Prime Cordial labeling of Flower Snark and related graphs *

Kh. Md. Mominul Haque^{1,2}, Lin Xiaohui¹, Yang Yuansheng¹, Zhang Jinbo¹

- Department of Computer Science and Engineering Dalian University of Technology Dalian, 116024, P. R. China
- Department of Computer Science and Engineering Shahjalal University of Science and Technology Sylhet-3114 , Bangladesh

Abstract

A graph with vertex set V is said to have a prime cordial labeling if there is a bijection f from V to $\{1,2,\ldots,|V|\}$ such that if each edge uv is assigned the label 1 for the greatest common divisor $\gcd(f(u),f(v))=1$ and 0 for $\gcd(f(u),f(v))>1$ then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper, we show that the Flower Snark and its related graphs are prime cordial for all $n\geq 3$.

^{*}The research is supported by Chinese Natural Science Foundations (60573022)

[†]corresponding author's email: yangys@dlut.edu.cn

Keywords: Flower Snark; Prime labeling; Prime cordial; Prime cordial labeling

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Let G = (V, E) be a graph with vertex set V and edge set E.

A graph with vertex set V is said to have a prime labeling if its vertices are labelled with distinct integers from $\{1, 2, ..., |V|\}$ such that for every edge uv, the labels assigned to u and v are relatively prime or coprime [2-5].

A graph with vertex set V is said to have a prime cordial labeling if there is a bijection f from V to $\{1,2,\ldots,|V|\}$ such that if each edge uv is assigned the label 1 for gcd(f(u),f(v))=1 and 0 for gcd(f(u),f(v))>1 then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph is called prime cordial if it has a prime cordial labeling. This concept was introduced in [1] by M. Sumndarm, R. Ponraj, and S. Somasundram. They proved that the following graphs are prime cordial: C_n if and only if $n \geq 6$; P_n if and only if $n \neq 3$ or 5; $K_{1,n}$ (n odd); bistars; dragons; crowns; triangular snakes T_n if and only if $n \geq 3$; ladders. We refer the readers to the dynamic survey by Gallian [6].

Let G_n be a simple nontrival connected cubic graph with vertex set $V(G_n)=\{a_i,b_i,c_i,\ d_i:0\leq i\leq n-1\}$ and edge set $E(G_n)=\{a_ia_{i+1},b_ib_{i+1},c_ic_{i+1},d_ia_i,d_ib_i,d_ic_i:0\leq i\leq n-1\}$, where the vertex labels are read modulo n. Let H_n be a graph obtained from G_n by replacing the edges $b_{n-1}b_0$ and $c_{n-1}c_0$ with $b_{n-1}c_0$ and $c_{n-1}b_0$

respectively. For odd $n \geq 5$, H_n is called a Snark, namely Flower Snark. While the other graphs, i.e. all G_n , H_3 and all H_n with even $n \geq 4$, are called the related graphs of Flower Snark. In this paper we denote the vertices a_i , b_i , c_i and d_i as v_{4i} , v_{4i+1} , v_{4i+2} and v_{4i+3} for $0 \leq i \leq n-1$ (the vertex labels are read modulo n). (see the Figure 1.1).

In this paper, we show that Flower Snark and related graph are prime cordial for all $n \geq 3$.

Figure 1.1. The Flower Snark and its related graphs.

2 Prime cordial labeling of Flower Snark graph

Observation 2.1. Let x, y be two positive integers, and let $|x-y| = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$, where p_i are distinct prime factors and α_i are their orders. Then they are coprime if $x \not\equiv 0 \mod p_i$ for $1 \leq i \leq t$.

Theorem 2.1. $G_n(H_n)$ is prime cordial for all $n \geq 3$.

Proof. For $0 \le i \le 4n-1$, we define the function f as follows:

$$f(v_i) = \begin{cases} i+1, & i \equiv 0, 1, 8 \pmod{12}; \\ i+2, & i \equiv 2, 3, 10 \pmod{12}; \\ i+3, & i \equiv 4, 5 \pmod{12}; \\ i+4, & i \equiv 6, 7 \pmod{12}; \\ i-3, & i \equiv 9 \pmod{12}; \\ i-8, & i \equiv 11 \pmod{12}. \end{cases}$$

Case 1. $n \equiv 0 \pmod{3}$. Let $f_0(v_i) = f(v_i)$ for $0 \leq i \leq 4n - 1$. One can easily verify that f_0 is a bijection from $V(G_n(H_n))$ to $\{1, 2, \ldots, 4n\}$. Table 2.1 shows $f_0(G_n(H_n))$ for $n \equiv 0 \pmod{3}$.

Table 2.1. $f_0(G_n(H_n))$ for $n \equiv 0 \mod 3$

		Table	2.1.	$JU(\Box n)$	<u>n</u> ,	, 101		11100				
i	0	1	2	3	4	5	6	7	8	9	10	11
$f(v_i)$	1	2	4	5	7	8	10	11	9	6	12	3
i	12	13	14	15	16	17	18	19	20	21	22	23
$f(v_i)$	13	14	16	17	19	20	22	23	21	18	24	15

Now, we verify that f is a prime cordial labeling of $G_n(H_n)$ for $n \equiv 0 \mod 3$. We leave for the reader to verify the prime cordiality for other cases of $G_n(H_n)$.

 $i \le 4n - 4$ and $i \equiv 0 \mod 4$, $E_3 = \{v_{i+1}v_{i+3} : 0 \le i \le 4n - 4 \text{ and } i \equiv 0 \mod 4\}$, $E_4 = \{v_{i+2}v_{i+3} : 0 \le i \le 4n - 4 \text{ and } i \equiv 0 \mod 4\}$, $E_5 = \{v_{i+1}v_{i+5} : 0 \le i \le 4n - 4 \text{ and } i \equiv 0 \mod 4\}$ and $E_6 = \{v_{i+2}v_{i+6} : 0 \le i \le 4n - 4 \text{ and } i \equiv 0 \mod 4\}$.

For $i = 0 \pmod{12}$, since $|f_0(v_i) - f_0(v_{i+4})| = 2 \times 3$, $f_0(v_i) \neq 0 \pmod{3}$ and $f_0(v_i)$ is odd, by Observation 2.1, we have $f_0(v_iv_{i+4}) = 1$. For $i = 4 \pmod{12}$, since $|f_0(v_i) - f_0(v_{i+4})| = 2$ and $f_0(v_i)$ is odd, we have $f_0(v_iv_{i+4}) = 1$. For $i = 8 \pmod{12}$ and $i \neq 4n - 4$, since $|f_0(v_i) - f_0(v_{i+4})| = 2^2$ and $f_0(v_i)$ is odd, we have $f_0(v_iv_{i+4}) = 1$. For i = 4n - 4, since $f_0(v_0) = 1$, we have $f_0(v_{4n-4}v_0) = 1$. Hence, there are n edges labeled with 1 in E_1 .

For $i = 0, 4 \pmod{12}$, since $|f_0(v_i) - f_0(v_{i+3})| = 2^2$ and $f_0(v_i)$ is odd, we have $f(v_i v_{i+3}) = 1$. For $i = 8 \pmod{12}$, since $gcd(f_0(v_i), f_0(v_{i+3})) \ge 3$, we have $f_0(v_i v_{i+3}) = 0$. Hence, there are 2n/3 edges labeled with 1 and n/3 edges labeled with 0 in E_2 .

For $i=0,4 \pmod{12}$, since $|f_0(v_{i+1})-f_0(v_{i+3})|=3$ and $f_0(v_i)\neq 0 \pmod{3}$, by Observation 2.1, we have $f_0(v_{i+1}v_{i+3})=1$. For $i=8 \pmod{12}$, since $gcd(f_0(v_{i+1}), f_0(v_{i+3})) \geq 3$, we have $f_0(v_{i+1}v_{i+3})=0$. Hence, there are 2n/3 edges labeled with 1 and n/3 edges labeled with 0 in E_3 .

For $i = 0, 4 \pmod{12}$, since $|f_0(v_{i+2}) - f_0(v_{i+3})| = 1$ we have $f_0(v_{i+2}v_{i+3}) = 1$. For $i = 8 \pmod{12}$, since $gcd(f_0(v_{i+2}), f(v_{i+3})) \ge 3$, we have $f_0(v_{i+2}v_{i+3}) = 0$. Hence, there are 2n/3 edges labeled with 1 and n/3 edges labeled with 0 in E_4 .

For $i = 0, 4, 8 \pmod{12}$ and $i \neq 4n-4$, since $gcd(f_0(v_{i+1}), f_0(v_{i+5}))$ ≥ 2 , we have $f_0(v_{i+1}v_{i+5}) = 0$. For i = 4n-4, since $gcd(f_0(v_{4n-3}), f_0(v_2)) \geq 2$ for H_n (or $gcd(f_0(v_{4n-3}), f_0(v_1)) \geq 2$ for G_n), we have $f_0(v_{4n-3}v_2) = 0$ for H_n (or $f_0(v_{4n-3}v_1) = 0$ for G_n). Hence, there are n edges labeled with 0 in E_5 .

For $i = 0, 4, 8 \pmod{12}$ and $i \neq 4n-4$, since $gcd(f_0(v_{i+2}), f_0(v_{i+6})) \geq 2$, we have $f_0(v_{i+2}v_{i+6}) = 0$. For i = 4n-4, since $gcd(f_0(v_{4n-2}), f_0(v_1)) \geq 2$ for H_n (or $gcd(f_0(v_{4n-2}), f_0(v_2)) \geq 2$ for G_n), we have $f_0(v_{4n-2}v_1) = 0$ for H_n (or $f_0(v_{4n-2}v_2) = 0$ for G_n). Hence, there are n edges labeled with 0 in E_6 .

Therefore, there are 3n edges labeled with 0 and 3n edges labeled with 1 in total under f_0 defined in Table 2.1, i.e, f_0 is a prime cordial labeling of $G_n(H_n)$ for $n \equiv 0 \mod 3$.

Case 2. $n \equiv 1 \pmod{3}$. We define the function f_1 as follows:

$$f_1(v_i) = \left\{ egin{array}{ll} f(v_i), & 0 \leq i \leq 4n-5; \ 4n-1, & i=4n-4; \ 4n-2, & i=4n-3; \ 4n, & i=4n-2; \ 4n-3, & i=4n-1. \end{array}
ight.$$

Case 3. $n \equiv 2 \pmod{3}$. We define the function f_2 as follows:

$$f_2(v_i) = \begin{cases} f(v_i), & 0 \le i \le 4n - 7; \\ 4n - 5, & i = 4n - 6; \\ 4n - 3, & i = 4n - 5; \\ 4n - 1, & i = 4n - 4; \\ 4n - 4, & i = 4n - 3; \\ 4n - 2, & i = 4n - 2; \\ 4n, & i = 4n - 1. \end{cases}$$

In Figure 2.1, we show the prime cordial labeling of $G_n(H_n)$ for n = 9, 10, 11, where the edges with label 1 are in dark.

From the Theorem 2.1 the Corollary 2.2 holds.

Corollary 2.2. Flower Snark and related graph are prime cordial for all $n \geq 3$.

Figure 2.1. Prime cordial labeling of $G_n(H_n)$ for n = 9, 10, 11.

References

[1] M. Sundaram, R. Ponraj, and S. Somasundarm, Prime cordial labeling of graphs, *J. Indian Acad. Math.*, 27(2005), 373-390.

- [2] H. L. Fu and K. C. Huang, On prime labellings, Discrete Mathematics, 127(1994), 181–186.
- [3] O. Pikhurko, Trees are almost prime, Discrete Mathematics, 307(2007), 1455-1462.
- [4] Kelli Carlson, Generalized books and C_m -snaks are prime graphs, $Ars\ Combinatoria$, 80(2006), 215–221.
- [5] M. Sundaram, R. Ponraj and S. Somasundarm, On a prime labeling conjecture, Ars Combinatoria, 79(2006), 205-209.
- [6] J. A. Gallian, A survey: A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 14(2007), 131-132.