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Abstract

Let j and k be two positive integers. An L(j, k)-labeling of a
graph G is an assignment of nonnegative integers to the vertices of
G such that the difference between labels of any two adjacent vertices
is at least j, and the difference between labels of any two vertices that
are at distance two apart is at least k. The minimum range of labels
over all L(j, k)-labelings of a graph G is called the \;-number of
G, denoted by A;«(G). Similarly, we can define L(j, k)-edge-labeling
and L(j, k)-edge-labeling number, X} +(G), of a graph G. In this pa-
per, we show that if G is K\ 3-free with maximum degree A then
X k(G) < k|A%/2] + jA — 1 except that G is a 5-cycle and j = k.
Consequently we obtain an upper bound for A} ;(G) in terms of the
maximum degree of L(G), where L(G) is the line graph of G. This
improves the upper bounds for A3,,(G) and )}, (G) given by Georges
and Mauro [Ars Combinatoria 70 (2004), 109-128]. As a corollary
we show that Griggs and Yeh’ conjecture that Az, (G) < A2 holds
for all K} 3-free graphs and hence holds for all line graphs. We also
investigate the upper bound for A} ;(G) for K 3-free graphs G.

Keywords: L(j,k)-labeling, L(j, k)-edge-labeling, K s-free graph,
Line graph.

1 Introduction

Let j and k be two positive integers. An L(j, k)-labeling of a graph G is
an integer assignment f to the vertices of G such that if uv € E(G) then
[f(u) = f(v)] > j; and if d(u,v) = 2 then |f(u) - f(v)| > k. Elements
of the image of f are called labels. The span of f, s(f), is the difference
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between the maximum and minimum labels used by f. The minimum span
taken over all L(j, k)-labelings of a graph G, denoted by A x(G), is called
the L(j, k)-labeling number of G. An L(j, k)-labeling of a graph G with
minimum span is called a Aj,x-labeling.

Motivated from the channel assignment problem introduced by Hale
(12}, Griggs and Yeh [11] first proposed and studied the L(2, 1)-labeling of a
graph. Since then the A2 ;-numbers of graphs have been studied extensively,
see [2,6,9,11,20,21]. And L(j, k)-labelings were also investigated in many
papers, see [5-8,16).

We say that two edges e; and e are adjacent (at distance 1) if and
only if they share a common end vertex. Two edges e; and e are at
distance 2 if and only if they are not adjacent and there exists an edge
adjacent to both e; and ez. Analogous to the above definition of L(j, k)-
labeling, an L(j, k)-edge-labeling of a graph G is a function f from E(G) to
nonnegative integers such that |f(e1) — f (e2)] = j if e; and ez are adjacent,
and |f(e1) — f(e2)| = k if e1 and ep are at distance 2. The L(j, k)-edge-
labeling number of a graph G, denoted by X; k(G), is the minimum span
over all L(j,k)-edge-labelings of G. Without loss of generality, we may
assume that the minimum label used by an L(j, k)-edge-labeling of a graph
G is always 0.

From the above definitions, it is easy to see that an L(j, k)-edge-labeling
of a graph G corresponds to an L(j, k)-labeling of L(G), the line graph of
G. Thus X}, (G) = ;k(L(G)). The L(j, k)-edge-labeling of a graph was
studied by Georges and Mauro in (10].

Let A(G) and AL (G) denote the maximum degree of G and L(G), re-
spectively. Among others, Georges and Mauro proved the following results.

Theorem 1.1 [10] Suppose G is a graph with mozimum degree A 2> 1. Let
A, be the mazimum degree of the line graph L(G). Then

2A-1)<X,(G)SAL(A+2) < 2A% 4+ 2A — 4.
Furthermore, if G is A-regular, then 2A < A1(G) £ é;. +3Ar.

Theorem 1.2 [10] Let G be a graph with mezimum degree A>1. Let AL
be the mazimum degree of the line graph L(G). Then

AL < XN (G) S ALh <24% -2A.
Furthermore, if G is A-regular, then Ap < X1 ,(G) < —A-zi +Apr.

Corollary 1.3 [10] If H is a graph such thet H = L(G) for some graph
G with §(G) > 4, then Mo, 1(H) < A(H).
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Theorem 1.4 [10] For n > 2, Xy 1(K2) =0, Xy (K3) =4, Xy ;(K4) =7,
and Xy 1 (K,) =n(n—1)/2~1 forn > 5.

A wheel of length n, Wy, is obtained by adding a new vertex adjacent
to all vertices in C,,.

Theorem 1.5 [10] Xy ;(Wa) = Ay 1 (Wa) =7, X5 1(Ws) =9, and Xy, (W,,) =
2n -2 forn > 6.

Let Too(A) denote the infinite tree with each vertex having degree A.
Theorem 1.6 [10] Let T be a tree with mazimum degree A > 3. Then
28 -2 25,(T) € 25,1(To(A)) < 2A + 3.

Theorem 1.7 [10]

2A+1, ifA=34;
11T(d) =4 2842, A=5;
2A + 3, ifA>86.

Griggs and Yeh [11] made the following conjecture.

Conjecture 1.8 For any graph G with mazimum degree A > 2, do1(G) <
A2

Almost all papers concerning L(j, k)-labeling of a graph deal with the
case that j > k. In this paper, we shall allow that j < k. When we are
studying the L(j, k)-edge-labeling of a graph, we shall always assume that
all graphs we considered have no loops. However we allow multiple edges
in a graph.

In this paper, we show that if G is K} 3-free with maximum degree A
then A;x(G) < k|A%/2] + jA — 1 except that G is a 5-cycle and j = k.
Consequently, we have that except G is a 5-cycle and j = k, A (G) <
k|A%/2) + jAL — 1. This improves the upper bounds for A3, l(G) and
M1,1(G) given by Georges and Mauro in [10]. As a corollary we show that
Conjecture 1.8 holds for all K} s-free graphs and hence holds for all line
graphs. This improves Corollary 1.3. We also investigate the upper bound
for X} .(G) for K 3-free graphs G.

The cardinality of any finite set S shall be denoted by |S|. The com-
plement graph of G shall be denoted by G.

163



2 The Upper bound for \;x(G) for Kjs-free
graphs

Let G be a graph and let w be a function which assigns each edge of G
a positive integer, ie., w : E(G) — N. An assignment f : V(G) = N
of colors to the vertices of G is proper if |f(u) — f(v)] = w(uv) for each
w € E(G). A weighted degree deg,(v) of a vertex v of G is the sum of
the weights of the edges incident with v. The mazimum weighted degree
A, (G) is the largest deg.,(v), where v € V(G). Define x.,(G) to be the
smallest number for which there is a proper assignment f such that 1 <
f(@) € xw(G) for all v € V(G).

The inequality x.(G) < A, + 1 was recently proved by McDiarmid
in [17-19). In [15], the authors proved an analogue of Brooks’ theorem as
follows:

Lemma 2.1 Let G be a 2-connected graph and let w be a function which
assigns to the edges of G positive integers. If xu(G) = Aw +1, then the
weighted degree of each vertez of G is equal to A,(G) and one of the fol-
lowing holds:

e G is an odd cycle and all its edges have the same weights.
e G is a complete graph and all its edges have the same weights.

For any fixed positive integer k, the kth power of a graph G is the
graph G* whose vertex set V(G*) = V(G) and edge set E(G*) = {zy|1 <
de(z,y) < k, z,y € V(G)}, where dg(z,y) is the distance between the
vertices z and y in the graph G.

Let j and k be any two positive integers. Suppose G is a graph and the
square graph of G is G2. Define a function 7 from E(G?) to N as: m(e) = j
if e € E(G) and m(e) = k if e € E(G?) \ E(G). Then a proper weighted
channel assignment f : V(G?) — N with respective to the weight 7 is
equivalent to an L(j, k)-labeling of G. Note that the only difference between
an L(j, k)-labeling and a proper weighted channel assignment is that the
label 0 can be used in an L(j, k)-labeling. Therefore xx(G2) = A x(G)+1.

A graph is called K 3-free if it contains no induced subgraph K 3.
Let ez(p, K3) be the maximal number of edges in a graph of order p not
containing Ka3. It is well known that ex(p, K3) = |p?/4] and the only
extremal graph is K|p/2),(p/2}-

Theorem 2.2 Let G be a simple graph and let A be the mazimum degree
of G. Suppose A > 2. If G is K 3-free then, except the case that Gisa
5-cycle and j = k, we have \jx(G) < k|A%/2] +jA - 1.
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Proof. Without loss of generality, we may assume that G is connected.
Let 7 be the weighted function for G2 defined as above. Since Aik(G) =
x=(G?) — 1, it suffices to show that x(G2) < k|A2/2] + jA. Let z be
any vertex of G. Denote by N(z) the set of vertices adjacent to z. Let
t =|N(z)| < A. Since G is K) 3-free, the complement of G[N(z)] contains
no Kz. Thus the complement of G[N(z)] has at most |t2/4] edges and
hence G[N(z)] has at least (;) — |t2/4] edges. Let Np(z) denote the set of
vertices distance 2 away from z. Then |No(z)| < t(A-1)-2((;) — |£3/4])] =
tA +2[t?/4] — 2 < tA - £2/2 < A%/2. Tt follows that, for any vertex in
G, there are at most A vertices adjacent to it and at most |A2/2] vertices
distance two away from it. Thus A-(G?) < k|A2%/2] + jA. If x2(G?) >
k[A%/2]+jA+1, then Ar(G?) = k|A%/2|+35A and x(G?) = A (G?)+1.
Since the second power of a connected graph with maximum degree at least
2 is always 2-connected, G2 together with 7 is one of the forms described
in Lemma 2.1, i.e., G2 is either an odd cycle or a complete graph with all
its edges having the same weight.

Except for P; and K3, there is no graph whose second power is a cycle,
where P; is a path with three vertices. For G = P3, we have A,,(G2) =
max{2j,j + k} < kA?/2+ jA, a contradiction. For G = K3, one can get a
similar contradiction.

The remaining case is that G2 is a complete graph and all its edges
having the same weight. This is the case only when G is a complete graph
or G is not complete but G? is and j = k. First suppose G is a complete
graph. Let n be the number of vertices of G, then A,(G?) = j(n - 1)
and A =n - 1. Since we assume A > 2, it is easy to see that A,(G?) =
J(n—1) < k|A?/2] + jA, a contradiction.

Now suppose G is not complete but G2 is and j = k. If A = 2, G
must be 3, C3 or Cy and the theorem holds for these graphs clearly when
J = k. So we assume that A > 3. Let n be the number of vertices of
G. Since G? is complete and j = k, Ax(G?) = (n — 1)j. Next we show
that A,(G?) < k[A2/2]+jA and thus get a contradiction. Suppose to the
contrary that A(G?) = k| A%/2|+jA. Since j = k and A.(G?) = (n—1)7,
wehaven = A%/2+ A+1if Aisevenand n = (A2 ~1)/2+A+1if A is
odd.

Since G? is complete, any pair of vertices of G are at distance at most
2 in G. It follows that, for any vertex = of G, |N(z)| + |Na(z)| equals
A%/2 + A if A is even and (A2 —~ 1)/2+ A if A is odd. Let z be a
vertex of degree A in G. Since n = |V(G)| = |A2%/2]| + A +1 and G
is of diameter 2, the edge number of the induced subgraph G[N (z)] is at
most 3(A(A — 1) — |A%/2]). This implies that G[N(z)] (the complement
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of G[N(z)]) has at least 3|A2/2] = |A?/4] edges. Since G is K s-free,
G[N(z)] contains no K3 and thus it has at most |A2/4] edges. It follows
that G[N(z)] has exactly |A2/4] edges and G[N(z)] & K|a/2),;a/2) and
each vertex in N(z) has degree A. Consequently G[N(z)] must be the
disjoint union of K|as2) and Kass). So far we have shown that if a
vertex z is of degree A in G then each vertex in N(z) also has degree A
and G[N(z)] is the disjoint union of K|a/2) and Kja/21- And this clearly
implies that G is A-regular and for any vertex z, G[N(z)] is the disjoint
union of KlA/2J and K[A/g] .

We first deal with the case that A > 4 is even. Let z be a ver-
tex of G. Then G[N(z)] is the disjoint union of two cliques. Let A; =
{.'131,122, vee $xA/2}a B, = {yl:y% XK )yA/2}$ and N(.’B) = A:c UB;. We may
assume that G[A;] and G[B;] are two cliques of G. For i =1,2,...,A/2,
denote by Az, the vertex set N(z;) \ (Az U {z}) and by A,, the vertex set
N(y:)\(BzU{z}). Clearly |A;;| = |Ay| = A/2fori=1,2,...,A/2. Since
|N(z)] + | Na(z)| equals A2/2 + A, all these sets are pairwise disjoint. And
each of these sets induces a clique of order A/2. Let y be any vertex in
U,A_T_/f Ay,. Since d(z;,y) < 2 for each i =1,2,...,A/2, y must be adjacent
to some vertex in Az,. It follows that any vertex y € A, is nonadjacent to
any vertex y' € A,,. Since d(y,y’) = 2, there is some vertex z in U‘A=/12 Az,
such that zy and 2y’ are edges of G. Suppose z € A;,. Then {2,2;,y,7'}
induces a K 3, a contradiction to our assumption.

We now suppose that A > 3 is odd. Let = be a vertex of G. Then
G|[N(z)] is the disjoint union of two cliques. Let A; = {z1,Z2,...,Z(a-1)/2}>
B; = {y1,¥2,-..,¥a+1)/2}, and N(z) = A; U B;. Suppose G[A;] and
G[B;] are cliques of G. Fori =1,2,...,(A~1)/2, denote by Az, the vertex
set N(z;)\(AzU{z}) and fori = 1,2,...,(A+1)/2 denote by A, the vertex
set N(y;)\ (BzU{z}). Clearly |A;,| = (A+1)/2fori=1,2,...,(A—-1)/2
and |A,,| = (A - 1)/2 for i = 1,2,...,(A + 1)/2. Since |N(z)| + |N2(z)|
equals (A%2—-1)/24A, all these sets are pairwise disjoint. And each of these
sets induces a clique of order (A+1)/2 or (A —1)/2. Let y be any vertex in
Ag,. Since d(y;,y) < 2 foreachi=1,2,...,(A+1)/2, y must be adjacent
to some vertex in Ay,. It follows that d(y) > A +1, a contradiction. 1l

If G is a 5-cycle and j = k then we clearly have A; ;(Cs) = 4j.

3 The Upper bound for X}, (G)

Since line graphs are K s-free, the following theorem follows from Theorem
2.2 immediately.
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Theorem 3.1 Let G be a simple or multiple graph and let Ay be the maz-
imum degree of its line graph. Suppose Ay > 2. Except the case that G is
a 5-cycle and j = k, we have Xj ,(G) < k|A3/2] +jAL - 1.

Corollary 3.2 Let G be a simple graph with mazimum degree A > 2. If
G is K\ 3-free then )3 1(G) < |A2/2] +2A - 1.

It is easy to check that the inequality |A2/2] 4 2A — 1 < A2 holds for
all A > 3. In the case A = 2, G is the disjoint union of paths and cycles,
50 A2,1(G) < A2, Thus Conjecture 1.8 holds for all K 1,3-free graphs and
hence for all line graphs. This is an improvement of Corollary 1.3.

The following corollary improves the upper bounds A% /2 + 3A;, and
242 4 2A — 4 for X5 1 (G) in Theorem 1.1.

Corollary 3.3 Let G be a simple or multiple graph with mazimum degree
A 2> 2 and let Ay > 2 be the mazimum degree of its line graph. Then
21(G) < [A7/2] +2AL -1 <2A% -3,

Next we apply Theorem 3.1 to the case j = k = 1 and to strong
chromatic index of graphs.

Corollary 3.4 Let G be a graph with mazimum degree A > 2. Let Ay, be
the mazimum degree of the line graph L(G). Then Mi(G) < |A%)2) +
Ap—1.

Corollary 3.4 improves the upper bound A/2 + AL for A ;(G) in
Theorem 1.2.

A strong matching in a graph G is an induced subgraph of G that
forms a matching. A strong edge coloring of a graph G is an edge coloring
of G such that each color class is a strong matching. The strong chromatic
indez of a graph G, denoted by sx/(G), is the smallest number of colors
in a strong edge coloring of G. It is not difficult to see that a strong edge
coloring of a graph G is an L(1, 1)-edge labeling of G. Note that we use 0
in an L(1, 1)-edge labeling of a graph, it is clear that sx/(G) = A1G)+1
for any graph G. Thus Corollary 3.4 implies the following corollary.

Corollary 3.5 Let G be a graph with mazimum degree A > 2. Let A L be
the mazimum degree of the line graph L(G). If G is not isomorphic to a
5-cycle, then sx'(G) < [A2/2] + AL < 242 - 2A,

It was conjectured by Erdés and Nesetfil that sx/(G) < 5A2/4 if A is
even and < 5A%/4—A/2+41/4if A is odd, where A is the maximum degree

167



of G. The conjecture is clearly true for A < 2. The case A = 3 was settled
independently by Andersen [1] and by Horak, Qing, and Trotter [13]. They
showed that sx’(G) < 10 for graphs with maximum degree 3. Horék [14]
showed that sx’(G) < 23 for graphs with maximum degree 4. And recently,
Cranston [3] showed that sx/(G) < 22 for graphs with maximum degree 4.
The conjecture is unsolved for A > 4.

If A = 3 then Ay < 4 and Corollary 3.5 gives the upper bound 12
which is just 2 bigger than the best known upper bound 10. If A = 4 then
Ay < 6 and Corollary 3.5 gives the upper bound 24 which is also just 2
bigger than the best known upper bound 22. In particular, when Ay =3
the upper bound 7 given by Corollary 3.5 is the best possible. This can be
seen from the following defined graph H;. H, is the graph obtained from a
5-cycle by adding a new vertex and joining it to two nonadjacent vertices
of the 5-cycle. Then H; has 7 edges and any two edges of it are at distance
at most 2. Thus sx/'(Hy) =17.

Faudree etc. in [4] asked a problem: is sx'(G) < 7 if G is a graph with
dg(z) + da(y) < 5 for any edge zy of G? Note that ifde(z) +de(y) £5
for any edge zy of G then Ay < 3. Therefore the upper bound 7 given by
Corollary 3.5 with A, = 3 answers the problem ask by Faudree etc..

For the rest of the paper, we shall improve the upper bound provided
in Theorem 3.1, if G is K 3-free.

Suppose G is a graph which may have multiple edges. For an edge e
of G, denote by dg(e) the number of edges which are at distance 1 from
e, and d%(e) the number of edges which are distance 1 or 2 away from e.
Clearly Az(G) = max{dg(e)le € E(G)}. Denote by u(e) the multiplicity
of e.

For any positive integer z, define

8(z) = k(32%/8 + z/2) + jz, if z is even;
=\ KB(z2-1)/8+ (z-1)/2| + 4z, ifzisodd.

Theorem 3.6 Let G be a simple or multiple graph and let Ay be the maz-
imum degree of its line graph. Suppose Ay > 2. If G is K1 3-free then,
except the case that G is a 5-cycle and j = k, we have X} . (G) < (AL) - 1.

Proof. Without loss of generality, we may assume that G is connected. Let
7 be the weighted function for (L(G))? defined as in the previous section.
Since X . (G) = Ajx(L(G)) = x=((L(G))?) — 1, it suffices to show that
x,,((L(G))Z) < (AL). Let zy be any edge of G. Let dg(z) = a+u(zy) and
dg(y) = b+ u(zy) for some a,b > 0. Then dg(zy) = a+b+pu(zy)—1 < AL
and a+b < Ar. Let A = Ng(z)\ {y} = {z1,22,...,%.} and B =
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Ne()\ {z} = {y1,v2,...,w}. Clearly |A] = a and |B| = b. Let e,4 (eg,
respectively) denote the number of edges incident with at least one vertex
in A (B, respectively) but not incident with z (y, respectively). And let y
(yB, respectively) denote the number of edges in G[4] (G[B], respectively).

Since G is K 3-free, G[A] contains no K3. It follows that G|A] has at
most |a?/4] edges and hence G[A] contains at least (§) —|a?/4] edges. That
is ya > (3) — [a%/4]. Noting that for each i = 1,2,...,q, dg(zz;) < Ay,
and the edge zz; is adjacent to the edge zy and the edges zx; with j #14,
we know that each vertex z; is incident with at most Ay, — a edges in the
form of uz; with u g A. Therefore we have

a(Ap —a) —
a(AL —a) —a(a—-1)/2 + |a®/4]
aAL +a/2 + |a®/4] - 3a%/2.

€a

IA A

Similarly, ep < bAL + b/2 + |b2/4) — 3b%/2. It follows that

dé(a:y) —dg(zy) <es+ep

< (@+b)AL+(a+b)/2+ (la%/4] + [b2/4]) - 3(a® + b?)/2

< (@a+b)AL + (a +b)/2 — 5(a® + b?)/4, if a + b is even;
< { (@+b)AL + (a+b)/2—5(a? +52)/d - 1/4,  ifa+bis odd.
< 3A2/8+AL/2, if Ay is even;

< { 3(A2 —1)/8+ (AL —1)/2, if Ay is odd.

It follows that, for any vertex in L(G), there are at most A, vertices
adjacent to it and at most 3A3 /8 + Ap/2 (or 3(A2 —1)/8 + (AL —1)/2)
vertices distance two away from it. So if x»((L(G))?) > 6(AL) + 1, then
A ((L(G))?) = 6(AL) and x((L(G))?) = Ax((L(G))?) + 1. Since the
second power of a connected graph with maximum degree at least 2 is
always 2-connected, (L(G))? together with 7 is one of the forms described
in Lemma 2.1, i.e., (L(G))? is either an odd cycle or a complete graph with
all its edges having the same weight.

Except for P3 and K3, there is no graph whose second power is a cycle,
where P; is a path with three edges. For G = P;, we have A, ((L(G))?) =
max{2j,j + k} < k(34%/8 + Ap/2) + jAL, a contradiction. For G = K3,
one can get the same contradiction.

The remaining case is that (L(G))? is a complete graph and all its edges
having the same weight. This is the case only when L(G) is a complete
graph or L(G) is not complete but (L(G))? is and j = k. First suppose
L(G) is a complete graph. Let m be the number of vertices of L(G), then
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A-((L(G))?) = j(m — 1) and AL = m — 1. Since we assume Ap > 2,
m must be greater than or equal to 3. Thus Ay = j(m —1) < 6(AL), a
contradiction.

Now suppose L(G) is not complete but (L(G))? is and j = k. Let m be
the number of edges of G (that is the number of vertices of L(G)). Since
(L(G))? is complete and j = k, Ax((L(G))?) = (m — 1)j. Next we show
that Ar((L(G))?) < 8(AL) and thus get a contradiction. Suppose to the
contrary that A, = 8(AL). Since 7 = k and A((L(G))?) = (m - 1)j,
we have m = 3A% /8 + 3AL/2 + 1 if AL is even and m = 3(A% —1)/8 +
(3AL —1)/2+1if Ay is odd. When Ay =2, G must be P3, C3 or C4 and
the theorem holds for these graphs clearly when j = k. So we assume that
Ar > 3. Since (L(G))? is complete, any pair of edges of G are at distance
at most 2. It follows that, for any edge zy of G, dg(zy) + d%(zy) equals
3A%/8+3AL/2if AL is even and 3(A} —1)/8+ (3AL—1)/2if Ay is odd.
From the calculation in the beginning of the proof, we know that this is the
case only when a = b= Ay /2 if AL is even and only when {a,b} = {(AL~
1)/2,(Ap +1)/2} if Ap is odd, and that the multiplicity of any edge zy is
1. Therefore, if Ay is even then G is simple and (Ay/2 + 1)-regular. Let n
be the vertex number of G. Then (Ap/2 + 1)n = 2(3A% /8 +3AL/2 + 1).
This implies that n = 3A1/2+ 3 —2/(AL+2). But this is impossible since
n is an integer, a contradiction. If Ay is odd then G is simple and bipartite.
Let Vi = {v|dg(v) = (AL +1)/2, v € V(G)} and V5 = {v|dg(v) = (AL +
3)/2, v € V(G)}. Then |V1|(AL +1)/2 = |Vo|(AL + 3)/2. It follows that
2Val(AL+3)/2 = 2m = 2[3(A% —1)/8+(3AL—1)/2+1]. Therefore |V2| =
Ap—(A2 —1)/[4(AL +3)). Note that Ay is odd, it is not difficult to check
that (A2 —1)/[4(AL + 3)] can not be an integer. This is a contradiction
since |V2| is an integer. [
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