) and H = K4(1,2,4, &,€', 1), then we
have

(1) P(G) = (-1)™*r/(r — 1)?)[—r2 — r3 = =™+ £ 2 1 Q(G)], where

QG) = =203 —7f —pf—pn —pOtl _petl _pndl | g 642 L 042
+,'.¢5+3 + ,,.6+4 + r€+5 + ,,.r'+5 + r6+€+ﬂ
where r =1 — A, n is the number of vertices of G.
(2) P(H) = (-1)™*[r/(r = 1)?][~r% = r3 — 74 —y™+1 1 2 4 Q(H))], where
QH) = —r5—70 —p¢ o0 _p€'+1 g+l | 9 4 pn'+2 | 6’43
+,’.€'+4 +r"""5 + o' +6 +,,.6'+s'+17'

where 7 =1 — A, m is the number of vertices of H.
(3) If P(G) = P(H), then Q(G) = Q(H).

Proof(1). Let r =1 — A. From [10], we have the chromatic polynomial of
K4-homeomorph Ky(a, 8,7, 4,€,7) as follows

P(Ky(a, 8,1, 0,6,m) = (=1)"*!r/(r - 1)?][(r? + 3r +2) - (r + 1)
(r® + 78 + 77 + 1% 4 7€ 4 p) 4 (POt 4 pPtn
4rYte 4 potBte 4 Bty + rotrin 4 pbtetn

—1‘"+1)]

Then

P(G) = P(K4(3,2,2,6,¢,7m))
= (“1)"Ur/(r =12[(r? +3r+2) — (r + 1)(TP +r2 472 + 18
+7€ + 1"’) + (r6+3 + 2 + ret+2 + retd + po+4 + 5
4rétetn _ ,.n-H)]
= (-1)"r/(r = 1)?)[-r"*1 +3r +2—72 373 —pd — 0 _pe
B R 58 G S I I L JPE L S S R

+r"+5 + r5+€+7’]

= (F)MU/r =171 =1 == 17 424 Q(G)
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where

Q(G) = —2r3—r% —7c 7 Ot _petl gl 4 3y 72 4 pnt2

+r6+3 4 rte 4 petS 4 b pétetn

Proof(2).We can handle this case in the same fashion as case(1),and get
the result(2).

Proof(3). If P(G) = P(H), then it is easy to see that Q(G) = Q(H).

Theorem. Kj-homeomorphs K4(3,2,2,9,¢,7n)(see Fig.2) which has ex-
actly 1 path of length 1 and has girth 7 is not chromatically unique if and
only if it is K4(3,2,2,a,1,a+3), K4(3,2,2,b,1,5), wherea > 3,b>3 and

K4(3,2,2,a,1,0 + 3) ~ K4(1,2,4,a +2,2,a)
K4(3,2,2,b,1,5) ~ K4(1,2,4,4,b, 2)

Proof. Let G = K4(3,2,2,8,6,m). If there is a graph H such that
P(H) = P(G), then from Proposition 1, we know that H is a K4- homeo-
morph K4(/, 8',7',8',€',n') which has exactly 1 path of length 1, and the
girth of H is 7. So H must be one of the following four types:
Type 1:

Ki(1,2,7,2,€,2)(e' 2 4,7' 2 4)

Type 2:

K4(3,2,2,8 € ,7)(0' +& =56 +7' > 4,8 +7' >5)
Type 3:

K4(1,3,3,8, &, 9) (0 +& >4, +7 26,8 +7' > 4)
Type 4:

K4(1,2,4,8,¢' 0} (& +€ =25, +7 >6,8' +7' 2 3)

We now solve the equation P(G) = P(H) to get all solutions.

If H has Type 1, then from Proposition 2, we know that H is chromat-
ically unique. Since G ~ H, we have G = H. But it is obvious that Gis
not isomorphic to H. This is a contradiction.

If H has Type 2, then from Proposition 4, we know G is isomorphic to
H.

If H has Type 3, then from Proposition 3, we know G is isomorphic to
H.
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Suppose that H has Type 4, We solve the equation Q(G) = Q(H). From
Lemma, we have
QG) = =27 —rd gt — S+l _petl _pntl g g pet2 | pnt2
+75+3 4 PO o petS |t | potedy
QH) = —r5—p8 —p¢’ —pn' &+l _ '+l op 4 0’42 | p€'43
+,,.€’+4 +,r11'+5 +,,.5’+6 +.r5’+6'+1,'
We denote the lowest remaining power by L.r.p. and the highest remain-

ing power by h.r.p.. We can assume € < 7 and min{d’,¢’,7'} > 2. From
Proposition 1, we have

b+e+n=0+e+7 (1)
Since K4(3,2,2,4,£,1) has exactly 1 path of length 1 and € < 7, we have
6 =1 or € = 1. There are two cases to be considered.

Case 1 If § = 1, then € > 1 and > 1. We obtain the following after
simplification:

Q(G): =12 =293 — 7 — g g€l _pntl g L 5 L o642 42 4 648 L pntS
’ 7 ’ ’ ’ ’ ’ ! 7 4
Q(H): P P PSS S S PSRN S NG DI I SN

Comparing the l.r.p. in Q(G) and the Lr.p. in Q(H), we have ' = 2 or
e€=2o0ry =2
Case 1.1 If & = 2 ,then we obtain the following after simplification:

Q(G) . _21.3 T re+l - r77+1 + ,,.4 +,,.5 + ,,.E+2 + 1.17+2 + ,,.€+5 +,,.f)+5

Q(H) s B ,,.e’ _ 7.1;' _ ,,.s'+1 _ ,,.11'+1 + ,’.n'+2 + Te'+3 +1.e'+4 + ,,.n'+5 + 8
Since —2r3 can’t be cancelled by the terms in Q(G), there are two terms
in Q(H) which are equal to —3. Sowe have e’ =9’ +1=3ore' =79 =3
ore’+1=9'=3o0re’"+1=0'+1=3.

If e/ = ' + 1 = 3, then we obtain the following after simplification:

Q(G) @ —2r3 —pS g sl L gl 5y o2 L pnd2 ) et
+r77+5
QH) : ~r?2—2r3 154964277 4+ 18

Comparing the L.r.p. in Q(G) and the L.r.p. in Q(H), we have € = 2. From
d+¢e+n =248 +¢ + 7'(from equation(1)), and § = 1 and &' = 2, we have
71 =4. So Q(G) # Q(H), a contradiction.

Ife!=79"=30re’+1 =9 =3o0re'+1=1+1 = 3, we can handle these
cases in the same fashion as above and get Q(G) # Q(H), a contradiction.
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Case 1.2Ife' =2, Fromd+e+n =48 +¢& +7n',and § =1, we have

e+n=0+n7+1 (2)
After simplifying, we have
Q(G) 3 € — retl _ pmtl + 74 + re+2 + pnt2 + pEt+b + rnt+s
QH) : —r°- P8 g 'l g 8 g 42 | 4B 646

comparing the h.r.p. in Q(G) and the h.r.p. in Q(H), we have +5 =17'+5
ornp+5=4¢+6.

If +5 =7 + 5, from equation(2), we have € = §’ + 1. We obtain the
following after simplification:

QG) : —r3—rf—rstl it et
QH) : —r°-— r8 416

It is easy to see that &’ = 3 and € = 4. So G is isomorphic to H.
If n+5 = & + 6, from equation(2), we have ¢ = 7’. We obtain the
following after simplification:

Q(G) . —3 7 — rﬂ+l + rd + .,J)+2
QH) : —r%—r% 418

It is easy to see that &' = 3 and = 4. We get G is isomorphic to H.
Case 1.3If7y =2, From d+e+n=48+¢ +7,and § =1, we have

e+n=04+¢€+1 (3)
After simplifying, we have
Q(G) : —13— 1€ — g — et gl g5 et | gt L
QUH) : —r®—r% —r — 4Ty 7€'+ pe' e 046

comparing the h.r.p. in Q(G) and the h.r.p. in Q(H), we have n+5 =¢'+4
orn+5=20'+6,whered’ >2,¢ >2.

If n+5 =€ +4, then &’ = 1+ 1. From equation(3), we have € = §' +2.
We obtain the following after simplification:

Q@) : —r3—re—r1—rtlyprSy 72 4 pn+2 4 et

Q(H) P ,'.6’ _ ,,.e’+1 +,re’+3 +1.7 +7.6’+6
Consider 772 in Q(G) and —r¢'+! in Q(H). It isduetoe <nandn>1
that 7#"*2 can cancel none of the negative terms in @Q(G). Thus, no term

in Q(G) is equal to —r¢'+1(noting &’ = 7 + 1)in Q(H). Therefore, —re'+l
must be cancelled by the positive term in Q(H) and "2 must equal the
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positive term in Q(H). So, n+2=¢'+1=7 = § + 6. Thus § =1 which
contradicts §’ > 2.
If n+5 = 6’ + 6, then n = ¢’ + 1. From equation(3), we have ¢ = &/. We
obtain the following after simplification:
QG : —p3 — L 2 k2 | By petE
Q(H) P ,,.6' + r7 + ,,.e'+3 + ,,.s'+4
It is easy to see that ' =3 andp=4. So,p=4=¢c¢+2ande=¢' =2,

We get G is isomorphic to H.
Case 2 If ¢ = 1, then we obtain the following after simplification:

QG) = 1273 —pb g g0l _pntl | 6 gnt2 g 2643 644
475
Q(H) = —5_ ,,.6' _ ,re’ _ .,.1]' _ ,,.6'+1 _ ,r.1;'+l +,r.11'+2 + ,,.€'+3 + ,,.e'+4
+1-n'+5 + po'+6
Comparing the Lr.p. in Q(G) and the l.r.p. in Q(H), we have ¢ = 2 or

¢’ = 2 or ' = 2. There are three cases to be considered.
Case 2.11fe' =2, Fromd+e+n=0+¢€'+ 17, and € = 1, we have

S+n=06+7+1 4)
After simplifying, we have

Q(G) _ _,,.5 -7~ T6+l _ .rfl+l + r'IH-Z + 1.5+3 + r5+4 + ,rf]+5
QUH) = —r¥ —pt' —pTH1 L o0 42 4 o' +5 | 1846
Comparing the Lr.p. in Q(G) and the L.r.p. in Q(H), we have min{4,n} =
min{d',n'}.
If § = &', then from equation(4), we have n = ' + 1. After simplifying,

we have

Q(G) — _,'.6+1 — rﬂ'f'l + 7”7+2 + 1.5"'3 + r5+4 + 7.17+5

Q(H) = —r7 477 +2 4 p'+8 4 846

Consider —*! in Q(G) and "' +2 in Q(H). It is due to n = 7’ + 1 that
no term in Q(H) is equal to —r7t1, So, —r7t1 must be cancelled by the
term in Q(G) and r7+2 must equal one of the terms in Q(G). Therefore,
there are two terms in Q(G) which are equal r”*2(noting n = 7' + 1), a
contradiction.
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If § = 7/, then from equation(4), we have n = 6’ + 1. After simplifying,
we have

Q(G) = -y rﬂ+1 + rﬂ+2 + 1-5+3 + 7'6+4

QH) = —+ P42 4 '+
It is easy to see that 7 = §43. Since § = 7/, we have p = 7/+3. So, 8’ = 6+2
and §' = 1'+2. After simplifying, we have Q(G) = Q(H). Let § = a(a > 3).

We obtain the solution where G is isomorphic to K4(3,2,2,a,1,a+ 3) and
H is isomorphic to K4(1,2,4,a +2,2,a). That is

Ki(3,2,2,a,1,a + 3) ~ K4(1,2,4,a +2,2,a)

If n = &', then from equation(4), we have § = 7' + 1. After simplifying,
we have

Q(G) = —pitl _pntl 4 et+2 4 ro43 + 6

QUH) = —r 44241848

Consider —r%+! in Q(G) and 77 +2 in Q(H). It is due to § = 7' + 1 that
no term in Q(H) is equal to —r®+!. So, —r®*1 must be cancelled by the
term in Q(G) and 77 *+2 must equal one of the terms in Q(G). Therefore,
there are two terms in Q(G) which are equal ' +2(noting § = ' +1), a
contradiction.

If =" = —r7, then from equation(4), we have § = §' + 1. After simpli-
fying, we have

Q(g) = —pd g0+l + 543 4 potd

QUH) = —1& 4848

It is easy to say that Q(G) # Q(H), this is a contradiction.
Case 2.21If Y =2, From § + e+ n=06'+¢€ 417/, and € = 1, we have

S+n=0+¢e+1 (5)
After simplifying, we have
QG) : —rd— Sl 8 2 o p043 4 p8+d | pnt6
Q(H) R s e — e+l +ri 4T+ rE'+3 + €+ + ,,.6‘+6

comparing the h.r.p. in Q(G) and the h.r.p. in Q(H), we have § +4 = e'+4
orn+5=8+6o0ré+4=208+6o0rn+5=e +4. There are four cases
to be considered.
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Case 2.2.1 If § + 4 = €' + 4, from equation(5), we have n = ¢’ +1. We
obtain the following after simplification:

Q(G) : —r"— Tl g6 g o2
QH) : =15 —7% 444 o7

It is easy to see that n = 5. So, &’ = 4. After simplifying, we have
Q(G) = Q(H). Let § = b(b > 3). We obtain the solution where G is
isomorphic to K4(3,2,2,b,1,5) and H is isomorphic to K4(1,2,4,4,b,2).
That is

K4(3: 21 21 b) 11 5) ~ K4(1: 27 41 4! b! 2)

Case 2.2.2 If n+5 = & + 6, then n = §' + 1. From equation(5), we
have § = £’. Thus, this case can be handled in the same fashion as case
2.2.1 and we get the same result as above.

Case 2.2.3 If § +4 = §’ + 6, then § = §' + 2. From equation(5), we have
¢’ =n+ 1. We obtain the following after simplification:

QG) : —r—rd — Ol L6 L pnt2 643

Q(H) s g5 b _,,.e'+l+,,.4 +77 +,,.s'+3

Consider 77t2 in Q(G) and —r='*! in Q(H). It is due to & = 7+ 1 that
—r€'+1 must be equal one of —r® and —r%+1, So, 772 must be equal one
ofrand r7. Thus,wehaved =e'+1=n+2=4o0rd=¢&'+1=9+2=7
ord+l=¢'+1=np+2=4dord+1=€e'+1=n9+2="17.
If§=¢"+1=mn+2=4, then G is isomorphic to H.
Ifd=¢"+1=n+2=7, then Q(G) # Q(H). This a contradiction.
Ifé+1=¢"+1=n+2=4,thend = 3. From é§ = §' + 2, we have
&' = 1 which contradict §’ > 2.
Ifé+1=¢€+1=mn+2 =7, after simplifying, we have Q(G) = Q(H).
So, we obtain the solution where G is isomorphic to K4(3,2,2,6,1,5) and
H is isomorphic to K4(1,2,4,4,6,2). That is

K,(3,2,2,6,1,5) ~ K4(1,2,4,4,6,2)
Case 2.2.4If n+ 5 = ¢ + 4, then n + 1 = &'. From equation(5), we
have § = §’ + 2. Thus, this case can be handled in the same fashion as case

2.2.3 and we get the same result as above.
Case 23If ' =2, From 6 +e+n=980+¢' + 7, and € = 1, we have

S+n=¢+79+1 (6)
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After simplifying, we have

QG) = —r3—rf g1 S+l g0l g6 g2 p843  pShd it
QUH) = —r8—r¢ —p7 —p€'+1 o+l 0’42 4 o643 e pn'4S
+r8

comparing the h.r.p. in Q(G) and the h.r.p. in Q(H), we have §+4 = &' +4
oréd+4=n'+50r6+4=8o0rn+5=¢c"+4orn+5=n"+50rn+5=28.
There are six cases to be considered.

Case 2.3.1 If § + 4 = &' + 4, from equation(6), we have n =7’ + 1. We
obtain the following after simplification:

Q(G) = —r3—r1tl 4 g8 pnt2 g s

Q(H) = —rd_ r'l’ + -,JI'+2 +,r1l'+5 + r8
It is due to # > 1 that no term in Q(G) can cancel —3 in Q(G). So,
3 = —r". We get ¥ = 3 and n = 4. Thus, Q(G) # Q(H). This a
contradiction.

Case 2.3.2 If § + 4 = 7/ + 5, then § = 7' + 1. From equation(6), we
have 7 = ¢/. We obtain the following after simplification:

Q(G) — _,’.3 — 1.6-{—1 + ,,.6 + ri]+2 + r6+3 + ,rf)+5
QH) = -r°- o e 2 €3 e g 8
It is due to 7 > 1 and § > 1 that no term in Q(G) can cancel —r3 in Q(G).
So, 13 = —r". We get 7' = 3 and § = 4. After simplifying Q(G)=Q(H)
and comparing the degrees of both the sides of Q(G)=Q(H), we have n = 3
and &’ = 3. Thus, we get G is isomorphic to H.
Case 2.3.3 If § + 4 = 8, then § = 4. From equation(6), we have
n+3 =€ +7'. We obtain the following after simplification:
QG) = —rP—rt—pn gl 64T + 12 4 eS8
QUH) = —r —r7 g€+l '+l o424 pEH3 4 pe'He 4 o045
By considering the Lr.p. in Q(G) and the Lr.p. in Q(H), we have &’ = 3
org =3orn=¢ orn=rn'. Noting n+3 =€ +7' and comparing the
degrees of both the sides of Q(G) = Q(H), we get Q(G) = Q(H), and G is
isomorphic to H.
Case 2.3.4 If n+ 5 = &' + 4, then ¢ =+ 1. From equation(6), we
have § = 7’ + 2. We obtain the following after simplification:
QG) = —rd—70 — 1 — 0t g8 pnt2 g o0

’
QH) = -r°- P €l _pn L 2 '3 ) 8
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By considering —2 in Q(G), we have —r3 = —#7 or —r® = —r€'+1 or
—p3 = '+

If =3 = —7, then % = 3 and & = 5. After simplifying Q(G)=Q(H)
and comparing the degrees of both the sides of Q(G)=Q(H), we have n = 4
and ¢’ = 5. Thus, Q(G) # Q(H), a contradiction.

If —r® = —r€'+! then ¢ = 2. By ¢ = n+1, we have 5 = 1 which
contradicts n > 1.

If —r3 = —r7+1 then 5/ = 2 and § = 4. After simplifying Q(G)=Q(H)
and comparing the degrees of hoth the sides of Q(G)=Q(H), we have n = 2
and €’ = 3. Thus, we get Q(G) = Q(H), and G is isomorphic to H.

Case 2.3.5 If n+5 = ' + 5, then n = 7’. From equation(6), we have
6 = €' + 1. We obtain the following after simplification:

Q(G) = _,,.3_7.6+l +1‘6 +,,.6+4

QUH) = —r°—r< 47543 48

it is easy to see that £ = 3 and § = 4. Thus, we get G is isomorphic to H.
Case 2.3.6 If  + 5 = 8, then = 3. From equation(6), we have
€' + 7 = + 2. We obtain the following after simplification:

QG) = —2r3 —rt — b S+l 4 5 4 6 4 043 | 644

’ ! / 7 ’ ') ’
QH) = —r5—r¢ —p7 —pe'+l g+l | o042  p€'43 4 pe'4d o' +5

Consider —2r3 and —7% in Q(G). We have e’ =7 =3ore' =0 +1=3
ore’ +1=9"=3.

Ife! =7 =3, from &'+ 7' = §+2, we have § = 4. Thus, G is isomorphic
to H.

Ife! =9 +1=3, from & +7n =& +2, we have § = 3. Thus, Q(G) #
Q(H), this is a contradiction.

Ife'+1 =9 =3, frome + 9% =6+ 2, we have § = 3. Thus, Q(G) #
Q(H), this is a contradiction.

So far, we have solved the equation P(G) = P(H) and got the solution

as follows:
K4(3,2,2,a,1,a + 3) ~ K4(1,2,4,a + 2,2,a)

K4(3,2,2,b,1,5) ~ K4(1,2,4,4,b,2)

where a > 3, b > 3.
The proof is completed. o
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