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Abstract. Let G = (V, E) be a graph with v = |V(G)| vertices
and e = | E(G)| edges. An (a, d)-edge-antimagic total labeling of the
graph G is a one-to-one map A from V{G)U E(G) onto the integers
{1,2,---,v + e} such that the set of edge weights of the graph G,
W= {w(zy) : zyeE(G)} form an arithmetic progression with the
initial term a and common difference d, where w(zy) = A(z) +
Ay) + A(zy) for any zy € E(G). If A(V(G)) = {1,2,---,v} then G
is super (a, d)-edge-antimagic total i.e ((a,d)-EAT). In this paper,
for different value of d, we formulate super (a,d)-edge-antimagic
total labeling on subdivision of stars K, for p > 5.

Keywords : Super (a,d)-edge-antimagic total labeling, subdivision of star.

1 Introduction

All graphs in this paper are finite, simple, planar and undirected. The
graph G has the vertex-set V(G) and edge-set E(G). A general reference
for graph-theoretic ideas can be seen in [4]. A labeling (or valuation) of a
graph is a map that carries graph elements to numbers (usually to positive
or non-negative integers). In this paper the domain will be the set of all
vertices and edges and such labeling is called total labeling. Some labelings
use the vertex-set only, or the edge-set only, and we shall call them vertez-
labelings and edge-labelings respectively. The most complete recent survey
of graph labelings can be seen in [8]. In this paper, we formulate super
(a,d)-edge-antimagic total labeling on subdivided stars.
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A graph G is called (a,d)-edge-antimagic total if there exist integers
a >0,d >0 and a bijection A: VUE — {1,2,...,v+ e} such that W =
{w(zy) : zy € E} forms an arithmetic progression starting from a with the
difference d, where w(zy) = A(z)+A(y) +A(zy) for any zy € E. W is called
the set of edge-weights of the graph G. Additionally, if A(V) = {1,2,...,v}
then G is super (a,d)-EAT. A number of classification studies on edge-
antimagic total graphs has been intensively investigated. For further detail
see a recent survey of graph labelings [8]. The subject of edge-magic total
labeling of graphs has its origin in the work of Kotzig and Rosa [1,2],
on what they called magic valuations of graphs. The notion of super edge-
magic total labeling was introduced by Enomoto et al. [7] and they proposed
following conjecture:

Conjecture 1. Every tree admits a super edge-magic total labeling.

In the effort of attacking this conjecture, many authors have consid-
ered super edge-magic total labeling for some particular classes of trees for
example [3, 5,6, 9-13]. Lee and Shah [15] verified this conjecture by a com-
puter search for trees with at most 17 vertices. Earlier Kotzig and Rosa in
(1) proved that every caterpillar is super edge-magic total. However, this
conjecture is still open.

A star is a particular type of tree. Super edge-magic total labeling for
subdivision of star K 3 was studied by Baskoro et al. [6]. In [10] Javaid et al.
furnished super edge-magic total labeling on subdivision of K 4 and w-tree.
In [11] Javaid et al. proved super edge-magic total labeling on subdivision
of Ky, for p > 5. Some of their results are presented in the following
theorems.

Theorem A. For any odd n > 3, G = T'(n,n,n—1,n,2n—1) admits super

edge-magic total labeling with magic constant a = 15n. (]
Theorem B. For any odd n > 3, G = T'(n,n,n—1,n,2n—1,4n—3) admits
super edge-magic total labeling with magic constant a = 25n — 7. 0

Theorem C. For any odd n > 3 and p > 5, G = T'(n,n,n—1,n,ns,...,n;)
admits super edge-magic total labeling, where n, = n+ 5"—_15-”—;—3L(”;42. O

However, super edge-magic total labeling of G = T(n;,n2, n3, ..., n;) for
different 7, is still open. In this paper we fond super (a, d)-edge antimagic
total labelings on subdivision of star K, for p > 5 with n, = 1+ (n +
1)2r—4,

2 Main Results

For n; > 1 and p > 5, let G & T(n;,ny,...,n,) be a graph obtained by

inserting n; — 1 vertices to each of the i—th edge of the star K} p, where
1 <i < p. Thus, the graph T(1,1,...,1) is a star K.
N

p—time
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Before giving our main results, let us consider the following lemma
found in [14] that gives a necessary and sufficient condition for a graph to
be super edge-magic total.

Lemma 1. A graph G with v vertices and e edges is super edge-magic
total if and only if there erists e bijective function A : V(G) — {1,2,---,v}
such that the set of edge-sums S = {A(z) + A(y)|zy € E(G)} consists of e
consecutive integers. In such a case, A extends to a super edge-magic total
labeling of G with magic constant a = v+ e + s, where s = min(S) and

§ ={M=) + A(W)|zy € E(G)}
{fa-(w+1l,a—(v+2),---,a—(v+e)}.

o

Theorem 1. For any odd n > 3, G 2 T(n,n,n + 2,n + 2,2n + 3) admits
super (a,0)-edge-antimagic total labeling with a = 2v + s — 1 and super
(@, 2)-edge-antimagic total labeling with a = v + s + 1, where v = |V(G)|
and s =3n+ 8.

Proof. Let us denote the vertices and edges of G, as follows:
V@) ={cjuf{al |1<i<5; 1<l <ny),
E(G)={cz}|1<i<5)Uf{aizit! |1<i<5; 1<l <ni—1}.
Ifv=|V(G)] and e = |E(G)|, then v =6n + 8, and e = 6n + 7.
Now, we define the labeling A : V — {1,2,...,v} as follows:

Ac) =4n +6.
For !; =1,3,5,...,n;,
(Ll for u=z},
-1 _ b
(n+1)—- 2=, for u=27,

AMu)={ (n+2)+ 851, for u=23,

2(n+2)— -'-“f—l, for u =a:f1“,

( 3(n+2) — 451, for u=zs.

For l; =2,4,6,...,n; — 1,
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( (3n+7)+£212, for 'u.=:c'l‘,
(4n+5) — 252, for u=z?,
Mu)={ (dn+7)+ 552,  for u=af,

(Bn+7)—432  for u= zls,

[ (6n+8) — 52, for u=2zb.

The set of all edge-sums generated by the above formula forms a consecutive
integer sequence s = (3n+7)+1, (3n+7)+2, - -, (3n+7)+e. Therefore, by
Lemma 1, X can be extended to a super (2,0)-edge-antimagic total labeling
and we obtain the magic constant ¢ = v+e+s = 15n+23. Similarly, A can
be extended to a super (a,2)-edge-antimagic total labeling and we obtain
the magic constant a =v+1+4+s=9n +17. u|

Theorem 2. For eny oddn >3, G2 T(n,n,n+2,n + 2,2n + 3) admits
super (a,1)-edge-antimagic total labeling with a = s + ﬂzﬂ, where v =
[V(G)| end s = 3n + 8.

Proof. Let us denote the vertices and edges of G, as follows:

V(@) ={c}u{zl |1<i<5; 1<k <n),

EG)={cz!|1<igs}uf{zbizli* |1<i<5; 1<l <ni -1}
If v = |V(G)| and e = |E(G)| then v = 6n + 8 and e = 6n + 7. Now,
we define the labeling A : V — {1,2,...,v} as in Theorem 1. It follows
that the edge-sums of all edges of G constitute an arithmetic sequence
Bn+7+1,B8n+7) +2,---,(3n + 7) + e, with common difference 1.
We denote it by A = {a;;1 < i < e}. Now for G we complete the edge
labeling A for super (a,1)-edge antimagic total labeling with values in the
arithmetic sequence v + 1, v + 2, ---,v + e with common difference 1. Let
us denote it by B = {b; ; 1 < j < e}. Define C = {agi—1 + be—iz1; 1 <
i < &1} u{ay; +bepr i 1S5 < etl — 1}, It is easy to see that C
constitute an arithmetic sequence withd=1and a = s+ ﬂzﬂ = 12n + 20.

Since all vertices receive the smallest labels so A is a super (12n4-20, 1)-
edge-antimagic total labeling. O

Theorem 3. For any oddn >3, G2 T(n,n,n+4+2,n+2,2n+ 3,4n + 5)
admits super (a,0)-edge-antimagic total labeling with a = 2v + s —1 and
super (a,2)-edge-antimagic total labeling with @ = v + s + 1, where v =
|[V(G)| end s = 5n + 11.
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Proof. Let us denote the vertices and edges of G, as follows:
V(G) ={c}u{al | 1<i<6; 1<L<n},
EG) ={cz! |1<i<6}u{zlzitt|1<i<6; 1<, <ni—1}.

If v = |V(G)| and e = |E(G)| then v = 10n + 13 and e = 10n + 12.

Now, we define the labeling A : V — {1,2,...,v} as follows:

For l; =1,3,5,...,n;,

Au) =

Ac) =6n+09.

( L4+1
2

ly—
(n+1)—-z§-—l,
ia3—1
(n+2)+'12—,
4
-1
2(n+2)—"‘2_1

3(n+2) — 5L,

{ (5n+9)—£“—2‘—1,

For li = 2,4, 6, ey Ny — 1,

Au) = <

( =2
5(n+2) + "12_:
2(3n +4) - 432,

I3—2
(Tn +10) — 452,

i5=2
(8n +11) — 252,

\(10n+13)—L°2_—2,

for

for

for

for

for

for

for

for

for

for

for

for

u=:z:ll‘,

'u.=:z:12’,

u= :I:f,",
ls

u=uzg,

— s
U=z,

—_ e
u—me-

The set of all edge-sums generated by the above formula forms a consec-
utive integer sequence s = (5n + 10) + 1,(5n + 10) + 2,---, (57 + 10) +e.
Therefore, by Lemma. 1, A can be extended to a super (a,0)-edge-antimagic
total labeling and we obtain the magic constant ¢ = v + e + s = 25n + 36.
Similarly, A can be extended to a super (a,2)-edge-antimagic total labeling
and we obtain the magic constant a =v + 1+ s = 15n + 25. a]
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Theorem 4. For any odd n > 3, G = T(n,n,n+2,n+2,2n 4 3,4n +
5,8n+9) admits super (a, 0)-edge-antimagic total labeling with a = 2v+s5—1
and super (a,2)-edge-antimagic total labeling with a = v + s + 1, where
v=|V(G)| and s =9n + 16.
Proof. Let us denote the vertices and edges of G, as follows:

V@) ={cju{zh |1<i<7; 1<l <n},

E(G) ={cz}|1<i<T}u{zhzt* |1<i<T7; 1< <ni =1} If
v = |V(G)| and e = |E(G)| then v = 18n + 22 and e = 18n + 21. Now, we
define the labeling A : V — {1,2,...,v} as follows:

A(C) =10n 4 14.
For l; =1,3,5,...,n4,
[ 43, for u=af,
(n+1) -85, for u=a3,
(+2)+55t,  for u=af,

Mu)={ 2(n+2) - b5t for u=2zf,
3(n+2)— 5L,  for u==zf,

(5n+9)—£5-2_—1-, for u=:z:é°,

| (9n+14) =51, for u=a¥.

For l; = 2,4,6,...,n; — 1,

((9n+15) + 452, for u=z,
10n+13) - 232 for u=z?,

) 2

— !
’ = 33v

(10n +15) + 852, for u==x
M) =< (11n+15) — 452, for u=azl,
12n+16) — =2 for u=zb,

2 5

(14n +18) — f22,  for u= i,

| (18n +22) — 172, for u= .
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The set of all edge-sums generated by the above formula forms a con-
secutive integer sequence s = (n+15)+1,(9n+15)+2,.--,(9n +15) +e.
Therefore, by Lemma 1, A can be extended to a super (a,0)-edge-antimagic
total labeling and we obtain the magic constant a = v + e + s = 45n + 59.
Similarly, A can be extended to a super (a,2)-edge-antimagic total labeling
and we obtain the magic constant e = v + 1 + s = 27n + 39. (]

Theorem 5. For any odd n > 3, G = T(n,n,n+2,n+2,2n + 3,4n +
5,8n+49) admits super (a, 1)-edge-antimagic total labeling with a = s+ %ﬂ,
where v = |V(G)| and s = 9n + 16.

Proof. Let us denote the vertices and edges of G, as follows:

V(@) ={ufef |1<i<7; 1<k <,

E@G) ={cz} |1<i<T}u{zhzb* |1<i<7;1<L<n; -1} If
v = |[V(G)| and e = |E(G)| then v = 18n 4 22 and e = 18n + 21. Now,
we define the labeling A : V — {1,2,...,v} as in Theorem 4. It follows
that the edge-weights of all edges of G constitute an arithmetic sequence
(9n +15) +1,(9n + 15) + 2, --,(9n + 15) + e, with common difference 1.
We denote it by A = {a;;1 < i < e}. Now for G we complete the edge
labeling A for super (a, 1)-edge-antimagic total labeling with values in the
arithmetic sequence v+ 1, v + 2, -+ -, v + e with common difference 1. Let
us denote it by B = {b; ; 1 < j < e}. Define C = {agi—1 +be—iy1; 1 <
i < =1} U {ay; tber ;1315752 &kl —1}. It is easy to see that C
constitute an arithmetic sequence withd =1and a = s+ ﬂzﬂ = 36n + 49.

Since all vertices receive the smallest labels so A is a super (36n+ 49, 1)-
edge-antimagic total labeling.

Theorem 6. For any odd n > 3 and p > 5, G = T(n,n,n + 2,n +
2,n5,...,mp) admits super (a,0)-edge-antimagic total labeling with a = 2v+
s—1 and super (a,2)-edge-antimagic total labeling with a = v+ s+ 1 where

P
v=|V(G)l, s=(@n+6)+ 3 [(n+1)2""5+1] and =1+ (n+1)2~4.

Proof. Let us denote the vertices and edges of G, as follows:
V(G)={c}u{al |1<i<p; 1<ki<n},
E@) ={cz! |1<i<pu{ahizit |1<i<p; 1<l <n;—1).
If v = [V(G)| and e = |E(G)| then

P
v=(4n+5)+ »_[(n+1)2""* +1]

m=5

and
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4
e=4(n+1)+ Y [(n+1)2m4+1].

m=5
Now, we define the labeling A : V — {1,2,...,v} as follows:
P
Ae)=(@Brn+4)+ ) _[(n+1)2m 5 +1].

m=5

When ; =1,3,5,...,n;, where 1 =1,2,3,4 and 5 < i < p, we define

(Lt for u=z},

(n+1)-251,  for u=z,
Au) =

(n+2)+52L1, for u=z?,

[ 2(n+2) — Y51, for u==zy.

-1
> respectively.

Mzt)y=(2n+4)+ i[(n+ 1)2m8 +1] -

m=5

P

When ; = 2,4,6,...,n; —1land a = (2n+4) + Y [(n+1)2™ 5 +1).
=5

Fori=1,2,3,4 and 5 < i < p, we define "

'(a+1)+b;—2, for u=:c‘l‘,

(a+n-1)-22  for u=2zp,
Alu) = <

(e+n)+ 4, for u=uzx¥,

[ (@+2n+1) — 142 2 for u=zk.

and

2
respectively.

M) =(a+2n+1) + Z [(n+1)2™~%) —

m=5

The set of all edge-sums generated by the above formula forms a consec-
utive integer sequence s = a+2,a+3,--+,a+1+e. Therefore, by Lemma
1, A can be extended to a super (a, 0)-edge-antimagic total labeling and we
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obtain the magic constant a = v+e+s = 2v+(2n+5)+ ij [(n+1)2m—5+1].
Similarly, A can be extended to a super (a,2)-edge-antimm=a5gic total labeling
and we obtain the magic constant a =v+1+s=v+2n+7)+ f [(n+
1)2m=% +1). m=e u]
Theorem 7. For any odd n > 3 and p > 5, G & T(n,n,n 4+ 2,n +
2,ns, ...,np) admits super (a, 1)-edge-antimagic total labeling with a = s +
34) if v is even, where v = |V(G)|, s = (2n + 6) + f: [(n+1)2m-5 +1]
and np =1+ (n+1)2°74, e

Proof. Let us denote the vertices and edges of G, as follows:

V(@) ={u{a} |1<i<p; 1<k <ng},

E(G)={cz} |1<i<p}u{zizit |1<i<p; 1<L<mi—1}
If v=|V(G)| and e=|E(G)| then

P
v=(4n+5)+ Y [(n+1)2""* +1]
m=5

and »
e=dn+1)+ Y [(n+1)27"*+1].
m=>5
Now, we define the labeling A : V — {1,2,..,v} as in Theorem 6. It

follows that the edge—weights of all edges of G constitute an arithmetic
sequence s = o + 2,a+3,---,a+ 1+ e with common difference 1, where

a=(2n+4)+ 2[n+1)2"‘ 5 4 1). We denote it by A = {a;;1 <i<e}.

Now for G we complete the edge labeling A for super (a, 1)-edge-antimagic
total labeling with values in the arithmetic sequence v+1,v+42,--+, v +e
with common difference 1. Let us denote it by B = {b; ; 1 < j < e}. Define
C = {agi—1+be—it1; 1 <i < YU {ay; tbesr 1S5S ekl 1}
It is easy to see that C constitute an arithmetic sequence with d = 1 and
P
2 [(n+l)2m—2 ]
a=s+ 3 = 160427 | m=s . Since all vertices receive the
smallest labels so A i 1s a super (a, 1)-edge-ant1mag1c total labeling. (]

3 Conclusion

In this paper, we have shown that a subclass of trees, namely subdivided
stars G = T(n,n,n+2,n+2, ns, ..., np), admits super (a,d)-edge-antimagic
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total labeling when d = 0,1,2,0dd n > 3, n, =1+ (n+1)2P~% and p > 5.
For the remaining cases problem is still open.
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