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Abstract

Let G be a graph with a maximum matching of size q, and let
p < g be a positive integer. Then G is called (p, g)-extendable if every
set of p independent edges can be extended to a matching of size q.
If G is a graph of even order n and n = 2q, then (p, q)-extendable
graphs are exactly the p-extendable graphs defined by Plummer [11]
in 1980.

Let d > 3 be an integer, and let G be a d-regular graph of order
n with a maximum matching of size ¢ = "T" 2> 3 for an integer t > 1
such that n — ¢ is even. In this work we prove that if

() n<(t+1){d+1)-5o0r
(ii) n < (¢ +1)(d +2) — 1 when d is odd,
then G is (2, g)-extendable.

Keywords: Matching, regular graph, (p, g)-extendable graph, (2, q)-
extendable graph.
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We shall assume that the reader is familiar with standard terminology
on graphs (see, e.g., Chartrand and Lesniak [3]). In this paper, all graphs
are finite and simple. The vertex set of a graph G is denoted by V(G), and
n = n(G) = |V(G)| is its order. The neighborhood Ng(z) of a vertex « is
the set of vertices adjacent with x, and the number dg(z) = |Ng(z)] is the
degree of z in the graph G. By §(G) = § we denote the minimum degree
of the graph G. If A is a subset of the vertex set of a graph G, then G[4]
is the subgraph induced by A, and Ng(A) = |J,c4 Na(z). We denote by
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K, the complete graph of order n and by K, the complete bipartite graph
with partite sets A and B, where |A] = r and |B| = s. If G is a graph
and A C V(G), then o(G — A) is the number of odd components in the
subgraph G — A. The closure C(G) of a graph G of order n is the graph
obtained from G by recursively joining pairs of nonadjacent vertices whose
degree sum is at least n until no such pair remains.

A graph G is p-extendable if it contains a set of p independent edges and
every set of p independent edges can be extended to a perfect matching. In
1980, Plummer [11] studied the properties of p-extendable graphs. As an
extension of p-extendable graphs, Liu and Yu [10] defined (p, q)-extendable
graphs as follows. Let G be a graph with a maximum matching of size g,
and let p < ¢ be a positive integer. Then G is called (p, q)-eztendable if
every set of p independent edges can be extended to a matching of size g.
If G is a graph of even order n and 2q = n, then (p, g)-extendable graphs
are exactly the p-extendable graphs defined by Plummer [11]. Examples of
(p, g)-extendable graphs are complete bipartite graphs Ky with r > g.

In 2001, Liu and Yu [10] have given a characterization of (p, g)-exten-
dable graphs, which generalize those given by Little, Grant and Holton (8]
and Yu [14] for p-extendable graphs. The proof of this characterization is
based on an extension of Tutte’s famous 1-factor Theorem [13] by Berge
[1). For the proof of our main theoren, we use the following special case for
p=2.

Theorem 1 (Liu and Yu [10] 2001) Let ¢ and n be positive integers
such that 2 < ¢ < 2. A graph G of order n with a maximum matching of
size q is (2, q)-extendable if and only if for any subset A C V(G)
(1) o(G - A) < |A|+n —2q and
(2) o(G—A) = |A|+n—2q—2k for 0 < k < 1 implies that G[A] contains
a matching of size at most k.

In addition, we also use the following results.

Theorem 2 (Konig [7] 1931, Hall (5] 1935) Let G be a bipartite
graph with bipartition X,Y. Then G contains a matching that saturates
every vertex in X if and only if |S| < |Ng(S)| for all S C X.

Theorem 3 (Zhao [15] 1991) Let d > 2 be an integer, and let G be

graph without odd components such that d < dg(x) < d + 1 for every
vertex z € V(G). If |V(G)| £ 3d + 3, then G has a perfect matching,.
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Theorem 4 (Ore [12] 1960) Let G be a graph of order n > 3. If
do(z) +da(y) 2 n

for all distinct nonadjacent vertices = and y of G, then G is Hamiltonian.

Theorem 5 (Ore [12] 1960, Bondy, Chvdtal [2] 1976) Let G be
a graph of order n > 3. If the closure C(G) is complete, then G is Hamil-
tonian.

Now we present our main result.

Theorem 6 Let d > 3 be an integer, and let G be a d-regular graph
of order n with a maximum matching of size ¢ = 12‘—‘ > 3 for an integer
t > 1 such that n — t is even. If

() n<(t+1)(d+1)~5o0r
(i) n < (¢t +1)(d+2) — 1 when d is odd,

then G is (2, g)-extendable.

Proof. Suppose to the contrary that G is not (2, g)-extendable. Then it
follows from the hypothesis and Theorem 1 that there exists aset A C V(G)
such that o(G — A) > [A|+t+1oro(G—-A) = |A|+t -2k for 0< k<1
and G[A] contains a matching of size k + 1.

We call an odd component of G — A large if it has more than d vertices
and small otherwise. We denote by a and 3 the number of large and small
components of G — A, respectively. Since G is a d-regular graph, it is easy
to sec that there are at least d edges in G joining each small component of
G — A with A. The d-regularity of G therefore implies

dp < djA|. (1)

Case 1. Assumc that o(G — A) > |A| +t+ 1. If n is even, then the
numbers o(G — A) and |A| are of the same parity, and if n is odd, then the
numbers o(G — A) and |A[ are of different parity. Since n and ¢ are of the
same parity, we therefore deduce that

a+B=0G-A)>|A|+t+2. )

Inequality (1) shows that 8 < |A| and thus (2) yields o > ¢ + 2. Applying
the hypothesis (i), we arrive at the contradiction

E+1)(d+1)=52n>|Al+a(d+1)+ 8> (t+2)(d+1).
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If d is odd, then each large component contains at least d+ 2 vertices. Now
the hypothesis (ii) leads to the contradiction.

t+1)d+2)—12n>|Al+a(d+2)+ 82> (t+2)(d+2).

Case 2: Assume that a + 8 = o(G — A) = |A| + t and G|[A] contains
an edge. This implies |A| > 2 and

B < djA| - 2.

This leads to 8 < |A| — 1 and thus & > ¢t + 1. Now the hypothesis (i) or
(ii) yields the contradiction

E+1)d+1)-52n>|Al+a(d+1)+ B> (t+1)(d+1)
or
t+1)d+2)-1>2n2|Al+a(d+2)+ 82 (t+1)(d+2).

Case 3: Assume that a+ 8 = o(G — A) = |A|+t—2 and G[A] contains
a matching of size 2. This implies |A] > 4, 8 < |A|-1und thusa >t —1.
If @ > t + 1, then we obtain a contradiction as in Case 2.
If U is a small component of minimum order in G — A, then we observe
that
V({U)| 2 d-|A]+1. @)

Subcase 8.1: Assume that o = t. It follows that § = |A| -2 > 2.
If |A| > d, then the hypothesis (i) or (ii) yields the contradiction
> |Al+td+1)+8

= 2|A|-2+t(d+1)

> 2d-2+t(d+1)

= (t+1)(d+1)+d-3

(t+1)(d+1)-5>n

or

t+1)(d+2)-12n > |Al+t(d+2)+8
> d+t(d+2)+2
= (t+1)(d+2).
If 4 < |A] < d -1, then the hypothesis (i) or (ii) and the bound (3) lead
to the contradiction

(t+1)(d+1)-5>2n > |Al+t(d+1)+(|4]-2)|[V(U)|
> Al +t(d+1)+2(d—|Al+1)
> |Al+td+1)+(d—|A]+1)+2

(t+1)(d+1)+2
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or

t+1)(d+2)—-12n > [A+t(d+2)+ (4] -2)V{U)|
> |Al+td+2)+2(d-]A]+1)
> |Al+td+2)+(d-]A|+1)+2

(t+1)(d+2)+1.

Subcase 3.2: Assume that a =t — 1. It follows that 8 =|A] -1 > 3.
Subcase 3.2.1: Assume that n < (¢t + 1)(d + 1) — 5. If |A| > d, then we
obtain the contradiction

(t+1)(d+1)-5>n A+t ~-1)d+1)+8
24| - 14 (t-1){d+1)
2d—-1+(t-1)(d+1)

(t+1)(d+1) - 3.

v v

If 4 < |A| £ d -1, then it follows from (3) that
(t+1)(d+1)=-5>2n>|Al+ (t-1)(d+ 1)+ (JA] = 1)(d - |Al + 1). (4)

If we define {4| = z and g(z) = = + (z = 1)(d — = + 1), then, because of
4 < |A| £ d -1, we like to determine the minimum of the function g in the
interval I : 4 <z <d - 1. It is straightforward to verify that

min{g()} = 9(4) = g(d— 1) =3 - 5.
Combining this with the inequality (4), we arrive at the contradiction

E+1)d+1)-5>n > |A[+(t—1)(d+1)+ (4] - 1)(d - |A] + 1)
(t-1)(d+1)+3d—5
t+1)d+1)+d-7.

Subcase 3.2.2: Assume that disodd andn < (¢+1)(d+2)—1. Sinced is
odd, n is even, ¢ > 2 is even, and there exists at least one edge in G joining
each large component of G — A with A. This implies o + df < d|A| — 4.
Since 8 =|A| -1 and a =t — 1, we deduce that ¢t + 3 < d and thus d > 5.

Subcase 3.2.2.1: Assume that |A] > d + 3. This assumption yields the
contradiction

v

Al + (¢ -1)(d+2)+ 8
204l =1+ (t—1)(d+2)
2d+5+ (¢t — 1)(d +2)
(t+1)(d+2)+1.

t+1)d+2)—1>n

v
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Subcase 3.2.2.2: Assume that |A| = d + 2. This implies

t+1)d+2)-1>n > |[Al+{E-1)(d+2)+8
92A| -1+ (t—1)(d+2)
= 2d+3+(t—-1)(d+2)
= (t+1)d+2) -1

Consequently, all large components of G — A are of order d + 2 and all
small components of order one.

Next we will show that G contains a matching of size at least g + 1.
Since G is d-regular, there are at most d — ¢ — 2 edges in G joining each
large component of G — A with A. If Q is a large component, and hence
of order d + 2, and z and y are two nonadjacent vertices of @, then we
conclude that

do(z) +dg(y) 2 2d —(d—t—2) > d+2.

Therefore, by Theorem 4, the component @ is Hamiltonian.

Let zw be an edge joining a large component of G — A with a vertex
w € A, and let B consist of the vertices of the small components of G — A.
In addition, let H be the bipartite graph with the partite sets A — w and
B together with all edges of G between A —w and B. Then dy(z) >d—-1
for all z € B and there are at least two vertices of degree d in B. Applying
the theorem of Konig-Hall (Theorem 2), we deduce that H has a perfect
matching. Altogether, we observe that G has a matching of size at least
g+1l= 1’—'-(;;21, a contradiction to our hypothesis.

Subcase 3.2.2.8: Assume that |A| = d + 1. If there exists a small
component with at least 5 vertices, then we arrive at the contradiction

(t+1)(d+2)-12n > [A]+(t-1)(d+2)+5+8-1
20A|+ (¢t —1)d+2)+3
2d+2) + (t—1)(d+2) +1
(t+1)(d+2)+ 1.

If there is one small component of G — A with exactly three vertices, then
there are at least

(B-1)d+3(d—2) =d(d+2)—6

edges from the small components to A. This is a contradiction to the fact
that there are at most d(d+1)—t—3 edges from A to the small components.
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So there remains the case that all small components of G— A are isolated
vertices. If one large component has at least d 4 6 vertices, then we arrive
at the contradiction

E+1)d+2)—12n> A+ (t-1)(d+2)+4+8=(+1)(d+2) + 1.

Hence all large components of G — A are of order at most d + 4. As above,
we will show that G contains a matching of size at least g+ 1. Since G is d-
regular, there are at most d — ¢ — 2 edges in G joining each large component
of G — A with A. If Q is a large component, and hence of order at most
d + 4, and = and y are two nonadjacent vertices of @, then we conclude
that

do() +do(y) 2 24— (d—t—2) > d+4,

since ¢ > 2. Therefore, by Theorem 4, the component Q is Hamiltonian.

Let 2w be an edge joining a large component of G — A with a vertex
w € A, and let B consist of the vertices of the small components of G — A.
In addition, let H be the bipartite graph with the partite sets A —w and B
together with all edges of G between A—w and B. Then dy(z) > d—1 for all
z € B and there is at least one vertex of degree d in B. Applying Theorem
2, we deduce that H has a perfect matching. Altogether, we observe that
G has a matching of size at least ¢ + 1 = ﬂ;“—zl, a contradiction to our
hypothesis.

Subcase 3.2.2.4: Assume that |A| = d. If there exists a small component
of G — A with at least 7 vertices, then we arrive at the contradiction

(E+1)(d+2)-12n> A+ (t—1){d+2)+7+B8-1=(t+1)(d+2) +1.

If there exists a small component of G — A with exactly 5 vertices, then
there are at least

(B-1)d+5(d—4)=d?+3d-20

edges from the small components to A, and there are at most d2 —t — 3
edges from A to the small components of G — A. This leads to 3d +¢ < 17,
a contradiction when d > 7. In the case that d = 5, we observe that
d = |A| =5, § =4, t =2, the small component with exactly five vertices
is the complete graph K3, the remaining small components arc of order
one, the large component is of order d + 2 = 7 and n = 20. Now it is a
simple matter to verify that G has a perfect matching, a contradiction to
the hypothesis.

If there exists a small component of G — A with exactly 3 vertices, then
there are at least

(B-1)d+3(d-2)=d*+d-6
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edges from the small components to A, and there are at most d>—t—3 edges
from A to the small components of G — A. This leads to the contradiction
d+t<3.

So there remains the case that all small components of G — A are isolated
vertices. If one large component has at least d + 8 vertices, then we arrive
at the contradiction

(E+1)(d+2) =120 2 |A|+ (- 1)(d+2)+ 6+ =(t+1)(d+2)+1.

Hence all large components of G — A are of order at most d + 6, and there
are at most d — ¢t — 2 edges in G joining each large component of G — A
with A. If Q is a large component, and hence of order at most d + 6, and
z and y are two nonadjacent vertices of Q, then

do(z) +do(y) 2 2d—(d—t—2)=d+t+2>d+6

when ¢ > 4, and hence, by Theorem 4, the component Q is Hamiltonian.
It follows as before that G has a matching of size at least g+ 1 = ﬂ;-_zl
when t > 4, a contradiction to our hypothesis.

Suppose now that ¢t = 2, and let @ be the only large component. If Q
has order at most d+4, then we arrive at a contradiction as before. Assume
next that |V(Q)| = d + 6. This implies that there are at most d — 4 edges
from Q to Ain G — A.

If d = 5, then let zw be the edge joining @ with a vertex w € A. Then
Q — z is a connected graph of order 10 such that the degrees of the vertices
in Q — z are either 4 or 5. Using Theorem 3, we deduce that QQ — z has a
perfect matching. Consequently, G has a perfect matching, a contradiction.

Assume that d > 7. Since there are at most d — 4 edges from @ to A,
the minimum degree §(Q) = 4. If Q has at most three vertices of degree
less than d, then it is easy to see that the closure C(Q) of Q is complete,
and thus, by Theorem 5, @ is Hamiltonian. If Q has at least four vertices
of degree less than d, then

do(z) +dg(y) >2d—(d—6)=d+6

for each pair z and y of nonadjacent vertices, and @ is also Hamiltonian
according to Theorem 4. This again shows in each case that G has a perfect
matching, a contradiction.

Subcase 3.2.2.5: Assume that 4 < |A| < d — 1. Using inequality (3),
and the function g(z) from Subcase 3.2.1, we arrive at the following con-
tradiction for d > 9.

t+1)d+2)-1>2n > |A|+(¢t-1)(d+2)+ (|4 —1)(d—-|A]+1)
> (t—1)(d+2)+3d-5

(t+1)(d+2)+d-09.
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Assume that d = 7. If | A] is even, then we have instead of (3) the better
bound |V(U)| > d — |A| + 2. This implies

(t+1)(d+2) - 12n2 |A]+(t—1)(d+2) + (JA] - 1)(d ~ |4] +2).
This yields for |A| = 6 the contradiction

(t+1)d+2)-12>2n > 64+ (—1)(d+2)+5d—4)
(t+1)(d+2)+3d— 18,

and for |A| = 4 the contradiction

(t+1)d+2)-12n > 44+t —-1)(d+2)+3(d-2)
= (t+1)(d+2)+d-6.

In the remaining case |A| = 5, inequality (3) implies [V(U)| > 3. If
[V(U)| = 3 or |V(U)| = 5, then there are at least 3(d — 2) + 3d = 36
or 5(d — 4) + 3d = 36 edges joining the small components of G — A with
A, a contradiction to the fact that there are at most 5d —4—1 = 30 cdges
joining A with the small components of G — A. In the case |V/(U)| = 7, we
deduce that n > 42 when ¢ = 2 and n > 60 when ¢t = 4, a contradiction to
n <26 when t =2 and n < 44 when t = 4.

Finally, assume that d = 5 and thus |[A| = 4 and t = 2. Inequality 3)
implies |V(U)| > 3. If all small components of G— A are of order three, then
there are at least 9(d—2) = 27 edges joining the small components of G — A
with A, a contradiction to the fact that there are at most 4d —4 — 1 = 15
edges joining A with the small components of G — A. In the case that there
is a small component of order 5, we conclude that n > 22, a contradiction
ton < 20. Since we have discussed all possible cases, the proof of Theorem
6 is complete. O

The following examples will demonstrate that the bound given in The-
orem 6 (i) is best possible when d > 4 is even.

Example 7 Let d > 4 be an even integer. Let Kg4_1 be the complete
bipartite graph with the larger partite set {z1,zs,...,z4}, and let H be
consists of Ky4-) together with the edge set {z,x3, z3z,,... yZd—1Zq}. In
addition, let H,, Ha,..., H,_, be t — 1 copies of the complete graph Ky,,.
We define the graph G of order n = (t+1)(d+1) —3 as the disjoint union of
H,H\,H,,..., H,_,. The resulting graph G is d-regular, and its maximum
matching is of size ¢ = "T“ However, the pair of edges z,z and z3z, is
not contained in a matching of of size q. This example shows that Theorem

6 (i) is best possible when d > 4 is even.
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Example 8 Let H be the graph with vertex set {uj,ug,us,us,v1,v2}
and edge set {vlul,vlug,vlug,vgul,vgug,vgua,ulug,u3u4}. In addition,
let H, and H} be two copies of the complete graph Ks with vertex sets
{z1,22,%3,%4,75} and {y1,Y2,¥3,Ys,¥s}, respectively. If we delete the
edges T1T2,T3%4,Z4Ts in Hi and y1y2,ya3y4, yays in Hj, then we denote
the resulting graphs by H; and H,. Now let G be the disjoint union of
H,H; and H, together with the two edges z4u4 and yqus. Then G is a
3-regular graph of order 16 with a maximum matching of size 7, however,
the pair of edges ujuz and ugu4 is not contained in a matching of size 7.
This example shows that Theorem 6 (ii) is best possible ford =3 and t = 2.

Example 9 Let H' be a bipartite graph with the partite sets
A= {ula U2, Uz, U4, u5} and B= {vla V2, ’03}

such that each vertex of B is connected with each vertex of A by an edge.
Now let H consist of H’ together with the edges uju2, uous, uzug and uqu,.
In addition, let H{ and H} be two copies of the complete graph K7 with ver-
tex sets {z1, T2, T3, T4, T5, T6, Z7} and {y1, Y2, Y3, ¥4, ¥s, Y6, Y7}, respectively.
If we delete the edges =122, T3Z4, TsT6, TeZ7 in H] and y1y2, Y3y, Ys¥e, Y6yr
in H}, then we denote the resulting graphs by H; and Ha. Now let G be
the disjoint union of H, H, and Hj together with the two edges zeus and
yeus. Then G is a 5-regular graph of order 22 with a maximum matching
of size 10, however, the pair of edges uju2 and uau, is not contained in
a matching of size 10. This example shows that Theorem 6 (ii) is best
possible for d =5 and ¢t = 2.

For odd integers d > 7, I think that the following better bound for n is
valid.

Conjecture 10 Let d > 7 be an odd integer, and let G be a d-regular
graph of order n with & maximum matching of size ¢ = 2=t > 3 for an
even integer t > 2. If n < (¢ + 2)(d + 2) — 8, then G is (2, g)-extendable.

The next examples will show that Conjecture 10 would be best possible
for t =2.

Example 11 Let d > 7 be an odd integer, and let H' be a bipartite
graph with the partite sets A = {uy,u2,...,uq} and B = {vy,vg,. .. ,Vd—2}
such that each vertex of B is joined to each vertex of A by an edge. Now

let H consist of H’ together with the edges ujug, ugus,...,ud—2u4—1 and
ug—1u;. In addition, let Hj and Hj be two copies of the complete graph
Kgyo with vertex sets {z1,z2,...,Z44+2} and {v1,92,--+,Yd+2}, respec-

tively. If we delete the edges 172,324, ..., ZdTd+1 and z441Z442 in Hj
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and ¥1%2,Y3Y4, - - ., Ya¥a+1 and yay1ya+2 in Hj, then we denote the result-
ing graphs by H; and H,. Now let G be the disjoint union of H. ,H, and
H, together with the two edges x4 uq and Ya+1uq- Then G is a d-regular
graph of order 4d + 2 with a maximum matching of size 2d, however, the
pair of edges u uz and uguy is not contained in a matching of size 2d.

In Theorem 6 we considered regular (2, g)-extendable graphs that did
not have perfect matchings. We now consider (2, g)-extendable graphs with
perfect matchings.

Observation 12 Let d > 5 be an integer, and let G be a d-regular of
even order n. If n < 2d — 4, then G is 2-extendable.

Proof. Let uv and zy be two arbitrary nonincident edges of G, and define
the subgraph G’ = G — {u,v,7,y}. Then G’ is of even order such that
n(G’) < 2d - 8 and §(G’) > d — 4. By the classical thcorem of Dirac 4],
G’ has a Hamiltonian cycle. Consequently, the pair of edges uv and zy is
contained in a perfect matching of G, and thus G is 2-extendable. O

Example 13 Let d > 5 be an integer. Let K4 q4_o be the complete bi-
partite graph with the larger partite set {z}, zs, ... yZa}, and let G consists
of Ky4-2 together with the edge set {z;,z3,zoz3,... yTd—1%d, Tqax1}. The
resulting graph G of order 2d — 2 is d-regular, and it has a perfect match-
ing. However, the pair of edges z,z5 and zaz, is not contained in a perfect
matching. This example shows that Observation 12 is best possible.

Remark 14 If ¢ is the size of a maximum matching in a d-regular graph
of order n with d > 3, then Henning and Yeo [6] have proved recently that

d?2+4 nn-1
> mi —_——— —_ — i
Q_mln{(d2+d+2)x2, 2 }whendls even

and
> (d®—d?—2)n—2d+2
7= 2(d° — 3d)
In the papers by Yu [14] and Liu and Yu [9) one can find other extensions

of p-extendability, which are stronger and which are only defined for graphs
with a perfect or almost perfect matching.

when d is odd.
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