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Abstract

Using connectivity and planarity constraints we characterise all 5-regular
planar graphs with diameter 3.

1 Introduction

During the writing of [6], all 5-regular simple planar graphs of order at most 24
were generated. Only those of orders 12 and 16 had diameter three. Hell and
Seyffarth {5] proved that planar graphs of diameter 3 with maximum degree 5
have at most 52 vertices. Regular planar graphs with degree 5 are more heavily
constrained. We use these constraints to prove results linking their connectivity
and diameter. These suffice to describe the 5-regular planar graphs of diameter 3.

We follow [2] for terminology and notation. A cur-set in a graph G is aset S
of vertices in G such that G — S is disconnected. We use dy(v) for the degree
of a vertex v in a graph (or subgraph) H. Our graphs have no loops or multiple
edges. ‘

2 Connectivity

We show first that any 5-regular planar graph G with diameter 3 is 5-connected
and weakly 6-connected, that is, the only cut-sets with at most five vertices are
single vertex neighbourhoods. Since edge contraction preserves planarity, and
because K3 3 and K5 are not planar, every graph having K33 3 or K5 as a minor is
non-planar.

Theorem 1. Every 5-regular planar graph with diameter 3 is 5-connected and
weakly 6-connected.

Proof. Let G be a 5-regular graph with diameter 3, embedded in the plane. When-
ever S is a cut-set in G, all paths connecting vertices from different components
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of G — S pass through S; hence having diameter 3 requires that at most one com-
ponent of G — S has a vertex with no neighbour in S. Let S be a smallest cut-set
in G. Let C be a smallest component of G — S among those whose vertices all
have a neighbour in S. However, if |:S| < 4, then we also restrict the choice of S
to make C as small as possible. Let C’ be a component of G — S other than C.

We prove that |S| > 5 and that if |S| = 5 then |V(C)| = 1. If [V(C)| = 1,
then |S| = 5, so we may assume that [V (C)| = 2. To avoid crossings in the given
embedding, C’ must lie in a single face F' of C. Since S is a smallest cut-set, each
vertex of S has a neighbour in C’, so each vertex of S also lies in F. Since each
vertex of C has a neighbour in S, we thus conclude that C is outerplanar.

It is well known that every outerplanar graph with at least two vertices has
at least two vertices of degree at most 2 that are not cut-vertices; let v and w be
such vertices in C. Each such vertex has at least three neighbours in S, since G is
5-regular. Hence |S| > 3.

If v and w have more than two common neighbours in S, then contracting
C’ 10 a single vertex yields K3 3 as a minor of G, since each vertex of S has a
neighbour in C’. Suppose that v and w have exactly two common neighbours in
S; call these z and y. Let T' = {z, v, y, w}; note that these vertices in order form
a4-cycle.

Since v and w have two common neighbours in S and |S| < 5, at least one
of them has two neighbours in C. Hence |V(C)| > 3. Since C is connected, it
contains a v, w-path. Also, there is an z, y-path through C’. These paths cannot
cross, so in the embedding they lie in opposite faces of the 4-cycle through T'.
Now T is another minimum cut-set with size at most 4, and C' — {v, w} contains a
component of G — T whose vertices all have a neighbour in T'. Since C — {v, w}
is smaller than C, this contradicts the choice of S.

Thus v and w have at most one common neighbour in S, which requires |S| =
5. Let S = {uy,u2,u,v1,v2}, with N(v) N S = {u,us,uz} and N(w) NS =
{u,v1,v2}. Let T = {u),v,u,v1,v2}. If up has no neighbour other than v in C,
then T together with a componeént of C — v contradicts the choice of S. Hence
we may assume that u has a neighbour in C other than v, and the same is true by
symmetry for u;.

Since v was chosen not to be a cut vertex of C, we can now contractall of C—v
to a single vertex. In this minor, the resulting vertex is adjacent to {u, u1, u2}, as
is v. When we also contract C’, we again obtain K33 as a minor of G. The
contradiction implies that |V (C)| > 2 is impossible, and S is a vertex neighbour-
hood. O

3 Complete Census

The icosahedron is a S-regular planar graph with 12 vertices that has diameter 3.
It has a unique embedding in the plane, in which every face is a triangle. Every

130



5-regular plane graph other than the icosahedron has at least one nontriangular
face, say f. Because of 5-regularity, each vertex v of f has a neighbour w that
does not lie on a face neighbouring f. In this situation we call v the base verzex
of w and w the summit vertex of v (relative to f). We use u, v-path to mean a path
from a vertex u to a vertex v. A cut-set that is a vertex neighbourhood is a trivial
cut.

Theorem 2. There is exactly one S-regular planar graph with diameter 3 having
a face of length 4, and it has 16 vertices.

Proof. Let G be such a graph, and let f be a 4-face in G. Let vy, vs, vs, and
vy be the vertices of f in clockwise order in the embedding, and let w;, ws,
w3, and wy be their summit vertices relative to f, as shown in figure 1. No two
summit vertices are adjacent, since this would create a separating cycle of length
4 or a separating cycle of length 5 with at least two vertices both inside and out,

contradicting Theorem 1.
w2

Wy
Figure 1: A face of size 4 and its base and summit vertices

Let P, 3 be a w;, ws-path and P, 4 be a wy, wy-path of length at most 3 in
G. Such paths via f have length at least 4, so these paths use other vertices.
Identifying a summit vertex with any neighbour of a vertex on f creates a cut-set
of size at most 4, contradicting Theorem 1. Therefore, the internal vertices of P, 3
and P, 4, which are adjacent to summit vertices, are not in Figure 1. Since G is
planar, P, 3 and P, 4 cross at some vertex z. Without loss of generality, z is a
common neighbour of w; and ws.

The cycle C; with vertices z, w;, vy, v2, w2 in order now encloses neighbours
of v and vz and separates them from the rest of G. By Theorem 1, there is exactly
one vertex z; inside Cy, with neighbourhood {z, w;, v1,v2, w2 }.

If w3 or wy (say wy by symmetry) also is adjacent to z, then the same argu-
ment applies to the cycle through {z, w2, v2,v3, w3}, but then wy has only three
possible neighbours. Hence P, 3 and P; 4 have length exactly 3, and the other in-
ternal vertices ¢ and s of P 3 and P, 4 are neighbours of w3 and wy, respectively,
as shown in Figure 2

If s = ¢, then the cycle through {s, w3, vs,v4, w4} is a separating cycle C,
that must have exactly one vertex z4 inside, by the same argument as given for Cs.
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Figure 2: Crossing paths joining summit vertices

Now w3 must have two neighbours inside the cycle C3 = {z, s, ws, v3, v2,wa},
and w4 must have two neighbours inside the cycle C; = {z, S, Wy, Vg, V1, W1 }-
Now {s, w3, v3, v2,wa} or {s, w4, v4,v1, w1} is a non-trivial cut-set of size 5 un-
less z has a neighbour inside C3 and a neighbour inside Cy. This is impossible,
since z already has four neighbours. We conclude that s # £, as shown in Figure
2.

Since = now has five neighbours, it has no neighbour inside C3 or C). By the
cut-set argument just given, this implies that w; has only one neighbour inside
C,, and wy has only one neighbour inside Cs. Since d(w;) = d(w) = 5, we
conclude that w; s and wat are edges. We have now forced the induced subgraph
H with 14 edges shown in Figure 3, and G has no additional vertices inside the
bounded faces of H.

t

22

)

s

Figure 3: The induced subgraph H of G

In H, all vertices except those in {t, w3, vs, v4, w4, s} already have five neigh-
bours. Since multiple edges are forbidden, the degrees of these vertices cannot be
increased to 5 without additional vertices (in fact Chvital [4] proved that there is
no S-regular planar graph with 14 vertices). Since G is regular of odd degree, at
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least two more vertices must be added.

If any additional vertex does not have a neighbour in {t,vs, v4, s}, then its
distance from 22 exceeds 3. Those vertices already have degree 4, so we have at
most four more vertices. Counting the two additional edges at each of w3 and
wy, exactly eight edges join V(H) to the new vertices. With four new vertices,
this leaves degree-sum 12 for edges induced by them, forcing them to induce K.
However, contracting H to a vertex then yields K as a minor of G.

Hence there must be exactly two additional vertices, and in order to have the
right number of edges, they must be adjacent. Because w3 and w4 must be ad-
jacent to both new vertices, the only way to complete the picture is as shown in
Figure 4. This graph has diameter 3, so it is the only graph satisfying the hypoth-
esis. O

Figure 4: The unique graph with 16 vertices and diameter 3

Theorem 3. Every 5-regular planar graph having a face of length greater than 4
has diameter greater than 3.

Proof. Let G be a 5-regular plane graph with diameter 3. Suppose that G has a
face f of length at least 5. Let {v, ..., v} be the vertices of f in order, and let
w; be the summit vertex of v;, for each i. No summit vertex has more than one
neighbour on f (its base vertex), since G has no cut-set of size 3. Two consecutive
summit vertices cannot be identical or adjacent, since G has no cut-set of size at
most 4. Summit vertices with base vertices two apart on f cannot be identical or
adjacent, since G has no nontrivial cut-set of size at most 5. If f has length at
least 6 and summit vertices with base vertices more than 2 apart on f are identical
or adjacent, then there is no path of length at most 3 from some base vertex to the
summit vertex for a base vertex opposite to it along f.

If two consecutive summit vertices w; and w;4, have a common neighbour
z that is not adjacent to a vertex on f, then {z, wi,vi, viq1, wi+1} forms a sepa-
rating 5-cycle with at least one vertex inside it. Since G has no nontrivial cut-
set of size 5, there is exactly one vertex z inside, and z is adjacent to it. If
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{wi-1,w;, wiy1} are all adjacent to z, then let z' be the vertex inside the cy-
cle formed by {z, wi—1, ¥i—1, i, wi}. Now {2, 2, i, V41, wis1 } is a separating
5-cycle with {w;, z} inside, contradicting the prohibition of nontrivial cut-sets of
size 5. Hence three consecutive summit vertices cannot have a common neigh-
bour.

Suppose that summit vertices w; and w; with 4 and j nonconsecutive have
a common neighbour z. Now the cycle C that traverses {wj,z,w;} followed
by a v;,v;-path along f separates summit vertices inside from summit vertices
outside. Consider summit vertices w and w’ separated by C. A w,w’-path of
length at most 3 must cross C and hence include a neighbour of worw’ onC.
The only vertex on C not already forbidden as a neighbour for these vertices is z,
so z is a neighbour of at least one of them.

By applying this argument with {w,w'} = {w;—1, wi41} and with {w,w'} =
{wj-1,wj41}, we obtain two pairs of consecutive summit vertices that are all
neighbours of x, because we have already excluded the possibility of three con-
secutive summit vertices being neighbours of z. However, now our claim about
consecutive summit vertices with a common neighbour forces z to have at least
six neighbours.

We conclude that no two summit vertices have a common neighbour that has
no neighbour on f. However, paths connecting nonconsecutive summit vertices
through vertices of f have length at least 4. Hence when i and j are not consec-
utive, some neighbours of w; and w; without neighbours on f are adjacent. Now
contract the edges from w; to its neighbours not on f; this makes w; and w; ad-
jacent when i and j are not consecutive. In addition, for each 2 contract v; into
w;41 along a path not using v;41 or neighbours of summit vertices that are not
neighbours of f. We now have a complete graph with at least five vertices as a
minor of G. The contradiction implies that there is no such G. a

4 Conclusions

After including the results above, the best known bounds for the maximum order
of regular planar graphs with given degree and diameter are as shown in Table 1.

Here the notation [a, b] indicates that the largest known example has a vertices
and that b has been proved to be an upper bound. An entry that is one number
indicates that the answer has been determined completely. The current table of
these bounds is kept updated and hosted at

http://faculty.capebretonu.ca/jpreen/ degdiam.html

It may be possible to use methods like those in this paper to improve the
bounds for 4-regular graphs with small diameter, although they lack the advan-
tage of having summit vertices. Also, the connectivity restrictions are weaker;
for example, the largest 4-regular graph with diameter 2 has connectivity 3. It
should also be practical to reduce the upper bounds for 5-regular planar graphs
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Table 1: The degree-diameter table for planar graphs [September 2008]

Diameter
Degree | 2 3 4 5
2 5 7 9 11
3 6 12 (18,30] [28,62]
4 9 [16,33]1 [27,96] [44,291]
5 16 [28,248] [62,984]

with larger diameters. Computer searches suggest that the lower bounds from ex-
amples found for diameter at most 4 are in fact optimal, but short proofs are still
to be found.
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