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Abstract

In this paper, we introduce the notion of («, 8)-generalized d-
derivations on lattices and investigate some related properties. Also
using the notion of permuting (c,B)-triderivation we characterize
distributive element of a lattice.
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1 Introduction

Lattices play an important role in information theory and cryptanalysis
[5, 13]. The well-established notion of derivations of C*-algebras and rings
has been recently studied by various researchers in the context of lattices
(see [19] and references therein).

Ozturk [17], Ozden and Ozturk {16] introduced the notion of permuting
triderivations in prime and semiprime rings and proved somne results. Later
on Ozturk, Yazarli and Kim [18] developed this notion for lattices.

Zhan and Liu [22] introduced the notions of left, right and regular
f-derivations on BCI algebras and investigated some properties of such
derivations. Yilmaz and Ozturk [20] introduced the notion of f-derivation
on a lattice and discussed some related properties. Later on Zabal and
Firat [21] introduced the notion of symmetric f-bi-derivations on lattices.
Recently Khan and Chaudhry [1] has used the notion of f-derivation on
lattices for proving some results about permuting f-triderivations.

Derivations on various algebraic structures have been an active area of
research since the last fifty years due to their usefulness in various areas of
mathernatics.
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A more general concept of («, §)-derivations have been extensively stud-
ied in prime and semiprime rings. They have played an important role in
the solution of some functional equations (see, e.g., Bresar [7] and references
therein). (o, B)-derivation on prime and semiprime rings have also been
studied by Chaudhry and Thaheem [8, 9, 10, 11] and Ali and Chaudhry
[2]. Recently Asci et al. [3] use the notion of (f, g)-derivations on lattices
and proved some results by using this notion.

In this paper, the notion of (e, B)-generalized d-derivation, which is
more general than the notion of generalized d-derivation [18], is introduced.
We study some properties of this general notion and using permuting (a, 8)-
triderivations give characterization of distributive elements of lattices.

2 Preliminaries

In this section we describe some definitions and results which will be used
in the sequel.

Definition 2.1 [6] A nonempty set L together with the operations A and
V is called a lattice if it satisfies the following conditions for allz,y,z € L :
(1)zAz =z, zVT =1
(2)zAy=yAz, zsVy=yVvz.
(3) (xAyY)Az=zA(yAz2), zVY)Vz=zV(yV2).
(4) @zAy)Vz=2z, (xVy)Azx==z.
The lattice L is denoted by (L, A, V).

Definition 2.2 [6] Let (L, A, V) be a lattice and a nonempty subset M
of L is called a sublattice of L if
a,b € M impliesavbe M andaNbe M.

Definition 2.3 [6] A lattice (L, A, V) is called a distributive lattice if it
satisfies
(5)zA(yVvz)=(zAy)V(xAz) foralz,yz€L,
and
(6)zV(yAz)=(zVy)A(zVz) forallz,y,2€ L.
In any lattice, the above conditions are equivalent.

Definition 2.4 (6] Let (L,A,V) be a lattice. A binary relation < on L
is defined byz <y ifand onlyifcAy=z andzVy=y.

Definition 2.5 [6] A lattice (L,A,V) is called a modular lattice if it
satisfies the following condition for all z,y,z € L
(7)) Ifx <z thenzV(yAz)=(xVy)Az

The following Lemma is already known [19]
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Lemma 2.6 [19] Let (L,A,V) be a lattice. Let < be as defined in def-
inition 2.4. Then (L, <) is a poset for any z,y € L, z Ay is the g.l.b of
{z,y} and = vV y is the L.u.b of {z,y}.

Definition 2.7 [19] Let (L,A, V) be a lattice. A functiond : L — L is
called a derivation on L if it satisfies the following condition:
dizAy)=(dz)Ay)V(zAd(y)) forallz,y€ L.

Definition 2.8 (18] Let (L,A,V) be a lattice. A mapping D(.,.,.) :
LxLxL— L is called a permuting mapping if D(z,y,2) = D(z,z,y) =
D(y,z,z) = D(y, z,z) = D(2,z,y) = D(z,y,z) holds for all z,y,z € L.

Definition 2.9 [18] Let (L, A, V) be a lattice and D(.,.,.) : LxLx L —
L a permuting mapping. The mapping d : L — L defined by d(z) =
D(z,z,z) is called the trace of D(.,.,.).

Definition 2.10 [18] Let (L, A, V) be a lattice and D(.,.,.) : LxLxL —
L a permuting mapping. We call D a permutig triderivation on L, if it
satisfies
D(z Aw,y,z) = (D(z,y,2) Aw) V (x A D(w,y, 2)) for allw,z,y,z € L.

Definition 2.11 [18] Let (L, A, V) be a lattice and D(.,.,.) : LxLxL —
L a permuting mapping. We call D a joinitive mapping, if it satisfies
D(z VvV w,y,z) = D(z,y,2) V D(w,y, z) for all w,z,y,z€ L.

Definition 2.12 (18] Let (L,A,V) be a lattice and d be a trace of a
permuting tri-derivation D. Let G: L — L be a mapping, then G is called
a generalized d-derivation on L if it satisfies the following condition
Gz Ay) =(G(z)Ay)V (z Ad(y)) for allz,y € L.

Definition 2.13 [3] Let (L,A, V) be a latticeanda: L - L, f: L - L
are mappings. Let D(.,.,.) : L x L x L = L be a permuting mapping. We
call D a permuting (a, B)-triderivation on L, if it satisfies the following

condition
D(zAw,y,z) = (D(z,y, z) Aa(w)) V(B(z)AD(w, y, z)) for allw,z,y,z € L.

Definition 2.14 [6] Let (L,A,V) be a lattice. A mapping f:L — L is
called a lattice homomorphism if
(1) f(zAy) = f(z) A f(y),
(2) f(zvy) = f(z)V f(y) for all z,y € L.

Definition 2.15 [3] Let (L, A, V) be a lattice anda: L -+ L, B: L — L
are mappings. Let D be a permuting (a, B)-triderivation of L with trace d.
If z < y implies d(z) < d(y), then d is called an isotone mapping.

527



In this paper we shall use the following results of [3].

Proposition 2.16 [3] Let L be a lattice and d be the trace of permuting
tri-(f, 9)- derivation D on L. Then d(z) < (f(z) V g(z)) for allz € L.

Theorem 2.17 (3] Let L be o distributive lattice and D be a permuting
tri-(f, g)- derivation on L with the trace d. Then d(zAy) = (d(z)A f(y))V
(9(z) Ad@)) v {(9(z) A f(¥)) A [D(z,z,9) V D(z,9,9)]} for all 2,y € L.

Proposition 2.18 (3] Let L be a lattice and d be the trace of permuting
tri-(f, g)- derivation D on L. Then the following conditions are equivalent,
(i) d is an isotone mapping, (i) dzVdy < d(zVy).

Remark 2.19 Imposing the additional condition a(x) < B(z) in the
Proposition 2.16 mentioned above, the following result follows immediately.

Let (L,A,V) be a distributive lattice and « : L — L, B : L — L are
mappings satisfying a(z) < B(z). Let d be the trace of the permuting
(v, B)-triderivation D, then d(z) < B(z) for allz € L.

Remark 2.20 [6] Every distributive lattice is a modular lattice but the
converse is not true, in general.

3 Results

Proposition 3.1 Let (L,A,V) be a distributive lattice and a : L —
L, B: L — L are mappings satisfying a(z) < B(x). Letd be the trace of the
permuting (o, B)-triderivation D, then D(z,y,2) < B(z), D(z,y, 2) < B(y)
and D(z,y,z) < B(2) for all z,y,z € L.

Proof. Since D(z,y,2) = D(z A z,y,2) = (D(z,,2) A a(2)) V (B(z) A
D(z,y, ). Since L is distributive, therefore D(z,y, 2z) = D(z,y, z)A(e(z)V
B(z)), which alongwith a(z) < B(z) implies D(z,y,2) = D(z,y,2) A B(z).
Thus D(z,y,z) < B(z) for all z,y,z € L. Similarly we can show that
D(z,y,z) < B(y) and D(z,y,2) < B(z) for all z,y,z € L.

Remark 3.2 (L,A,V) be a lattice and a: L = L, B: L — L are map-
pings satisfying a(z) < B(z). Let D be a permuting (o, B)-triderivation. It
is obvious from Proposition 3.1 that D(z,y,2) < B(z) A B(y), D(z,y,2) <
B(z) A B(z) and D(z,y,2) < B(y) A B(2) for all z,y,z € L. By a similar
argument D(z,3,2) < (B(z) AB(y)) AB(z) for all 7,9,z € L.
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Theorem 3.3 Let (L, A, V) be a distributive lattice anda: L — L, B :
L — L are mappings satisfying a(z) < f(z) and d a trace of a permuting
(a, B)-triderivation D of L. Then d is an isotone if and only if d(x Ay) =
d(z) Ad(y).

Proof. Let d be isotone. Since zAy < z and zAy < y, therefore d(zAy) <
d(z) and d(z A y) < d(y). Thus d(z Ay) < d(z) Ad(y). Since L is a
distributive lattice, therefore by Theorem 2.17

d(z Ay) = (d(z) A ay)) v (B(z) A dw)) V {(ay) A B()) A [D(z,2,9) v
D(z,y,y)}}, which implies B(z) A d(y) < d(z A y). Using Remark 2.19,
we get d(z) < B(z). Therefore d(z) Ad(y) < B(z) Ad(y) < d(z Ay)
implies d(z) A d(y) < d(x A y). This alongwith d(z A y) < d(z) A d(y) gives
d(z Ay) =d(z) Ad(y) for all z,y € L.

Conversely suppose that d(z Ay) = d(z) Ad(y) and z < y. Since zAy =z,
we get d(z) = d(z A y) = d(z) Ad(y) < d(y). Hence d(z) < d(y) for all
z,y € L. Hence d is an isotone.

Definition 3.4 [14] Let (L, A, V) be a lattice. An element a of L is said
to be distributive whenever, for every z,y € L,
an(zVy)=(aAz)V(aAy).

Example 3.5 Leta: L — L, B: L — L be mappings satisfying a(z) <
B(z) and B(z Ay) = B(z) A B(y). We define D(z,y,z) = ala) A (B(z) A
(B(y) A B(2)). We now verify that D is a permuting (a, B)-triderivation.

We consider D(z A w,y,2) = afa) A (B(z Aw) A (B(y) A B(2)) =
a(a) A {(B(z) A B(w)) A (B(y) A B(2))}. (1)
Also (D(z,y,2) A a(w)) V (B(z) A D(w,y,2)) = {a(a) A (B(z) A (B(y) A
B(z))) Aa(w)} v {B(z) A(e(a) A (B(w) A (B(y) A B(2))))} = {a(a) A (B(z) A
(B() A B(2))) A a(w)} v {B(w) A (a(a) A (B(z) A (B(y) A B(2))))}. Let
M = (a(a) A (B(z) A (B(y) A B(2)))), then the last equation gives (M A
a(w)) V(M A B(w)). Since a(w) < B(w), therefore (D(z,y,z) A a(w)) V
(B(z) AD(w, y, 2)) = (M AB(w)) = {a(a) A(B(x) A (B(y) AB(2))) AB(w)} =
a(a) A ((B(z) A B(w)) A (B(y) AB(2)- (2)
From equation (1) and (2) we get
D(z Aw,y,z) = (D(z,y,2) Aa(w)) V (B(z) A D(w,y, z)).
Hence D(z,y, z) = a(a)A(B(z)A(B(y)AB(2))) is permuting (e, B)-triderivation.

Theorem 3.6 Let (L,A,V) be a latticeand oo : L - LB : L — L be
lattice homomorphisms satisfying o(z) < B(z). Let D: L x L x L — L be
a permuting (o, B)-triderivation on L defined by D(z,y,z) = a(a) A B(z A
(y A 2)) = ala) A (B(z) A (B(y) A B(2))). Then a(a) is distributive if and
only if D is joinitive.

Proof. Let D be a joinitive. By definition of D, we have D(z V w,y,z) =
a(a) A (B(z Vw) A (B(y) A B(z)) = a(a) A((B(z) V B(w)) A (B(y) A B(2))).
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Since D is joinitive, therefore D(z V w,y,z) = D(z,y,2) V D(w,y,2) =
(e(a) A (B(z) A (B(y) A B(2)) V (aa) A (B(w) A (B(y) A B(2)))). Hence
afa) A ((B(z) v B(w)) A (B(y) A B(2))) = (afa) A (B(z) A (B(y) AB(2)))) V
(afa) A (B(w) A (B(y) A B(2))). Thus «(a) is a distributive.
Conversely let a(a) be distributive. Then a(a) A ((B(z) V B(w)) A (B(y) A
B(2))) = (a(a) A (B(z) A (B(y) AB(2)))) V (ala) A (B(w) A (B(y) A B(2))),
which alongwith definition of D implies
D(z V w,y,2) = D(z,y,2) V D(w,y, z). Hence D is joinitive.

Taking a = 8 = 1, the identity on L, we get the following result as a
corollary.

Corollary 3.7 Let (L,A,V) be o lattice and D : Lx Lx L — L be a
permuting triderivation on L defined by D(z,y,2) =aA(zA(yAz)). Then
a is distributive if and only if D is joinitive.

4 (o, f)-generalized d-derivations

In this section, we describe the concept of an (e, 8)-generalized d-derivation
on lattices and prove our results regarding this notion.

Definition 4.1 Let (L,A,V) be a latticeanda: L = L, f: L - L
are mappings. Let d be a trace of a permuting (o, B)-triderivation D. Let
G : L — L be a mapping, then G is called an (a, B)-generalized d-derivation
on L if it satisfies the following condition
G(z Ay) = (G(z) Aaly)) V (B(z) Ad(y)) for all z,y € L.

Proposition 4.2 Let (L,A,V) be a lattice and @ : L — L, B : L —
L are mappings satisfying a(z) < B(z). Let D be a permuting (a,B)-
triderivation of L with trace d. If G : L — L is an (,B)-generalized
d-derivation on L, then
(4) d(z) < G(z),

(ii) Gz Ay) £ G(z) V G(y).

Proof. (i) Since z Az = z for all z € L, we get

G(z) = G(z Az) = (G(z) Aa(z)) V (B(z) Ad(z)). By Remark 2.19, we get
G(z) = (G(z) A a(z)) V d(z).

Hence d(z) < G(z) for all z € L.

(ii) Since G(z) A a(y) < G(z) and B(z) A d(y) < d(y), which alongwith
d(y) < G(y) gives

Gz A y) = (G(z) A aly)) V (B(®) Ad@)) < G(3) V Gy).

Hence G(z Ay) < G(z) V G(y) for all z,y € L.

Proposition 4.3 Let (L,A,V) be a lattice, a: L - L, f: L — L are
mappings satisfying a(z) < B(z) with B is an increasing function and D
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a permuting (o, B)-tridertvation of L with traced. Let G : L — L be an
(a, B)-generalized d-derivation on L. If 1 is the greatest element of L, then
(i) G(1) < d(z) = d(z) = G(2),

(i) d(z) < G(1) = G(z) < G(1).

Proof. (i) Since G(1) < d(z) and £ A1 =z for all £ € L, we have G(z) =
G(1 A1) = (G(1) Aa(x) V (B(1) A d(x)) < (d(z) A a(2)) V d(z) < d(z).
Which implies G(z) < d(z) for all z € L. By Proposition 4.2, we have
d(z) < G(z) for all z € L, this alongwith G(z) < d(z) gives G(z) = d(z)
forall z € L.

(ii) Let d(z) < G(1) for all z € L. Since zAl = z for all z € L, therefore we
have G(z) = G(1Az) = (G(1)Aa(2))V(B(1)Ad(z)) < (G(1)Aa(z))VG(1) =
G(1). Thus G(z) < G(1) for all z € L.

Definition 4.4 Let (L,A,V) be a lattice, « : L — L, B: L — L are
mappings and D a permuting (o, B)-triderivation of L with trace d. Let
G : L = L be an (o, B)-generalized d-derivation on L. We define the set
by : F={z € L:G(z) =d(z)}.

Theorem 4.5 Let (L,A,V) be a lattice, o : L - L, §: L — L are
mappings satisfying a(z) < B(z) and D a permuting (o, B)-triderivation of
L with trace d. Let G : L — L be an (a, B)-generalized d-derivation on L.
If d is decreasing function on L, theny <z andz € F implyy € F.

Proof. Let y <z, x € F, G(y) = G(zAy) = (G(z) Ae(y)) V (B(z) Ad(y)) <
G(z) v d(y) = d(y). Hence G(y) < d(y) for all y € L. By Proposition
4.2, d(y) € G(y) for all y € L, which along with G(y) < d(y) implies
G(y) =d(y) for all y € L. Hence y € F'.

Theorem 4.6 Let (L,A,V) be a lattice, o : L — L, B: L — L are ho-
momorphism satisfying a(z) < f(z) and D a permuting (a, B)-triderivation
of L with trace d. Let G : L — L be an (o, 8)-generalized d-derivation on
L. If G is a decreasing function on L, thenxVy € F for allxz,y € F.

Proof. Sincez < rVyand y <z Vyforall z,y € F and G is a decreasing
function on L, therefore G(z V y) < G(z) and G(z vV y) < G(y) for all
z,y € F. So G(zVy) < G(z) vV G(y) = d(z) V d(y). By Proposition 2.18,
we get d(z) Vd(y) < d(zVy). Thus G(z Vy) < d(z) Vd(y) < d(zVy). So
G(zVy) < d(zVy) for all z,y € F. By Proposition 4.2, we have d(zVy) <
G(z Vy), which alongwith G(z Vy) < d(z Vy) implies G(z Vy) =d(z Vy)
forallz,y € F. HencezVy € F for all z,y € F.

Theorem 4.7 Let (L,A,V) be a lattice, o : L - L, : L - L
are homomorphism satisfying a(r) < B(z) and D o permuting (a, f)-
triderivation of L with trace d. Let G : L — L be an (a, B)-generalized
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d-derivation on L. If G and d are decreasing functions on L, then the set
F={z e L:G(z)=d(z)} is an ideal of L.

Proof. Proof follows from Theorem 4.5 and Theorem 4.6.
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