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Abstract

A graph with vertex set V is said to have a prime cordial label-
ing if there is a bijection f from V to {1,2,...,|V|} such that
if each edge v is assigned the label 1 for the greatest common
divisor ged(f(u), f(v)) =1 and 0 for ged(f(u), f(v)) > 1 then
the number of edges labeled with 0 and the number of edges
labeled with 1 differ by at most 1. In this paper, we show that
the Flower Snark and its related graphs are prime cordial for
all n > 3.
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1 Introduction

We consider only finite undirected graphs without loops or multiple
edges. Let G = (V, E) be a graph with vertex set V and edge set E.

A graph with vertex set V is said to have a prime labeling if its
vertices are labelled with distinct integers from {1,2,...,|V|} such
that for every edge uv, the labels assigned to u and v are relatively

prime or coprime [2-5].

A graph with vertex set V' is said to have a prime cordial labeling
if there is a bijection f from V to {1,2,...,|V|} such that if each
edge uv is assigned the label 1 for ged(f(u), f(v)) = 1 and O for
ged(f(u), f(v)) > 1 then the number of edges labeled with 0 and the
number of edges labeled with 1 differ by at most 1. A graph is called
prime cordial if it has a prime cordial labeling. This concept was
introduced in [1] by M. Sumndarm, R. Ponraj, and S. Somasundram.
They proved that the following graphs are prime cordial: C, if and
only if n > 6; P, if and only if n # 3 or 5; K15 (n odd); bistars;
dragons; crowns; triangular snakes T;, if and only if n > 3; ladders.
We refer the readers to the dynamic survey by Gallian [6].

Let G, be a simple nontrival connected cubic graph with vertex
set V(Gn) = {ai, bi,ci, di : 0 < i < n— 1} and edge set E(G,) =
{aiait1, bibiy1, ciciq1, diai, dib;, dic; : 0 < 0 < n—1}, where the vertex
labels are read modulo n. Let H, be a graph obtained from G,
by replacing the edges b,—1bp and c,—1c0 With by—1co and cn—1bo



respectively. For odd n > 5, H, is called a Snark, namely Flower
Snark. While the other graphs, i.e. all G,,, H3 and all H,, with even
n 2 4, are called the related graphs of Flower Snark. In this paper
we denote the vertices a;, b;, ¢; and d; as vy;, v4i41, vaipe and V4i43
for 0 < ¢ < n — 1(the vertex labels are read modulo n). (see the
Figure 1.1).

In this paper, we show that Flower Snark and related graph are

prime cordial for all n > 3.

Gs(Hs)
Figure 1.1. The Flower Snark and its related graphs.
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2 Prime cordial labeling of Flower Snark graph

Observation 2.1. Let z, y be two positive integers, and let |z—y| =
p3'p3?...pgt, where p; are distinct prime factors and a; are their

orders. Then they are coprime if z # 0 mod p; for 1 <7 <.

Theorem 2.1. G,(H,) is prime cordial for all n > 3.
Proof. For 0 < i < 4n — 1, we define the function f as follows:

(

i+1, i=0,1,8 (mod 12);
i+2, i=2,3,10 (mod 12);
i+3, i=4,5 (mod 12);
i+4, 1=6,7 (mod 12);
i—-3, i=9 (mod 12);
| i-8, i=11 (mod 12).

fvi) = T

Case 1. n = 0 (mod 3). Let fo(v;) = f(v;) for 0 < 72 < 4n —
1. One can easily verify that fp is a bijection from V(G,(H,)) to
{1,2,...,4n}. Table 2.1 shows fo(Gn(Hy)) for n=0 (mod 3).

Table 2.1. fo(Grn(Hy)) for n =0 mod 3

i 0 1 2 3 4 5 6 7 8 9 10 1N
flv) 1 2 4 5 7 8 10 1 9 6 12 3
i 12 13 14 15 16 17 18 19 20 21 22 23
flv;) 13 14 16 17 19 20 22 23 21 18 24 15

i 4n—124n-114n-104n—-94n—-84n-74n—-64n~-54n—-44n-3 dn—-2 4n-1
f(vi) 4n =11 4n —10 4n~8 4n—7 4n—-54n—-4 4n~-24n—-14n-3 4n—-6 4n 4n-9

Now, we verify that f is a prime cordial labeling of G,(Hp,) for
n=0 mod 3. We leave for the reader to verify the prime cordiality
for other cases of G (Hy).

The edges of G,(H,) can be divided into six subsets:
Ei = {vjviy4 : 0<i<4n—4 and i =0 mod 4}, Bz = {vivi43:0 <



i<4n -4 and i =0 mod 4}, E3 = {v;41v;43: 0 < i < 4n —4 and
i =0 mod 4}, By = {vi4ovi43: 0 < i < 4n -4 and i = 0 mod 4},
Es = {vi41vi45 : 0 < i < 4n—4 and i = 0 mod 4} and Es =
{vis2vite: 0 < i < 4n —4 and i = 0 mod 4}.

For i = 0 (mod 12), since |fo(vi) — fo(vitd)] = 2 x 3, fo(v;) #
0 (mod 3) and fp(v;) is odd, by Observation 2.1, we have fo(vivigq) =
1. For i = 4 (mod 12), since | fo(vi) — fo(vi+4)] = 2 and fo(v;) is odd,
we have fo(vivipq) = 1. For ¢ = 8 (mod 12) and i # 4n — 4, since
| fo(vi) — fo(vita)] = 22 and fo(v;) is odd, we have fo(vivitq) = 1.
For i = 4n — 4, since fo(vg) = 1, we have fo(v4n—qvo) = 1. Hence,

there are n edges labeled with 1 in Ej.

For i = 0,4 (mod 12), since | fo(vi) — fo(vit+3)| = 22 and fo(v;) is
odd, we have f(vjvi43) = 1. For ¢ = 8 (mod 12), since ged(fo(v;),
fo(vit3)) = 3, we have fo(v;vi+3) = 0. Hence, there are 2n/3 edges
labeled with 1 and n/3 edges labeled with 0 in Es.

For i = 0,4 (mod 12), since | fo(vi+1) — fo(vit3)] = 3 and fo(v;) #
0 (mod 3), by Observation 2.1, we have fo(viy1vi43) = 1. For i =
8 (mod 12), since ged(fo(vit1), fo(vizs)) = 3, we have fo(vip1vi43) =
0. Hence, there are 2n/3 edges labeled with 1 and n/3 edges labeled
with 0 in E}y.

For i = 0,4 (mod 12), since |fo(viy2) — fo(vi+s)| = 1 we have
Jo(vi+2viy3) = 1. For i = 8 (mod 12), since ged(fo(viy2), f(vigs)) >
3, we have fo(viy2vit3) = 0. Hence, there are 2n/3 edges labeled
with 1 and n/3 edges labeled with 0 in Ej.

For ¢ = 0,4,8 (mod 12) and i # 4n—4, since ged(fo(vi+1), fol(viys))
> 2, we have fo(viy1vi45) = 0. For ¢ = 4n — 4, since ged( fo(van-3),
fo(va)) > 2 for Hy, (or ged(fo(van—3), fo(v1)) > 2 for Gr,), we have
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fo(van—3v2) = 0 for H, (or fo(van-3v1) = O for Gp). Hence, there
are n edges labeled with 0 in F.

For i = 0,4,8 (mod 12) and i # 4n—4, since ged(fo(vi+2), fo(vi+s))
> 2, we have fo(vi42vire) = 0. For i = 4n — 4, since ged(fo(van—2),
fo(n1)) > 2 for Hy, (or ged(fo(van—2), fo(vz)) = 2 for Gr), we have
fo(van—ov1) = 0 for Hy (or fo(vsn—2v2) = O for Gp). Hence, there
are n edges labeled with 0 in FEg.

Therefore, there are 3n edges labeled with 0 and 3n edges labeled
with 1 in total under fo defined in Table 2.1, i.e, fo is a prime cordial
labeling of G (Hy) for n =0 mod 3.

Case 2. n =1 (mod 3). We define the function f; as follows:

’

f(v), 0<i<4n-5;
dn—1, i=4n—4;
Hi(vi)=¢ 4n-2, i=4n-3;
4n, i =4dn — 2;
n-3, i=4n-—1.

\

Case 3. n = 2 (mod 3). We define the function f; as follows:

4

fvi), 0<i<4n-T,
dn —5, i=4n-6;
4n—3, i=4n-5;
fo(wi) =4 4n—1, i=4dn -4
n—-4, i=4n-3;
dn—2, i=4n-2;
L4n, i=4n— 1.

In Figure 2.1, we show the prime cordial labeling of G, (Hp) for
n =9,10,11, where the edges with label 1 are in dark.
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From the Theorem 2.1 the Corollary 2.2 holds.

Corollary 2.2. Flower Snark and related graph are prime cordial
for all n > 3.

Figure 2.1. Prime cordial labeling of G,(H,,) for n = 9,10, 11.
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