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Abstract

In this paper. we investigate how the Wiener index of unicyclic
graphs varies with graph operations. These results are used to
present a sharp lower hound for the Wiener index of unicyclic
graphs of order n with girth ¢ and matching number 8 > %‘i
Moreover, we characterize all extremal graphs which attain the
lower bound.
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1 Introduction

The Wiener index [19] of a simple connected graph is the sum of distances
between all pairs of vertices, which has been much studied in both math-
ematical (see [2, 6. 7, 8. 9, 10]) and chemical (see [11, 12, 13, 14, 15, 16,
17, 18]) literatures. Gutinan et al. in [12] gave some results for the Wiener
indices of a umicyclic graph, which is a connected graph with a unique
cycle. Recently, Yan and Yel [20] investigated the relations between the
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matching number and the Wiener index. Du and Zhou in (3] determined
the minimum Wiener index in the set of unicyclic graphs of order n with
girth and the number of pendent vertices. Moreover, Du and Zhou in (5]
gave the sharp lower bounds for the Wiener index of unicyclic graphs with
the matching number. The Wiener index and related problems of trees and
unicyclic graphs may be referred to {4, 21, 22].

Through this paper, all graphs are finite, simple and undirected. Let
G = (V, E) be a simple connected graph with vertex set V(G) = {v,...,vn}
and edge set E(G). The girth of a graph G with a cycle is the length of its
shortest cycle. A matching in a graph G is a set of edges with no shared
end vertices. The matching number of a graph G is the maximum size
of all matching of graphs, and denoted by B(G) or 8. The distance be-
tween vertices v; and v; is the minimum number of edges between v; and
v; and denoted by dg(vi. v;) (or for short d(vi,v;)). The Wiener index of
a connected graph G is defined as

WEG)y= Y. dv) (1)

{vi.u;}CV(G)

Moreover, the distance of a vertex v, denoted by dg(v), is the sum of of
distances between v and all other vertices of G. Then

WE =3 Y datu). @

“ weVv(G)

In this paper, motivated by the above results, we investigate, in Section
2, how the Wiener index of unicyclic graphs with girth and the matching
number varies with some graph operations. In Section 3, we obtain a sharp
lower bound for the Wiener inclex in the set consisting of all unicyclic graphs
of order n with girth ¢ and the matching number 8 > 529 Moreover, the
all extremal graphs which attain the lower bound have been characterized.

2 Wiener index with switching operations

Let G = (V(G), E(G) be a unicyclic graph of order n with girth g. Suppose
that the only cycle is C, = ujuz ... u,. Then G — E(C,), which is obtained
from G by deleted all edges of C,. has g connected components, each of
which is tree T} of order n; for i = 1,...,g. The connected component T:is
called a branch of G at u;. Clearly. 1y + n2 + ... + ny = n. Moreover, any
unicyclic graph of order n with girth g can be denoted by U(Th,...,Ty).
Let Uy, g,) be the set of all unicyclic graphs of order n with girth g and
the matching number 3. It is easy to get the following result.
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Lemma 2.1 Let G = U(Th,.... T,) be a unicyclic graph of order n with
girth g. Then

2 9 g
WEG) ==+ (0 -D) dnw)+ Y WT+ ()
i=1 i=1

g-1 g

Yo Y lne = V)dry (wy) + (5 = 1) (w) + (ns — 1)(n; — 1)de, (ws, u5))-

i=1 j=i+1

Proof. By the definition of the Wiener and W(Cy) = 1[3:J, we have

2L°q
9 g-l
W(G) = Z Z dy. (u,v) + Z Z z de(u,v)
i=1 {u,n}CV(T) i=1 j=i+1l ueV(T)),veV(T;)

= Z W(T:) + Z Z > lan(u,w) +dg, (i, ug) +dry (us,))

i=1 j=i14+1 ueV(T;).veV(T;)

g—1

= ZW(T +> Z [njdr, () + ningd, (ui, u;) + nidr, (u5)]
i=1 j=i+l

=(n- DT J+(J—1)LdT(uz)+ZW(Tz

i=1

g—1

Z Z [(ni = 1)dr, (u;) + (n; — 1)d7, (us) + (ni — 1)(n; — 1dc, (ui, uj))-

i=1 j=i+1
Hence (3) holds. Il

Corollary 2.2 Let G = U(T\.....T,) and Gy = UTL, T, .., Ty) be two
unicyclic graphs of order n with girth g. If|V(TY) = |V(Th)| = n1, W(Th) 2>
W(T1) and dr, (u1) > (I,;:l (uy), then

W(G) 2 W(G1) (4)
with equality if and only if W(T\) = W(T}) and dr, (1) = d ().
Proof. By (3) in Lemuma 2.1, we have

W(G)-W(G) = W(T)-W(TD)+(g—1)(dr,(w) — dg (w)) +

Sy = 1)(dr (ur) = dg; (1)) 2 0.

=2
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Hence the assertion holds. I

For given two nonnegative integers a,b, let T3, be a rooted tree of
order 2a + b + 1 obtained from the root star Kj q4b at root u; by adding
a pendent edges to a pendent vertices of Ky a4p- In particular, T, is an
isolated vertex. Then the matching number of T}, isa+1forb>1and a
for b=0.

Lemma 2.3 Let G = U(Ty,...,T,) be a unicyclic graph of order n with
girth g and the matching number 8. Denote by B the matching number of
T, of order ny. If fy = 0 or G has a marimum matching M containing
an edge wyx, = € V(T1). let Gy be the unicyclic graph from G by replacing
T, with Tgq for B, =0 and replacing Ty with T, _y o, _ag, 41 Then the
matching number of Gy is B and

W(G) > W(G1) (5)
with equality if and only if Ty = Tgo or T§, 1 n,—28,41-

Proof. If B; = 0, the assertion obviously holds. Assume that 8, > 1.
Moreover, since G has a maximum matching M containing an edge uz,
z € V(T}), it is easy to see that the matching number of G; is 8. Since the
matching number of T} is 3;, there exist at most ny — B, vertices adjacent
to 4y in Ty (otherwise the matching number of T} is less than ;). Hence
dr,(w1) = (m = B81) +2(n = (u — A +1)) =m + B — 2. Further by
Corollary 5.7 in [21], we have W' (T1) 2 W(T5,_1,n-28 +1) with equality
if and only if Ty is T3, _) ., 25,41+ Hence by Corollary 2.2, the assertion
holds. I

Lemma 2.4 Let T be a tree of order n > 3 and u € V(T). Suppose that
the matching number of T —u is 3 and T —u hasp connected components
Ti,...,Tp of order ny,...,1np. respectively. Then

W(T) 2 W(T},-25-1) =2 + (B —2)n+ (=36 +1) (6)
with equality if and only if T is T3 ,_05_1-

Proof. If § = 0, then T must be the star graph K n-1, which is exact
T§ n—1- Hence without loss of generality, assume that 0 < 8 < 251 and the
matching number of T; is 8; > 1 for : = 1,...,¢ andOfort+1<i<p.
Assume the neighbor set of u is {wy,...,wp}. Then by Theorem 4 in [2]
and Corollary 5.7 in [21], we have

W(T)=n(n-1)+ i[W’(T;) + (n — n;)dr, (w;) — n?

i=1
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a(n—1)+ > [(Bi = 3)n, — 38, + 4+ (n —ny)(ni + i — 2)] —p +1

>
i=]

t

= (n—1)2+('rz—3);3+(—2:1+4)t+n(n—p+t—1)—Zn?
i=1

> (n—-1)2+(n-3)8+(-2n+4d)t+n(n—p+t—1)

—4(t-1)—[(n—p+t—1)—2(t—1))?
= n-1)2+(n-3)F—-t2—(n+2)t—3n+3—-p*+(n—2t+2)p
> (n-124+nm-3)8-t2-—(n+2)t—3n+3

~(n—-t-12+(n-2t+2)(n—t—1)
n?+ (B -2)n+ (=38 +1) = W(T5 ,_op_1),

1l

wheren=n;+...+n, +p—t+1>p+t+1, and dr(w;)) > n; +6:; — 2,
since w; is at most adjacent to n; — 3; vertices in T;. Moreover, if equality
holds, then ny = ... = n, = 2, which impliest = Sand p=n—- - 1.
Therefore T must be Tj ,,_,,_,. l

Lemma 2.5 Let G = U(Ty....,T,) be a unicyclic graph of order n. Sup-
pose that any mazimum inatching of G does not contain wyz, x € V(T1)
and the matching number of Ty — uy of order ny — 1 is f1. Let G, =
U(T3, ny—2p,-1: T2y -, T,) be the unicyclic graph obtained from G by re-
placing Ty with T, _o5 . Then the matching numbers of G and G, are

equal and
W(G) 2 W(Gy) (™

with equality if and only if Ty = T3, 1, -28,-1-

Proof. It is easy to see that the matching number of G is equal to the
matching number of G; by the definition, since any maximum matching of
G does not contain u;2:, € V(7). On the other hand, by Lemma 2.4,
we have W(T1) > W(Tj , _ss,-1)- Let Ti — u; have p components
T, .. ,T],, with

V) Z2...2 V(@) > IV(Tien)l = ... = [V(Tp)| = 1.

Since the matching number of T} — u; is B, we have t < 8, < 2'2;1- and
ny 226 +p—-t+1>p+8+1 Hencedp, (1) 2 p+2(n1—p—-1)=
2 —-p-22m+ 5 —-1=dr- ,,_,‘l_l(-ul). Therefore by Corollary 2.2,

dyonp =2

W(G) > W(G)) with equality if and only if T} = TEI =281 [ |

Lemma 2.6 Let G = U(Ty,....T,) be a unicyclic graph of order n with
girth g. Suppose that T, of order |V(T,)| > 3 and Ty of order |V(T,)| > 3
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have pendant edges u,x and u,y, respectively. Let T,sl) be the tree from T,
and T, by identifying u), and u, and deleting the edge ugy, and let Tél) be
the edge ugy. Moreover. let T,(,g) be the edge upz, and let Tq(z) be the tree
from T, and T, by identifying u, andu, and deleting the edge upz. Further,
let Gi = U(Ty,.... TS, ... T, ...\ T,) for i = 1,2. Then the matching
numbers of G, Gy, G2 are equal, and

W(C) > min{W(G1), W(G2)}. (8)

Proof. Clearly, by the definition, the matching numbers of G, Gy and G2
are equal. By Lemma 2.1, it is easy to see that

W(G)~W(G1) = (np—2)(ng—2)dc(up ug)

g
+ (ng—2) Z ni(de(ug, ) — do(up,ui)] (9)
i=1,i#p,q
and
W(G)-W(G2) = (np—2)(ny —2)de(up,ug)

']
- (np—2) Z ni[dg(ug, ui) — da(up, ui)]. (10)

i=li#p,q

Hence by (9) and (10), the assertion holds. ll

Lemma 2.7 Let G = U(Ty..... T,) be a unicyclic graph of order n with
girth g. Suppose that T, of order |V(Tp)| = 3 has no pendant vertices
adjacent to u, and Ty of order [V(T})] 23 has an pendant adjacent vertex

y adjacent to u,. Let T,Sl) be the tree from Tp and T, by identifying up
and u, with deleting the edge uqy, and let Tél) be the edge ugy. Moreover,
let T,sz) be isolated vertex u,, and let T}z) be the tree from Tp and T, by
identifying u, and u,. Further, let G; = U(Tl,...,T,si),...,Tq(i),...,Tg)
fori=1,2. Then

W(G) > min{W(G,1), W(G2)}. (11)

Proof. By Lemma 2.1, it is easy to see that W(G) — W(G) =

g
(ng —2)[(np — 2)dc (up uq) + Z ni(dg(uq, ui) — da(up, u;))]
i=1,i#p,q
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and W(G) - W’(Gg) =

(np = 1)[(ng — 1)dg (up, uq) — Z ni(de(uq, ui) — de(up, wi)))-
i=1,igp,q

Hence the assertion holds. Il

Corollary 2.8 Let G = UT; .- a b, ) be a unicyclic graph of order
n with girth g. Ifa, > 1.0, = O and bq N O 2a,+b, >2forl <p#qg<y,
then there exists a unicyclic graph G' of order n and girth g such that the
matching numbers of G and G’ are equal and W(G) > W(G').

Proof. Clearly, |V(T,)| > 3 and [V(T,)f > 3. Let Gy = U(T3, 4,,--
Ta,,+aq'b,,—1’ s Tgys T b)) G =UT; 4, T, Ty ptag,bg?
T:,5,) By Lemma2 7, we lmve W(G) > min{W (&), W(Gz)} Moreover,
let B, 81, B2 be the matching numbers of G, G and G, respectively. Then
B=PB <P <P+1 I3 =3+1let Gs=U(Ty 4,5t -1,410
oI5y Ty ) Tt is easy to see that W(Gy) > W(Gs) and the match-

ing number of G;;' is B. Hence the assertion holds. Il

Lemma 2.9 Let G = U(Th,...,T,) be a unicyclic graph of order n with
girth g and |V(T3)| = n; fori=1....,9. Let TSV be the tree from T}, and
T, by identifying u, and u,, and let T,fl) be the isolated vertex. Moreover
let T,ﬁ"’) be the isolated vertex w,. and let T,,(z) be the tree from T, and T,
by identifying u, and u,. Further, let G; = U(T,.. T(‘), T('), v Ty)
fori=1,2. Then

W(G) > min{W(G)), W(G,)}. (12)

Proof. Assume that p < ¢. By Lemma 2.1, we have W(G) — W(G,) =

9
(nq - 1)[("’? - l)dG(“pa 'u,/) + Z ni(dG(uq’ u;) — dG'(upa ui))]

i=1i#p.q
and W(G) - W(G,) =

(np = Dl(ng — Ve (upoug) = Y nilda(ug, ws) — da(up, ui)))-

i=1,i#p.g

Hence it is easy to see that the assertion holds. Il
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Corollary 2.10 LetG =U(T] ;- Ta, 00+ Tay00- I35, 5,) be a uni-
cyclic graph of order n with girth g. If ap,aq 21, let Gr=UT; 45>

:y+aqv0’ e iTO*,O’ e ’7"(‘:_,,.1)_,,) and G2 = U(T:l»bl yooe ,TS,O, e ,T;p'*'a'qno’ ceey
T3 »,)» then the matching numbers of G, G1 and G are equal and W(G) >

2

min{W(G,), W(G2)}.
Proof. It follows from Lemma 2.9 that the assertion holds. [ |

Now we can present the main result in this section.

Theorem 2.11 Let G = U(Th....,T,) be a unicyclic graph of order n with
girth g. Then there exist nonnegative integers ay, by,...,bg withb; <1 for
j=2,...,9 such that G and G= U(T;,,bliT(;,b-z""’Tg,bg) have the same
the matching number and

W(G) = WU Ty, ... Ty)) = W(G) = W(U(T4, 6y, To o+ Top,)) (13)
with equality if and only if G = U(T};, by To by ,Tg,bg).

Proof. We consider the following two cases.

Case 1: |V(T:)| = 3 and G has a maximum matching M contain-
ing an edge wz, * € V(Ti). Then by Lemma 2.3, there exists & G1 =
U(Ty,... T 4 -2 Ty) such that W(G) > W(G;) with equality if and only
it =T 4, where ¢; + 1 is the matching number of T; and 2¢; +d; +1 =
|V(T;)|. Moreover, the matching numbers of G and G are equal.

Case 2: |V(T)| > 3 and any maximum matching of G does not contain
w;z, T € V(T}). Let the matching number of T: — u; of order n; — 1 be a;.
Then by Lemma 2.5, there exists a Go = UM, T; g5 ,T,) such that
W(G) = W(G2) with equality if and only if G = Gg, where 2¢;+d;+1 = n;.
Moreover, the matching numbers of G and G, are equal.

Hence there exists a Gy = U(T? 4,5+, T¢, 4,) such that W(G) >
W(G3), and the matching numbers of G and G3 are equal. By the re-
peated use of Lemma 2.6 and Corollaries 2.8 and 2.10, it is easy to see that

the assertion holds. ll

3  Wiener index of unicyclic graphs with girth

and the matching number
In this section, we give a sharp lower bound for the Wiener index of unicyclic
graphs of order n with girth g and the matching number 8 > 229 and

characterize all extremal graphs which attain the lower bound. But we
need some lemmas and notations
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Lemma 3.1 Let G, and G2 be two simple connected graphs. Let G be the
graph obtained from G, and Gy by identifying a verter = of G, and a vertex
y of G2. Then

W(G) = W(G1)+W(G2)+de, (2)(IV(G2)|-1)+de, W)V (G1)|-1). (14)

Proof. By the definition, we have W(G) =

z de(u,v) + Z de(u.v) + Z Z dg(u,v)

u,vCV(G)) wrCV(G2) u€V(G1)\{z} veV(G2)\{v}

= WG)+WG)+ Y. Y (dey(w2) +de,(¥,v))
w€V(Gr)\{z} veV(G2)\{v}
= W(G) + W(G2) +d, (x)([V(G2)| - 1) + de, (9)(IV(G1)| - 1).

Hence we finish the proof. Il

Assume that n > 23 > 3¢ > 9. If ¢ is odd, let an, 0.8) be the unicyclic

graph of order n obtained by identifying a vertex of a cycle Cy of odd order
. . " B " — 3 — g—_l *

g and the rooted vertex with degree n — 8 — 25= of Tﬂ_ 241 n_2841 of order
n—g+1. If g is even, let. Gzn_q_ﬁ) be a unicyclic graph of order n obtained
by identifying vertex u) of a cycle Cy = ujus...ugy of even order g and the
rooted vertex with degree n — 8 — % of Tﬁ*_%_ Ln—28+1 of order n — g, and
adding a pendent edge uov at vertex uz. In other words,

Glugd) = U(T;_ggl.,,_”“’T&o’---»T&o) for g is odd,

Glngs) = U(’,I'f,”,‘_%_l.”"g,,H,TJ_l,...,Tg,o) for ¢ is even.

Then G('n, “ K/} is a unicyclic graph of order n with girth g and the matching
number 8. Moreover

Corollary 3.2 (1). If g is odd, then W(Gy, | 5)) = n?+

2 (2
(-2 ) (1) 11" o g —aa . 09

(2). If g is even, then
w(G 3y g g,9% 3
T = 2 — — — — o—
(Glng.y) =n +(f5- 5 —1+L4J)n—2[4j+ 5 38+2. (16)

Proof. It follows from Lemma 3.1 and some calculation. Il
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Lemma 3.3 Let G =U(T; ,, . T5y,--- - T3p,) be @ unicyclic graph of or-
der n with odd gzrth g and the matchmg ‘number B, where b; < 1 for
i=2,...,9 Ifﬂ> , then

W(G) 2 W(Glu05) = W(U(T IR 2/3+1’T5.0" .., To0))

with equality if and only if G =U ( 1 aop _H,T"o, - T50)-
Proof. Let t = 1_2 . We consider the following two cases.
Case 1: t = 0. Ifb1>0thena1+9i= , 50 @] = ,B 9—and

by = n— 28+ 1 Hence G must he U(T} TS 2ﬁ+1’T° 0r- Too) and

the assertion holds. If b; = 0. then a; = 8 — 9—— and n = ﬂ + g. Hence
a1 —2=F- "'“ and n — 28 + 1 = 2. Further we have

W(G) = W(U(T;, o»Té',o,---’T&o)) > W(U( a‘-1,2’T6.,0!""T6,0))'

Hence the assertion holds.

Case 2: t > 1. Suppose that the only cycle C; = u;...uy and
Tg‘,,il,...,Tg,,,u consist of an edge ui, Vi, .., Ui, Vi, respectlvely, where
2<i; <...<4, <g Let Vi ={vi1,... ,vir} and Vo = V'\Vq. Then b; =0
for j # 1,41,...,%. Clealy, 3—g < ay < B4~ 231 Thens= ,B—%’-l——a >0
and

rst-23=(n-2a1-b1-g)-z(ﬁ—g;"l —a)=n—28-b+12>0.

Then U(T},_12:To0----» 16,0) may be obtained from G by deleting Ui, Vi,

forj=1,...,tand addmg s paths of length 2, i.e., u1v;, Vi, - - - Y1Vig,_, Viy,
and 7 edgeb U1Vig,,,» - - - - W10, Therefore,
WEG) = ). da(wv)+ > do(u,v)+ > de(u,v)
{uw}CW ueV. veV, {uv}CV2
3t(t—-1)
> —2—-+t(J+l J+7a1+3b1)+ > de(w,v).
{u,v}CV2

On the other hand,

W(G) = z dg, (u.v) + Z dg, (u,v) + Z dg, (u,v)

{u,0}CWV) ueV, veva {u,v}CV2
g2
= [6s®+ (5 —5)s] +[(3s+7)g+ tl.z‘J + (12s + 57)a1

+(Bs+2rbil+ Y. de(u,).
{u.}CVa

124



Hence
3r(r—-1)
W(@G)-W(G) = (r+2)s+ —5—+ (s+7)b1 + (25 +2r)a; — gs
0.

sincea; >f-g>3g-g=4% M
Theorem 3.4 Let G be a unz’cyclic graph of order n with odd girth g and
the matching number 3. If 3 > —’2‘5 then

3g+1
2
with equality if and only iof G is Glop)

W(G) 2 n*+(8- -+L%J)wr+(1~—§)L%2J+gz+(—2ﬂ+ 1)g—26+1

Proof. It follow from Theorem 2.11, Lemmas 3.3 and Corollary 3.2 that
the assertion holds. Il

Lemma 3.5 Let G = U(Ty ,, .15, ---. Tg,,) be a unicyclic graph of or-
der n with even girth g and the matching number 8 > %‘1 Ifa, <pB-%-1
and b; <1 forj=2.....¢9. then

W(G) 2 W(G{, ,.5) = W(U(Tg—§-1,1x-2ﬁ+1aT0*.1,- 1 150))
with equality if and only if G = G:'-.y.ﬁ)'
Proof. Sincea; <-4 -1, wehave t = Z;.=2 bj > 1. Suppose that the
only cycle Cy = uy...u, and Ty, is an edge u;;v;;, j = 1,...,t, where
1<y <... <4 <yg. Let V; = {u,'l,...,vu} and ‘/2 = V\Vl Then
sz—ﬁ—g-—l—a] >0 and

r=t—-2s—1=(n—2a,-b —g)—2(;’3—%——1—a1)—1 =n—-28-b+12>0.

Hence GZ‘n' ¢,8) May be obtained from G by deleting {v;,,...,v;, } and adding
s paths u vy, _,v;,, for / = 1,...,s and adding edges ujv;, for | = 2s +
1,...,t—1 and uav;,. Further,

W(@G) = Z da(u,v) + Z de(u,v) + Z de(u,v)

{w.w}CVy u€V,vevy {u,v}CVe
t(t — 2
> 3(—-1) +t (g + LQ“J + 7ay + 3b1) + Z da(u,v)
2 4
{uvv}gvz
3r(r+1)

= 65+ (6r+3)s+

+ Z de(u, v).

{1, 2}CVa

2
Lt (g 15+ 701+ 300 )
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On the other hand.

Z dg;, ., (W) = 65>+ (5r +2)s +r(r +1)
{u,w}CV1

and ZMEVI.Uevz dc(.n.”.‘l) (u’ ‘v) =

2
(Bs+r+1)g+ f[‘%] + (125 + 57 + T)ay + (55 + 2r + 3)b1.

Hence

. r(r+1
W(G) - W (G, 45) = (r+1)s+ -(—2——)

+(s+7)b1 +2(s+7)ay —sg 20
with equality if and only if r = s = 0, since a; 2 B —g > %. Hence the
assertion holds. Il

Lemma 3.6 Let G = U(T} ;. Tos,+- -+ Top,) be a unicyclic graph of or-
der n with even girth g and the matching number § 2 %9 Ifay=p-4%
andb; <1 for j=2....,9, then

W(G) = W(U(Ty, b4 To0r -1 To,0))
with equality if and only if G isU(Ty, 4 41 T80, - -, T6,0), wheret = o bi.

Proof. If t = ¥.7_, b; = 0, then the assertion holds. Suppose that ¢ > 1.
Then the matching number of U(T}, 4 40 Td.0:- -1 To0) I8 B. Moreover,
G =UT; 4,40 L6001 -+ T3 ) may be obtained from G by deleting ver-
tices v;,,...,v;, and adding edges u1v;,,...,u10;,. Then it is easy to see
that W(G) > W(G)). Therefore the proof is finished. Il

Theorem 3.7 Let G be a unicyclic graph of order n with even girth g and
the matching number 3. If 3 > ‘—’5'1, then

. 3¢ 2 2 3
W(G) 2 W(Glngp) = n?+ (ﬁ - ?J -1+ [24-]) n—%l_%—]+—2€—3ﬂ+2

with equality if and only if G is G?u,q, 3

Proof. By Theorem 2.11, there exists a unicyclic graph G of order n with
even girth g and the matching number 8 such that Gr=U(T; 5,:Topy0 - -

T3 p,) of order n with girth g and the matching number 3 such that W(G) >
W(G,), whereb; < 1fori =2,...,9. Ifa; < B—$%—1, then by Lemma 3.5,
W(Gy) 2 W(U(*n_y’m) with equality if and only if G1 is U('n,g‘ﬁ). Ifa, =8-
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2, then by Lemma 3.6, we have W (G)) > W(U(Tg_g‘"_zﬁ,Tg,o, <0y T80)-
Further, it is easy to see that

WU (Tp_g n-2p To0r -+ To0) > WU(T5_ g1 n2ps1: Lo, -+ To,0))-

Therefore by Corollary 3.2, the assertion holds. Il

Combining Theorems 3.4 and 3.7, we obtain the main result in this
paper
Theorem 3.8 Let G be a ynicyclic graph of order n with girth g and the
matching number 3. If 8 > 3251 then

”/(G) 2 ‘/V(G('n,g,/j) )

*

with equality if and only if G is ngd)
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