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Abstract

Suppose {P;} is a nonempty family of paths for r > 3, Pr is a
path on 7 vertices. An r-coloring of a graph G is said to be {P:}-free
if G contains no 2-colored subgraph isomorphic to any path P. in
{P,}. The minimum & such that G has a {P,}-free coloring using k
colors is called the {P,}-free chromatic number of G and is denoted
by x(p,}(G). If the family {P;} consists of a single graph P, then
we use xp,(G). In this paper, {P.}-free colorings of Sierpiiski-like
graphs are considered. In particular, xp;(Sn), xP,(Sn), xPs(S(n, k)),
xpy (8% (n,k)), and xp (S**(n,k)) are determined.
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1 Introduction

Suppose F is a nonempty family of connected bipartite graphs, each with at
least 3 vertices. An r-coloring of a graph G is said to be F-free [3] if G contains
no 2-colored subgraph isomorphic to any graph F in 7. We denote the minimum
number of colors in an F-free coloring of G by x»(G). If the family F consists of
a single graph F, then we use xp(G). If F is the family of all even cycles, then
F-free coloring is the acyclic coloring [1]. In this paper, we concentrate on the
case when F = {P,}, each path with at least r vertices, r > 3. The {F;}-free
chromatic number of an undirected graph G, denoted by x(p,}(G), is the smallest
integer k for which G admits a {P.}-free coloring with & colors.

{Ps}-free coloring is the 2-distance coloring [4]. An r-coloring of G is called
a 2-distance coloring if there are no 2-colored paths on 3 vertices. The minimum
k such that G has a 2-distance coloring using k colors is called the 2-distance
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chromatic number of G and is denoted by xp;(G) or x24(G). Alon 2] proved
that xpy(G) = (1 + o(1))A? if the girth g(G) = 3,4,5 or 6, and xp(G) =
O(A?/logA) if the girth g(G) > 7. For studies of the 2-distance coloring of
planar and outerplanar graphs, see [19, 21].

If r = 4, then {P;}-free coloring is equivalent to the star coloring [5, 6]. A
star coloring of G is a proper coloring of G such that no path of length 3 in G is
bicolored. The star chromatic number of G, denoted by xrp,(G) or xs(G), is the
smallest integer k for which G admits a star coloring with k colors. Albertson
et al.[3] proved that x,(G) < A(A — 1) + 2 and Fertin et al.[5] proved that
xs(G) = O(A%) for any graph G of maximum degree A. The {P;}-free coloring
has been quite extensively studied by now, see [3].

The Sierpiniski-like graphs appeared naturally in many different areas of math-
ematics and were applied in several other scientific fields. One of the most im-
portant families of such graphs are Sierpiriski gasket graphs that were introduced
by Scorer et al.[23]. These graphs play an important role in psychology [17], dy-
namical systems [9] and probability [12]. For some recent results on Sierpinski
gasket graphs, see [11, 13, 14]. In [15], the graphs S(n, 3) were generalized to the
Sierpiriski graphs S(n, k) for k > 3. The motivation for this generalization came
from topological studies of Lipscomb's space [18, 20], where it is shown that this
space is a generalization of the Sierpiniski triangular curve (Sierpiniski gasket). As
it turned out, the S(n,k) possess many appealing properties and were studied
from different perspectives, as for instance existence of codes (8, 16] and several
metric properties [22]. These graphs have been quite extensively studied by now,
see [13, 15, 16, 22]. The graphs S(n, k). are almost regular and there are at least
two natural ways to extend them to regular graphs. In this spirit, S*(n,k) and
S*++(n, k) were proposed in [14].

Now the colorings of Sierpiriski-like graphs have also been previously studied
in (7, 10, 13]. In section 3, we determine the {P;}-free chromatic number of 5.
for r = 3,4. In section 4 we give the {P;}-free chromatic number of S(n,k). Fu
and Xie [7] proved that xp,(S(n, k)) = k+ 1. In the last section, we consider the
{P,}-free chromatic number of S*(n, k) and §**(n, k) for r = 3,4. The results
obtained in this paper together with the previously known results are summarized
in Table 1.

Table 1 Summary of the results

Sn S(n, k) S*(n, k) §++(n, k)
n>2 n>2,k>2 n>2,k>3 n22,k>2
X Poo 3 k k k
k41, nisodd
6 1 ' k
XPs k+ NN , mniseven +1
4 n=2,3 k+1,n is odd
k k+1
XPq 5 n>4 +1 k+1ork+2,niseven +
XPp 3ordorb kork+1 k+1, nis odd kork+1

k4 1lork+2, niseven
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2 Preliminaries

In this section we define the families of Sierpinski-like graphs. We first intro-
duce the Sierpiniski graphs S(n, k) that are defined on vertex set V(S(n,k)) =
{1,....k}* (JV(S(n,k))) = k) for any n 2> 1 and &k > 1 as follows. We will write
(ur,...,un), ur € {1,...,k}, r € {1,...,n}, for the vertex of graphs S(n,k).
Two different vertices u = (u1,...,un) and v = (v1,...,va), ur,vr € {1,...,k},
r € {1,...,n}, are adjacent iff there exists an h € {1,...,n} such that
Hu=w,fort=1,...,Ah-1;

(ii) un 7 vn; and

(lii)uu=vhandve =up fort =h+1,...,n

In the rest of the paper we will write (u1uz...un) for (ui,u2,...,u,) or even
shorter ujuz...u,. See Fig.1 for the Sierpiiiski graphs S(2,5) and S(3,4).

Fori=1,...,k, let Si(n+1, k) be the subgraph of S(n+1, k) induced by the
vertex set V; = {(ij1...3n)| 4r € {1,...,k},7 € {1,...,n}}. Clearly Si(n+1,k)
is isomorphic to S(n, k). Consequently, for any & > 2, S(n + 1,k) contains k
copies of the graph S(n, k) and k™ copies of the complete graph Ki = S(1,%).
The S(n+-1,k) can be constructed inductively from S(n, k) as follows (cf. Fig.1):

M1 114 141 144 411 414 441 444
4
12 143 443
T34z 413442
y 134 434
RIKAL 4 44
1 v)
12— a1
S(34)
ka2 ) 314341 fa44
3
2 4.
o L %53 isi e 1o
221 4 3 43 334
2227 223232 233 322 323 332 333

Fig. 1. Sierpinski graphs S(2,5) and S(3,4)
e Take k copies S1(n + 1,k),...,Sk(n + 1,k) of S(n, k). Then we have,
V(Si(n+1,k)) = {(ij1.--Gn)| (G1 - .. n) € V(S(n,k)),4,3r =1,... . k,r=1,...,0}.

o For any i # j, we add an edge between the vertex (ijj...Jj) of Si(n + 1,k)
and the vertex (jii...%) of Sj(n+ 1,k).

Note that no edge incident with the vertex (ii...d) of Si(n,k) is added for
anyi=1,...,k.

Sierpiniski gasket graph Sn, for any n > 1, is obtained from S(n,3) by con-
tracting all the edges of S(n, 3) that lie in no triangle, see Fig.2 for Ss.

We label the vertices of S, by using a labeling technique proposed in [13]. Let
(w1...up8j...5) and (u1...urji...7) be end vertices of an edge of S(n,3) that is
contracted to a vertex z of S,. Then the vertex z is labeled with (u1...u,){,j},
where 0 < r < n — 2. There are three special vertices in S,, that are not merged
with any other vertex, namely (1,...,1),(2,...,2),(3,-..,3), called the extreme
vertices of S,. For n = 4, S; is shown on the left-hand side of Fig. 2.
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22...2 {2,3) 33...3

Fig. 2. Sierpiriski gasket graphs Sy and Sn

For any n > 1 and i € {1,2,3}, let S} be the subgraph of S, induced by
G...3), {3}, (G, k}, {k, i} Gun . . ur){4, 5}, (ur - ur){4, K} and (fus ... ur){k, 3},
where u,,j, k € {1,2,3}, r € {0,...,n — 3}. Note that S, is isomorphic to Sn_1.
Sn, n > 2, is schematically shown on the right-hand side of Fig. 2.

The extended Sierpinski graphs S*(n,k) and S**(n,k) were introduced in
the following way. S*(n,k), n > 1 and k > 1, is obtained from S(n, k) by adding
a new vertex w, called the special vertez of S*(n,k), and the edges joining w
with all extreme vertices of S(n,k). (As an example S¥(3,4) is shown on the
left-hand side of Fig. 3).

S**(n,k), n > 2 and k > 1, can be defined as the graph obtained from the
disjoint union of a copy of S(n, k) and a copy of S(n— 1, k) such that the extreme
vertices of S(n,k) and the extreme vertices of S(n — 1,k) are connected by a
matching. (As an example S**(3,3) is shown on the right-hand side of Fig. 3).

st ()

Fig. 3. Graphs S*(3,4) and S++(3,3)

By the definition of F-free coloring, if H is a subgraph of F' then an H-free
coloring of G is certainly an F-free coloring of G. Every member of the nonempty
family of paths P. (r > 3) has a 3 vertex path as a subgraph, combining Propo-
sition 2.2 in [3] (xr.(G) < xms(G) = x(G?) < min{A(G)? + 1,n}), we give the
following lemma:
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Lemma 2.1 For5 < r £ |V(G)|, x(G) = xP.(G) £ xp.(G) £ xp(G) <
xps(G) < min{A(G) + 1,n}.

Corollary 2.2 xp,,(G) = x(G) = xp.(G) for r > |V(G)|.

3 {P.}-free coloring of S,

Theorem 3.1. For any n > 2, xp,(Sa) = 6.
Proof. Since the diameter of S is no more than 2, xp,(S2) = |V(Sz2)| = 6 by the
definition of {Ps}-free coloring. Clearly, for any n > 3, S is a subgraph of S,
thus xp;(Sn) = xp3(S2) = 6. We only need to show that xpa(S,.) < 6 for any
n 2 3. Now, we will use the following notations. Let f. = U f,, be a coloring of
S, and f: be a coloring of Si, for i =1,2,3. Let Gli,j) be an induced subgraph
n-3 n—3 n-3 n—3
of S by Vo, Vo = ({35 331,37 AkibiT - 30, kDT 306},
i,7,k € {1,2,3} and i # j # k. Note that fn(G{,,J}) is the set of colors appearing
on the vertices of GY; ;;. Now, we construct a {P;}-free coloring f of S, with
six colors by induction on n.

Suppose that n = 3. A {P3}-free coloring f3 with 6 colors of S3 is shown
in Figd. f(111) = fa(2{1,2}) = £(3{3,1)) = L /(222) = fH(1{1,2}) =
AG{L2Y) = % A({(1L2D) = LGRS = 3 £(1{2,3) = 623D = 4
£5((3,1)) = £2(2(2,3)) = 5; £2(333) = £3(1{3,1}) = f5(2{3,1)) = 6.

Suppose that the result holds for n—1, n—1 > 2, i.e., there exists a {Ps}-free
coloring fn-1 of Sn—1 that uses six colors. Now we form a coloring fn of Sy, that
uses six colors as follows:

Suppose that n — 1 is odd.

i) = f,,-l(u) ifu € V(S}), where fici = fan.

fiu) = fi_i(u), if u € V(S2), fi_, is obtained from f,-1 by applying
permutation (123)(645), where if f,._l(v) 1 then f2(u) = 2; if fa—1(v) = 2
then f2(u) = 3; if fa-1(v) = 3 then fi(u) = 1; if fn—1(v) = 4 then ff(u) = 5;
if fa—1(v) = 5 then f2(u) = 6; if fu—1(v) = 6 then fZ(u) = 4 (Since S! is
isomorphic to Sn—1, there exists a mapping 08, 8(v) = u for v € V(Sa-1) and
u € V(S3)).

F3u) = f o (u), if v € V(S2), fi., is obtained from f,—1 by applying

n-3

permutauon (165)(243), then exchange the colors of vertices 32.. 2{2 3} and

3...2(3,1}.

Suppose that n — 1 is even.

falw) = fo_1(u), if u € V(S}), where fo_; = fa-1.

i) = fil_i(w), if u € V(S2), fi_, is obtained from f.—; by applying
permutation (132)(654).

) = f (), if w € V(S3), fI', is obtained from f,._l by applying

permutation (156)(234), then exchange the colors of vertices 32.. 2{2 3} and
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n~-3

—~—
32...2(3,1}.

By the way in which f. has been constructed, the only possible bicolored P;
must contain middle vertex {i,7} where 4,5 € {1,2,3} and i # j. We only need
to show that f, is a {Ps}-free coloring of Sx. It is trivial for n = 2,3 (f2 and
f3 are shown in Fig.4). Assume that it holds for n —1,ie., fa-1is 2 {Ps}-free
coloring of Sp—1.

Fig.4. {P3}-free colorings of Sx,n =2,3,4,5.

Suppose that n is even.

Note that f1 = fa—1, and f2 and f32 are obtained from fn-1 by applying per-
mutations (123)(645) and (165)(243), respectively. Suppose that u € V(S%) and
v € V(S3), i # j. For d(u,v) < 2, by the structure of Sa, then u,v € V(Gliqy)-

n-3 n-3
Since we exchanged the colors of the vertices 32...2{2,3} and 32...2{1,3},
by the definition of fn, fa(Gh,2)) = {2,5,1,3,4}, fa(Gla3y) = {4,5,6,2,1},
fa(Glany) = {6,1,3,4,5}. Thus, fa(u) # fa(v).

Suppose that n is odd.

Note that fl = fa—1, and f2 and f3 are obtained from fn—1 by applying
permutations (132)(654) and (156)(234), respectively. Suppose that u € V(Si)
and v € V(S3) and i # j. For d(u,v) < 2, by the structure of S, then

n-3

N~
u,v € V(GT; ;;)- Since we exchanged the colors of the vertices 32...2{2,3} and

n-3
——
32...2{1,3}, by the definition of fn, fn(Gp1,2}) = {3,6,2,1,5}, fa(G(23)) =
{41 2, 3) 51 1}) fn(G{3,l}) = {5)6, 2) 33 1}' Thl.lS, f"(u) # f"(v)’
By the principle of induction, f, is a {Ps}-free coloring of S,.. The theorem
is proved. O
Remark 3.2. Forn =1, S; is isomorphic to K3, xp,(S1) = x(K3) = 3.

Lemma 8.3. Ss is uniquely 4-{P4}-free-colorable (up to isomorphism).
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Proof. Clearly, xp,(S3) > 4. Now we construct a {P;}-free coloring fa of S3
that uses 4 colors. Let fa3(111) = 1, f3(1{1,2}) = 2 and f3(1{1,3}) = 3. There
are now two options: either f3(1{2,3}) = 1 or f3(1{2,3}) = 4. Let us detail each
of those two cases.

Case 1 f3(1{2,3}) = 4.

If f3({1,2}) = f3({1,3}) = 1, then it is impossible to assign colors to ver-
tices 2{1,2} or 2{1,3}; if f3({1,2}) = 1 and f3({1,3}) = 2 (f3({1,2}) = 3 and
f3({1,3}) =1; f3({1,2}) = 3 and f3({1,3}) = 2), then it is impossible to assign
colors to vertices 3{1, 2} or 3{1,3} (2{1,2} or 2{1,3}; 2{1,2} or 2{1,3}). Hence
this case cannot happen.

Case 2 f3(1{2,3})=1.

Since f3(111) = 1, f3(1{1,2}) = 2, f3(1{1,3}) = 3, f3(1{2,3}) = 1, by the
definition of { P, }-free coloring, f3({1,2}) = f3({1,3}) =4 and f3(2{1,2}) # 1,4,
f3(2{1,3}) # 1,4, £3(3{1,2}) # 1,4, f3(3{1,3}) # 1,4. We distinguish four cases.

Case 2.1 f3(2{1,2}) = f3(3{1,3}) =2 and f3(2{1,3}) = f3(3{1,2}) = 3.

By the definition of {Ps}-free coloring, f3({2,3}) # 2,3,4. Thus f3({2,3}) =
1, no color can be given to 3{2,3}. Hence this case cannot happen.

Case 2.2 f2(2{1,2}) = /2(3{1,2}) = 3 and f2(2{1,3}) = fs(3{1,3}) = 2.

Then as in case 2.1, this case cannot happen.

Case 2.3 f3(2{1,2}) = f3(3{1,3}) = 3 and f3(2{1,3}) = fa(3{1,2}) = 2.

Then as in case 2.1, this case cannot happen.

Case 2.4 f3(2{1,2}) = f3(3{1,2}) = 2 and f3(2{1,3}) = fa(3{1,3}) = 3.

By the definition of {P4}-free coloring, f3({2,3}) # 2,3, then {2,3} can be
assigned either color 1 or 4. If f3({2,3}) = 1, then no color can be given to
3{2,3}. If f3({2,3}) = 4, then f3(2{2,3}) # 2,3,4 and f3(3{2,3}) # 2,3,4. If
£(2(2,3)) = f2(3{2,3)) = 1, then f2(222) # 1,2,4 and f5(333) # 1,3,4 ({Ps}-
free coloring of Sz and S3 are shown on the left-hand side of Fig.5). O

Theorem 3.4. For anyn > 4, xp,(Sn) = 5.
Proof. In order to prove the theorem, we first show that xp,(S») = xs(Sn) = 5
for any n > 4. Suppose that we can assign four colors to Ss. Since S3 is
uniquely d4-{P;}-free-colorable, no color can be given to 21{1,2} or 21{1,3}.
Hence, xp,(S4) = 5. We only need to construct a {P;}-free coloring of S,, with
five colors by induction on n. Now, we will use the following notations. Let fi
be a coloring of %, for i € {1,2,3} and fa = (U2, fi be a coloring of S,. Let
fa(GY; ;) be the set of colors appearing on the vertices of GY; ;; (Graphs GT; ;)
are shown on the right-hand side of Fig.5 for ,;j € {1,2,3} and i # j).

Suppose that n = 4. We form a {Ps}-free coloring fs of Ss that uses five
colors (f; is shown on the left-hand side of Fig.5).

Suppose that the result holds for n (for any n > 4), i.e., there exists a {P4}-
free coloring of S, that uses five colors. Now we form a coloring fn41 of Sny1
that uses five colors as follows:

i) = falu), if ve V(Si,y) for i=1,2,3.
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Fig. 5. {Py4}-free colorings of Sz, S3, S4, and Sn.

Now we only need to show that fni1 is a {Ps}-free coloring of Sp41 for n > 4.
We proceed by induction on n. It is trivial for n = 5 (Since f4 is a {Pa}-free
coloring of S4 and f = fs, fs is a {Ps}-free coloring of Si. By the definition of
(G fo = UL, & is a {Ps}-free coloring of Ss). Assume that it holds for
n, i.e., fn is a {Ps}-free coloring of Sn. Note that fiy; = fa, by the induction
hypothesis, fi,, is a {Ps}-free coloring of Sp4; for i = 1,2,3. By the definition
of {P,}-free coloring, one may easily check from the right hand side of Fig.5 that
GY; ;) has a {Ps}-free coloring for %,j € {1,2,3} and ¢ # j. Therefore fn41 is
a {Py}-free coloring of graph Sn+1. The theorem follows from the principle of
induction. O

Remark 3.5. For n = 1, S; is isomorphic to K3, xp,(S1) = x(K3) = 3;
for Sz and S3, xp,(S2) = 4, xp,(S3) = 4 and f2 and f3 are shown in Fig. 5.

Corollary 8.6. For anyn > 1 and any 5 < r < |[V(Sn), 3 € xp,-(Sn) < 5.

4 {P,}-free coloring of S(n,k)

Let pn = UL, ¢h be a coloring of S(n,k) and ¢;, be a coloring of Si(n, k)
for i € {1,...,k}. By the structure of S(n, k), let © = (ij1...Jn-1) € V(Si(n,k))
and v = (ji...4n-1) € V(S(n — 1,k)), i,3r € {1,...,k}, 7€ {1,...,n—1}.
The following lemma is a direct consequence of the proof of Theorem 3.1 in (7].

Lemma 4.1. Let @, be a coloring of S(n, k).
(i) Forn=2,
i) =4, i#d, for ij€{l,...,k},
p2(id) =k+1, for i€{l1,...,k}.
(i) Forn >3
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Pn(u) = Pho1(w), ifu=(ijr...Jn-1) € V(Si(n,k)), fori,jr € {1,...,k}, 7 €
{1,...,n—1}, where pi,_,(u) is obtained from pn—1(u*)) using permuting of col-
ors (1)...(6 — 1)@ k+ 1) +1)...(k),i € {1,...,k}. Then, pn is a {Ps}-free
coloring of S(n, k) and for anyn > 2 and k > 2, xp,(S(n,k)) =k + 1.

As an example, for k = 5, @2 and 3 are shown in Fig.6.

<0
@ » < B N
2 4.5' : ii\v 2 b“\i’i‘\?
» R

STV STA

Fig. 6. {P3}-free Colorings of $(2,5) and S(3,5)

Theorem 4.2. For any n > 2 and any k > 2, xp,(S(n,k)) =k + 1.

Proof. By Lemma 2.1 and 4.1, xp,(S(n,k)) < xpy(S(n,k)) = k+ 1. In the
rest of the proof we only need to prove xp, (S(n,k)) = k + 1. Since 5(2,k) is an
isometric subgraph of S(n, k) for any n > 2, xp,(S(n, k)) = xp,(S(2,k)). As the
graph S(2, k) consists of k complete subgraphs K and x(Kx) = k, it is sufficent
to show that xp,(S(2,k)) > k+ 1 for any k > 2.

Suppose that xp,(S(2,k)) = k for k > 2. Let k = 2. §(2,2) is a path on 4 ver-
tices and it is easy to see that a 2-coloring of S(2, 2) does not satisfy the definition
of a {Py}-free coloring. Suppose that k > 3. The graph S(2, k) consists of k com-
plete subgraphs on k vertices induced by the vertex sets Vi = {(ij)| i = 1,...,k},
i € {1,...,k}. Note that the vertex (ij) € V; is adjacent to the vertex (ji) € V;
for i # j. Since xp,(5(2,k)) = k, by the structure of (2, k), we get a path on 4
vertices colored by two colors, which violates the definition of {P3}-free coloring.
Thus xp, (S(n,k)) > xp(S(2,k)) 2 k + 1, and so xp,(S(n,k)) = k+ 1. The
theorem is proved. O
Remark 4.3. (i)For any n > 1, S(n,1) is Ky and xp(S(n,1)) = 1. (ii)

For any k > 2, xp,(S(1,k)) = xs(Ki) = x(Kk) = k.

Corollary 44. Foranyn > 1, k 2 2and 5 < r < |V(S(n,K)|, k <
xp,(S(n,k)) < k+1.

5 {P,}-free colorings of S*(n,k) and S**(n,k)

In this section we consider the {P;}-free colorings on the extended Sierpiriski
graphs S*(n,k) and S**(n,k). Let ¢, be a {Ps}-free coloring of S(n,k), as
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given in Lemma 4.1.

Theorem 5.1. For any odd n > 2 and any k > 2, xp,(St(n,k)) = k+ 1.
Proof. Suppose that k = 2. Note that S*(n,2) is an odd cycle on 2" +1 vertices.
Since 2" + 1 = 0 (mod 3) for any odd n > 2, it is clear that xp,(S*(n,2)) = 3.
Recall that V(S*(n,k)) = V(S(n,k)) U{w}. By Lemma 4.1, xpy(5¥(n,k)) =
xPs(S(n,k)) = k 4+ 1. We now only need to prove that xp,(S*(n,k)) < k+ 1.
Let £ be a coloring of S*(n, k) as follows:

k+1 ifu=w,
ga={ 0 feevismb.
n—1

By the definition of @n, f(7...1) = j fori,j € {1,...k}. Since £;f (w) = k+1,
by the structure of S*(n, k), it is straightforward to verify that f¥is a {Ps}-free
coloring of S*(n, k) with k + 1 colors. The theorem is proved. O

Note that $*(n,2) is an odd cycle on 2" + 1 vertices. By the definition of

. 4 =:2r
{P4}-free coloring, xp,(S*(n,2)) = { 3 Z > 2.

Theorem 5.2. For any n > 2 and any k > 3, if n is odd, then xp (S*(n,k)) =
k+1; if n is even, then k+1 < xp, (St(n,k)) <k +2.

Proof. For any odd n > 2 and any k > 3, it is easy to see that xp, (S*(n, k) =
k+1 by Theorem 5.1 and Lemma 2.1 and 4.1. For any even n > 2 and any k>3,
let £} be a coloring of S*(n, k) as follows:

k+2 ifu= w,
pa={ 2 feevVismb.
n-1 n-1

- —~—
By the definition of @n, ff(i...ij)=jfori#j, fi(i...i5)=k+1fori=j,
i,j € {1,...k} and f(w) = k+2, it is clear that xp,(S*(n,k)) < k+2 and the
theorem is proved. O

Remark 5.3. (i) For any n > 2, St(n,1) = K3, and so xp,(S*(n,1)) =
xp,(S*(n,1)) = 2. (ii) For any k > 2, S*(1,k) = Ki41, and so xp(8*(1,k)) =
XPy(Ki+1) = x(Kk+1) = k + 1.

Corollary 5.4. Foranyn > 2, k> 2and5 < 7 < |[V(ST(n,k))|, k+1 <
xp.(S*(n,k)) <k+2.

Theorem 5.5. Foranyn>2and k> 2, xp(STH(n,k)) =k + 1.

Proof. Suppose that k = 2. Note that S**(n,2) is an even cycle on 3- 271 ver-

tices. By the definition of {Ps}-free coloring, it is clear that xp,(S**(n,2)) = 3.
For any n > 2 and any k > 3, since $¥%(n,k) consists of k + 1 copies of

S(n—1,k), V(S++(n, k) = V(S(n, k)) UV(S(n — 1,k)). Let f* be a coloring

of §*+(n, k) as follows:

n-1(u ifue V(S(n-1,k),
) = { (P%Ez(z)) it € V(S(,K).
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n-1

By the definition of <p,., for i,j € {1 k} if n is odd, then ff+(i...ij5) =

n—l n—2 n-2

fn(‘ 2j)=3j.fa +(" 7')—fn—l( ) k+1, fa +(7- ".7) fn-l(‘ 1j) =
j;ifniseven,thenf,f“"(z...z)=fn(z...z}=k+1,f,’f""(z...zj)=f,.(z...z,7)=

z-"'\
i (i, .15) = famr( i z]) = j. It is straightforward to verify that ff+
a{Ps }-free coloring of S"""(n k) with k 4+ 1 colors. The theorem is proved. I:I

Theorem 5.6. For any n > 2 and any k > 2, xp, (ST*(n,k)) =k + L.

Proof. Recall that $*+(n,2) is an even cycle on 3-2"~! vertices. By the defini-
tion of {Py}-free coloring, it is easy to see that xp (S*+(n,2)) = x:(S*(n,2)) =
3. Since S(n, k) is a subgraph of S**+(n, k), by Theorem 4.1, xp,(S**(n,k)) >
k+1for any n > 1 and k > 2. Since xp,(S**(n,k)) = k+ 1 by Lemma 2.1,
xps(St*(n,k)) <k +1 for any n > 2 and any k > 1. The theorem is proved. O

Remark 5.7. (i) For anyn > 2, $*¥(n,1) = K2, xp, (ST (n,1)) = xp (ST (n, 1))
= 2. (ii)For any k > 2, S*¥(1,k) = Ki+1r, xp (ST (1,K)) = xp (ST (1,k)) =
x(Kip1) =k + 1.

Corollary 5.8. For any n,k > 2, and 5 < r <| V(§**(n,k)) |, k£ <
xp(S*tH(n,k)) S k+1.
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