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Abstract

Let G = (V,E) be a hamiltonian graph. A hamiltonian cycle
C of G is described as (v1,v2,...,%s(g), 1) to emphasize the or-
der of vertices in C. Thus, v, is the beginning vertex and v; is
the i-th vertex in C. Two hamiltonian cycles of G beginning at u,
Cl = (ul,uz, ‘e ,un(G),ul) and Cy = ('Ul, V2y... ,‘U,,(G),’Ul) of G are
independent if u; = v) = u, and u; # v; for every 2 < i < n(G). A set
of hamiltonian cycles {C), C3, ..., Ci} of G are mutually independent
if they are pairwise independent. The mutually independent hamilto-
nianicity of graph G, IHC(G), is the maximum integer k such that
for any vertex u there are k-mutually independent hamiltonian cycles
of G beginning at u. In this paper, we prove that JHC(G) < §(G)
for any hamiltonian graph and JHC(G) > 26(G) - n(G) + 1 if
(G) 2 ﬂgl Moreover, we present some graphs that meet the
bound mentioned above.
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1 Basic definitions

For graph definitions and notations we follow [1]. G = (V, E) is a graph if
V is a finite set and E is a subset of {(u,v) | (v,v) is an unordered pair
of V}. We say that V is the vertez set and E is the edge set. Let S be
a subset of V. The subgraph of G induced by S, G[S], is the graph with
V(G[S)) = S and E(G[S]) = {(z,v) | (z,%) € E(G) and z,y € S}. We use
G — S to denote the subgraph of G induced by V — S. Two vertices u and
v are adjacent if (u,v) is an edge of G. We use K, to denote the complete
graph with n vertices. The degree degg(u) of a vertex u of G is the number
of edges incident with u. The minimum degree of G, denoted by 8(G), is
min{degg(z) | z € V}. A path P is a sequence of vertices represented by
(vo, ..., vr) with no repeated vertex and (v;,vi4+1) is an edge of G for all
0<i<k—1. A cycleis a path with at least three vertices such that the
first vertex is the same as the last one.

A hamiltonian cycle of G is a cycle that traverses every vertex of G. A
graph is hamiltonian if it has a hamiltonian cycle. Let G be a hamiltonian
graph. A hamiltonian cycle C of G is described as (v1,02, ..., Un(c), V1)
to emphasize the order of vertices of C. Thus, v, is the beginning vertex
and v; is the i-th vertex in C. Two hamiltonian cycles of G beginning
at u, Cp = {u1,uy,... ,un(g),ul) and C; = (‘Ul,‘vz, . ,v,,(G),vl) of G are
independent if u; = v; = u, and u; # v; for every 2 < i < n(G). A set of
hamiltonian cycles {C1,C2,...,Cx} of G are mutually independent if they
are pairwise independent. The mutually independent hamiltonianicity of
graph G, THC(G), is the maximum integer k such that for any vertex u
there are k-mutually independent hamiltonian cycles of G beginning at u.

The concept of mutually independent hamiltonian cycles arises from the
following application: Suppose that there is a warehouse, daily products
are to be shipped to several outlets by trucks each day. We may use a
graph to serve as the model, where one node represents the warehouse,
and the rest of the nodes represent the outlets. Suppose there are several
different categories of products, and each truck is designed to carry only
one category, for example, frozen food etc. Each truck loaded with the
product from the warehouse has to travel through every outlet to supply
the demand, and return to the warehouse. Due to the limited amount of
equipment or space, each outlet can handle only one coming truck at a
time to download the product. To avoid long line of truck waiting, we
wish to find, starting from the warehouse, as many mutually independent
hamiltonian cycles as possible, so that we may distribute the trucks to
different route.
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It is proved that JHC(Q,) = nif n > 4 and IHC(Q,) = n -1
if n € {1,2,3} where Q, is the n-dimensional hypercube [4]. Moreover,
IHC(P,)) =n~-1ifn > 4 and JHC(P,) = n—-2if n € {2,3}; and
IHC(S,) =n—-1ifn > 5 and THC(S,) =n -2 if n € {2,3,4} where
P, is the n-dimensional pancake graph and S, is the n-dimensional star
graph [3].

In this paper, we study I HC(G) for those graph with §(G) > ﬂza—) The
motivation that we are interesting in these families of graphs is inspired by
the classical Dirac’s Theorem which states that those graphs G with at
least three vertices and §(G) > ﬂgl are hamiltonian.

In the following section, we prove that JHC(G) < 6(G) for any hamil-
tonian graph and JHC(G) > 26(G) — n(G) + 1 if §(G) > ﬂf—) In section
3, we present some graphs that meet the bound mentioned above.

2 Bounds

Lemma 1. Assume that G is a hamiltonian graph. Then IHC(G) < §(G).

Lemma 2. Let x be a vertez of a graph G such that degs(z) > n(G)/2 and
G — {z} is hamiltonian. Then there are (2degg(z) — n(G) + 1)-mutually
independent hamiltonian cycles of G beginning at z.

Proof. Assume that C = (v, vo,..., Un(@)-1,v1) is a hamiltonian cycle of
G — {z}. Suppose that degg(z) = n(G) — 1. We set C; = (z,v;, viy1,.. .,
Un(G)-1:V1,V2,...,Y;i-1,%) for every 1 <i < n(G) — 1. Then {C},Cs,...,
Cr(c)-1} forms a set of (n(G)—1)-mutually independent hamiltonian cycles
of G beginning at x. Note that n(G) — 1 = 2degg(z) — n(G) + 1.

Suppose that degg(z) < n(G) — 2. Without loss of generality, we may
assume that (z,v1) € E(G) and (z,vy)-1) ¢ E(G). Let S = {v; |
(z,%:) € E(G) and (z,vi41) € E(G) for 1 < i < n(G) — 2}, and let
H = {v;| (z,v:) € E(G) and (z,v;41) ¢ E(G) for 1 <i < n(G) —2}. We
have |H| = degg(z) — |S|.

Suppose that |S| < 2degg(z) — n(G). Then we have

n(G) > |S|+2|H|+1
= |5] + 2(degg(=) — |S]) +1
= 2degg(z) —|S|+1
> 2degg(e) - (2dega(x) - n(G)) + 1

n(G) + 1.
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We obtain a contradiction. Thus, |S| > 2degg(z) — n(G) + 1.

We set C; = (Z,Vi, Vig1y--+» Un(G)=1: V1, V2, - .,vi—1,z) foreveryv; € S.
Then {C; | for every v; € S} forms a set of |S|-mutually independent
hamiltonian cycles of G beginning at z. Therefore, we obtain at least
2degg(z) — n(G) + 1 mutually independent hamiltonian cycles beginning
at . O

With Lemma 2, we have the following theorem.

Theorem 1. Assume that G is a graph with §(G) > &), Then IHC(G) >
26(G) — n(G) + 1.

Proof. Since §(G) > 2& n(G) > 3.

Case 1: n(G) = 3. Then G = Ksz. Obviously, IHC(G) = 2 =
26(G) —n(G) + 1.

Case 2: n(G) = 2k for some positive integer k with k > 2.

Suppose that §(G) = ﬂz,ﬂ By Dirac’s Theorem, G is hamiltonian.
Thus, JHC(G) 2 1.

Suppose that §(G) > ﬂ291+1. We have n(G) > 4. Let z be an arbitrary
vertex of G. Obviously, 6(G - {z}) 2 §(G) -1 = ﬂgl > ME:ZEL) and
n(G — {z}) = n(G) — 1 2 3. By Dirac’s Theorem, G — {z} is hamiltonian.
Then by Lemma 2, there exist (2 degg(z) —n(G) +1)-mutually independent
hamiltonian cycles of G beginning at z. Since degg(z) > §(G), THC(G) 2
26(G) — n(G) + 1.

Case 3: n(G) = 2k + 1 for some positive integer k with k > 2.

Obviously, n(G) > 5. Let = be an arbitrary vertex of G. Obviously,
§(G — {z}) 2 6(G) — 1 2 k = 265N and n(G - {z}) = n(G) -1 2 4.
By Dirac’s Theorem, G — {z} is hamiltonian. Then by Lemma 2, there
exist (2 degg(z) —n(G) + 1)-mutually independent hamiltonian cycles of G
beginning at z. Since degg(z) > 6(G), IHC(G) = 26(G) — n(G) + 1.

The theorem is proved. d
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3 IHC(G) for some graph G

In this section, we present some graphs that meet the bound mentioned
above.

Theorem 2. JHC(K,)=n—-1ifn > 3.

Proof. By Lemma 1, I[HC(K,) £ n—1. By Theorem 1, [HC(K}) 2 n—1.
Thus, THC(K,) =n—1. 0

Theorem 3. ITHC(G) = n(G) -3 if G is a graph with §(G) = n(G)-2 > 4.

Proof. By Theorem 1, THC(G) > n(G) — 3. Thus, we only necd to show
IHC(G) < n(G) -3.

Let z be any vertex of G with degg(z) = n(G)—2. Let {Cy,Cy,...,Cr}
be a set of r-mutually hamiltonian cycles beginning at . We may write
Ci = (z = v},45,...,0},2) for every 1 < i < r. Since degg(z) =
n(G) — 2, there is exactly one vertex y with (z,y) ¢ E(G). Let ¢ be any
index with 1 < i < r. Obviously, y ¢ {vi,3,v},(5)}. Thus, y = v for
some i(y) with 3 < i(y) < n(G). Since i(y) # j(y) forany 1 <i < j <,
7 < n(G) — 3. Thus, THC(G) < n(G) — 3.

The theorem is proved. a

Let G and H be two graphs. We use G° to denote the complement of
G, use G + H to denote the disjoint union of G and H, and use GV H to
denote the graph obtained from G + H by joining each vertex of G to each
vertex of H.

Let m be a positive integer. We use H(m) to denote the graph K5 v
(K + Kin). We illustrate H(4) in Figure 1.

Figure 1: Illustration for H(4).
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Theorem 4. IHC(H(m)) =1 for any positive integer m.

Proof. Obviously, n(H(m)) = 2m + 2 and §(H(m)) = m + 1 = 2=,
By Theorem 1, THC(H(m)) > 1.

Let z and y be the vertices in H(m) corresponds to K5. Let C =
(z = uy,us,...,U2mt2,Z) be any hamiltonian cycle of H(m) beginning at
z. It is easy to see that um42 = y. Thus, beginning at z, there does
not exist any other hamiltonian cycle of H(m) independent with C. Thus,
IHC(H(m)) =1. O
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