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Abstract

Let a and b be integers such that 1 < @ < b, and let G be a

graph of order n with n > L"l"—mf_‘:_—':zﬂ, and the minimum degree

§(G) > G’_l)z‘(:i:)(b'“'z), and let g(z) and f(z) be two nonnega-
tive integer-valued functions defined on V(G) such that a < g(z) <
f(z) < b for each = € V(G). We prove that if |[Na(z) U Ne(y)| >
L:'—_,_‘bm for any two nonadjacent vertices £ and y in G, then G has a
(9, f)-factor. Furthermore, it is showed that the result in this paper
is best possible in some sense.
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1 Introduction

The graphs considered in this paper will be finite and undirected simple
graphs. Let G be a graph. We denote by V(G) and E(G) the set of vertices
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and the set of edges, respectively. For any = € V(G), we denote by dg(z)
the degree of z in G and by Ng(z) the set of vertices adjacent to = in G.
We write Ng|z] for Ng(z) U {z}. The minimum degree of vertices in G is
denoted by 6(G). For S C V(G), we define Ng(S) = UzesNa(z), and G|9]
is the subgraph of G induced by S. We write G — S for G[V(G) \S). Let S
and T be disjoint subsets of V(G). We denote by eg(S,T) the number of
edges joining S and T. A matching in a graph G is a set of edges of G with
the property that no two edges are adjacent. A k-matching is a matching
of size k.

Let g(z) and f(z) be two nonnegative integer-valued functions defined
on V(G) such that g(z) < f(z) for each z € V(G). A (g, f)-factor of graph
G is a spanning subgraph F of G such that g(z) < dp(z) < f (x) for each
z € V(G) (Where of course dr denotes the degree in F). If g(z) = @ and
f(z) = b for each z € V(G), then a (g, f)-factor of G is called an [a, b]-
factor of G. If g(z) = f(z) = k for each = € V(G), then a (g, f)-factor of G
is called a k-factor of G. The other terminologies and notations not given
in this paper can be found in [1].

The following results on k-factors and [a, b]-factors and (g, f)-factors are
known.

Theorem 1 2 Let G be a graph, and let g and f be two non-negative
integer-valued functions defined on V(G) such that g(z) < f(z) for each
z € V(G). If 9(z) < de(z) and (f(2) —1)da(y) 2 (de(z) —1)g(y) for each
z,y € V(Q@), then G has a (g, f)-factor containing any edge e of G.

Theorem 2 81 Let G be a graph, and let g and f be two non-negative
integer-valued functions defined on V(G) such that g(z) < f(z) for each
z € V(G). If 4(z) < da(z) and (f(z) — K)da(y) > (do(z) — K)e(w) for
each z,y € V(G), then G has a (g, f)-factor containing any k edges of G.
Where k is one non-nagetive integer.

Theorem 3 31 Let G be a graph, and let g and f be two non-negative
integer-valued functions defined on V(G) such that g(z) < f (z) for each
z € V(G), M is an (rk — 7 + 1)-matching of G. If g(z) < de(z) and
(f(z) - K)de(y) = (de(z) — k)g(y) for each z,y € V(G), then G has a
(g, f)-factor containing M. Where r and k are two positive integers.

Theorem 4 4 Let k be an integer such that k > 2, and let G be a con-
nected graph of order n such thatn > 9k —1—4/2(k — 1)2 + 2, kn is even,
and the minimum degree is at least k. If G satisfies [Ng(z) U Ne(y)| 2
%(n + k —2) for each pair of nonadjacent vertices T,y € V(G), then G has
a k-factor.



Theorem 5 81 Let aand b be integers such that 1 < a < b, and let G be a
graph of order n with n > _ﬁia_ﬂw, and 6(G) > a. If

INa(z) UNc(v)| 2 —— b

for any two nonadjacent vertices z and y of G, then G has an [a, b]-factor.

Theorem 6 (¢ Let aand b be integers such that 2 < a < b, and let G be a
graph of order n with n > 6a+b. Put A = 251, For any subset X C V(G),
we suppose

Ne(X)=V(G)  if IX|2 |15

or

INe(X)I 2 1+NIX] if 1X] < 25 -

Then G has an [a, b]-factor.

Theorem 7 ] Let G be a graph, and let t, a and b be integers such that
0<a<bandt>3. IfG isa K.-free graph and its minimum degree is
at least

D@t +b

btat—1). t—1 b+a(t 1)
b )l- 2(t 1) ]_ ([ ])2_1

20t —

then G has an [a, b]-factor.

2 The Proof of Main Theorem

In this paper, we mainly prove the following theorem about the existence
of a (g, f)-factor, which is an extension of Theorem 4 and Theorem 5. We
extend Theorem 4 and Theorem 5 to (g, f)-factors.

Theorem 8 Let a and b be integers such that 1 < a < b, and let G be a
graph of order n with n > -(‘ib&ﬂ’_—l, and §(G) > B-1)? "(“"'i)(b"‘"z)

and let g(z) and f(z) be two nonnegatwe integer-valued functions defined
on V(G) such that a < g(z) < f(x) < b for each z € V(G). If |Ng(z) U
Neg(y)| 2 ¢=ln for any two nonadjacent vertices x and y in G, then G

a+b
has a (g, f)-factor.

In order to prove our main theorem, we depend heavily on the following
theorem, which is a special case of Lovdsz's (g, f)-factor theorem.



Theorem 9 [ Let G be a graph, and let g(z) and f(z) be two nonnegative
integer-valued functions defined on V(G) such that g(z) < f(x) for each
z € V(G). Then G has a (g, f)-factor if and only if

8c(S,T) = §(S) +dg-s(T) —9(T) 2 0

for all disjoint subsets S and T of V(G).

The Proof of Theorem 8. Suppose that G satisfies the conditions
of Theorem 8, but it has no (g, f)-factor. Then, by Theorem 9, there exist
disjoint subsets S and T of V(G) such that

8c(S,T) = §(8) +dg-s(T) — 9(T) < -1 1)
We choose subsets S and T such that |T| is minimum and S and T satisfy
(1).
We first prove the following claims.
Claim 1. dg_s(z) < g(z) <b—1foreachzeT.

Proof. Suppose that there exists a vertexz € T such that dg_s(z) >
g(z). Then the subsets S and T — {z} satisfy (1), which contradicts the
choice of T. Therefore,

dg-s(z) <g(z) £b-1 (2)

foreachz € T.

Claim 2. |T|>a+2.

Proof. If |T| < a+ 1, then by (1) and since |S]| + dg_s(z) 2 dg(z) >
5(G) > “"1”-(‘;1?("'“-21 > b—1 for each z € T we obtain
6c(S,T) = f(8) + dg-s(T) — 9(T)
(a +1)|8| +dg-s(T) — (b—1)[T|
IT||S] + dg-s(T) — (b — DIT|
SIS+ dg-s(z) = (6= 1)) 2 0,

zeT
which is a contradiction. So [T'| > a +2.

Since T # @, let hy = min{de_s(z)|z € T}, and let z; € T be a vertex
such that dg_s(z1) = h1. According to (2), we get

-1
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0<h <b-2

In the following, We shall consider two cases and derive a contradiction in
each case.



Case 1. T = Np[z).

In view of Claim 2 and |T'| = |Ng[z1]| < dg-s(z1)+1=h; +1 < b—1,
we have
hl 2a+1. (3)

and
b>a+3. (4)

According to (1), (3) (4, IT| £b—1, |S|+ hy = |S] + dg-s(z1) >

de(z1) > 6(G) > (-1 _(:Ii)(b_“"z), and the definition of h;, we obtain

6c(5,T) = £(S) + dg-s(T) — g(T)

(a+1)|8| +da-s(T) — (b—1)|T|

(a+ 1)|S| + ha|T| - (b - 1)|T)

(a+1)|S| = (b— k1 - 1)|T)|
b—1)2—(a+1)(b—a—-2

(@4 1" (a+ ) )

~(b—h1—1)(b-1)
2 (b—a—-2h;—(a+1)(b-a—2)>0.

-1
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This is a contradiction.
Case 2. T # Nr[z]-
It is clear that T'\ Ny[z;] # @. Then we define
hs = min{dg_s(=)lz € T\ Nrfzi]},
and let z3 € T\ Nr[r;] be a vertex such that dg.s(z2) = hy. Note that
05’11 Sthb—2hOld

Obviously, two vertex z; and z; are not adjacent. In view of the con-
dition of the theorem, we get that

b-1n

atb < |Ng(z1) U Ng(z2)| < |S| + hy + ha,

which implies

s> =Ln b-1)n
a+b

— hy — ha. (5)

By (1), (5), and |S| +|T| < n, and |Nr[z}| < hy +1, and n >
(e+5)(2a+2b—3) , we obtain

a+l
-1 > 6¢(S,T) = f(S) + dg_s(T) — g(T)



> (a+1)|8|+de-s(T) - (b—-1)[T|
> (a+1)|S|+ h1|Nrfe]] + h2(|T| = INz[z1]) — (0 - DIT|
= (a+1)|S|+ (k1 — ha)|Np[za]| = (b — bz — 1)[T|
> (a+1)|S|+ (b1 — ho)|Nr[z1]| — (b= h2 — 1)(n —|S])
= (a +b—- hz)'Sl + (h1 — h2)|NT[x1]| - (b —~ hg — 1)'n
> (@b )BT b= ha) 4 (b = o)+ 1)
—(b - hz - 1)11
2 2 (b=1n
= B—(e+b-Dh+hi+(n— g —(a+D) — 1)k,
= h%—(a+b—1)h1+h§+((ia-:_—lgﬁ—(a+b) —1)h2

> h2—(a+b—1)hy+hj+(@+b—4)h,

ie.
-1>h%—(a+b—1)hy +h3+(a+b—4)ha. (6)
If ho = 0, then according to 0 < by < hy < b—2, we have hy = 0. By
(6), we get that
-1>0,
a contradiction.
If 1 < hy < b— 2, then by (6) we get
—1 > R—(a+b—1)h +hi+(a+b—14)hs
> K—(a+b-1h+hi+(a+b—4)h
= 2h2-3h; >-1 (Since hy > 0 is an integer)

which is a contradiction.

From the argument above, we deduce the contradictions. Hence, G has

a (g, f)-factor.
Completing the proof of Theorem 8.

Remark. Let us show that the condition |Ng(z) U Ng(y)| 2 g%:bl'i in

Theorem 8 can not be replaced by |[Ng(z) U Ne(y)| = % — 1. Suppose

that b = a + 1, and define g(z) = a and f(z) = b for each = € V(G).

Let G = (A, B) be a complete bipartite graph such that |4] = at and

|B| = bt + 1, where t is any positive integer. Then it follows that n =

|A| + |B| = (a 4 b)t +1 and
(b-1n

=Th |Na(z) U No(y)| =at = (b—1)t >

(b-1)n
—t 1
a+b



for any subset {z,y} of B. However, G has no [a,b]-factor since bj4] <
a|B|, that is, G has no (g, f)-factor. In this sense, the condition |Ng(z) U

Nea(y)| 2 yﬁl% is the best possible.
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