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Abstract

It was shown by Gaborit el al. [10] that a Euclidean self-dual
code over GF'(4) with the property that there is a codeword whose
Lee weight = 2 (inod 4) is of interest because of its connection to a
binary singly-even self-dual code. Such a self-dual code over GF(4)
is called Type I. The purpose of this paper is to classify all Type I
codes of lengths up to 10 and extremal Type I codes of length 12,
and to construct many new extremal Type I codes over GF(4) of
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lengths from 14 to 22 and 34. As a byproduct, we construct a new
extremal singly-even self-dual binary [36, 18, 8] code, and a new ex-
tremal singly-even self-dual binary [68, 34, 12] code with a previously
unknown weight enumerator Ws for 8 =95 and v = 1.

Key Words. Binary self-dual code, Euclidean self-dual code
over GF(4).

1 Introduction

We briefly review basic definitions. A linear [n,k] code C over GF(4) is
a k-dimensional vector subspace of GF(4)", where GF(4) is the Galois
field with four elements 0,1.w, and @ satisfying @ = w? and @ = 1 + w.
The Hamming weight wty(x) of x € GF(4)" is the number of nonzero
components of x. Let ng(x), n,(x), ng(x), and n;(x) be the number of 0’s,
w’s, @'s, and 1’s in a vector x € GF(4)", respectively. The Lee weight
wtr(x) of x € GF(4)" is defined as 2n(x) + n,(x) + ne(x). Note that
wtr(0) = 0, wty (1) = 2, wty(w) = 1, and wt; (@) = 1. Thus the Lee weight
wtr(x) of x € GF(4)" is the rational sum of the Lee weights of all the
coordinates of x. The minimum Lee weight dy, (resp. minimum Hamming
weight dy) of C is the smallest Lee (resp. Hamming) weight among all
non-zero codewords of C.

Two codes C; and Cy arc (permutation) equivalent if there exists a co-
ordinate permutation sending Cy onto Cz [2},(10]. The (permutation) au-
tomorphism group PAut of C is the set of all coordinate permutations pre-
serving C. The direct sum of two codes Cy and Cz is C1 ®C2 = {(u,v)|u €
C, and v € C2}. C" denotes the direct sum of n copies of C. If D is equiv-
alent to C; @ Co, it is called decomposable, otherwise indecomposable. The
complete weight enumerator cwec(a,b,¢,d) of C is

E a"0(C)pnw(C) cne{C)gni(€)
ceC

The Lee weight enumerator of C is defined as

>y = cwec (1,3, 3, v°)-
ceC

The Gray map ¢ from GF(4)" to GF(2)?", first appeared in [17, pp. 508]
and then in [10], is defined as

P(wx +Ty) = (x,y) for x,y € GF(2)",

where (x,y) is the binary vector of length 2n.
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The Buclidean inner product is defined as X -y = z1y; + -+ + Tnatn €
GF(4), for two vectors X = (ity,--- ,Z,) and y = (y1," -+ ,yn) in GF(4)™.
The dual code CL of C is defined as

Ct={xe€ GFM)"|x-y=0forall y € C}.

If C = €%, then C is called a {Euclidean) self-dual code. A Euclidean self-
dual code over GF(4) is called Type II if the Lee weight of every codeword
is divisible by 4 and Type [ if therc is a codeword whose Lee weight = 2
(mod 4) [2],{10]. We remark that a Euclidean self-dual code over GF(4)
can have a codeword of odd Hamming weight even though all codewords
have even Lee weights.

It was shown by Gaborit ct al. [10] that if C is a Euclidean self-orthogonal
code over GF'(4), then ¢(C) is a binary self-orthogonal code. So C is a
Type I (resp. Type II) code over GF(4) if and only if #(C) is a singly-
even (resp. doubly-even) binary sclf-dual code. As a binary self-dual code
contains all one vector 1, any Euclidean self-dual code over GF(4) contains
all one vector. There has been a classification of Type II codes of lengths
4,8, and 12. It is known that there are only one Type II code of length 4
and exactly two Type II codes of length 8 [10], and that there are exactly
seven Type II codes of length 12, one of which is extremal [2]. Several
examples of extremal Type I codes are in [2],[10].

Our paper is the first attempt to classify Type I codes over GF(4). We
classify all Type I (and Type II) codes of lengths up to 10 and extremal
Type I (and Type 1I) codes of length 12, and construct many new extremal
Type I codes over GF(4) ol lengths from 14 to 22 and 34. We also give
their corresponding binary singly-cven self-dual codes whenever possible.
As a byproduct, we construct a new extremal singly-even self-dual binary
[36, 18, 8] code with a previously unknown group order and a new extremal
singly-even self-dual binary [68,34,12] code with a previously unknown
weight enumerator W for 8 = 95 and v = 1 [14]. We also prove that a
Euclidean self-dual [12, 6] code over GF(4) with minimum Hamming weight
6 is unique; it is permutation cquivalent to the extended quadratic residue
(12, 6] code over GF(4).

We summarize the currently known status of extremal or optimal (with
respect to Lee weight) Euclidean sclf-dual codes over GF(4) of even lengths
n (2 <n <22) and n = 34 in Table 1. Here d,(J) and dy(II) denote the
highest minimum Lee weight of Type I and Type II codes, respectively.
The number of Type I codes and that of Type II codes are separated by
; and entries without reference are obtained from this paper. A period
indicates that the list of codes is complete. The column with (dg; no.) gives
the number of Euclidean sclf-dual codes with highest minimum Hamming
weight dy of lengths n < 12 and the last column with dg for our codes
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gives the minimum Hamming weight of our Type I codes. The attainable
Hamming weight of our Euclidean sclf-dual codes over GF(4) is better than
the Pless-Pierce bound [20] for 8 < n < 20 and n = 32, and slightly weaker
than the Table 6 of [9] for n > 14.

2 Preliminaries and Methods

The following lemmas are straightforward by the definition of the Gray
map.
Lemma 2.1 ([10]). The Gray map ¢ is a GF(2)-linear isometry from
(GF(4)", Lee distance) onto (GF(2)**, Hamming distance) where the Lee
distance of two codewords x and y is the Lee weight of x —y. The Lee
weight enumerator of a code C over GF(4) is the same as the Hamming
weight enumerator of (C).
Lemma 2.2 ([10]). IfC, and C are equivalent Euclidean self-dual codes
over GF(4), then o(C,) and o(C2) are equivalent. The converse is not true.
We now give an upper bound for the minimum Lee weights of self-dual
codes over GF(4) by using Rains’ bound [22] for binary self-dual codes.

Lemma 2.3 ([10]). Let di(I,n) and di(I1,n) be the highest minimum Lee
weights of a Type I code and a Type II code, respectively, of length n. Then

dy(I,n) < 4[%] +4 (n=0 (mod 2)) (1)
dy(II,n) < 4 [%J +4 (n=0 (mod 4)). )

A Type I (resp. Type II) code of length n satisfying the above bound
is called extremal. An optimal Type I code has the highest minimum Lee
weight among all Type I codes of that length.

We now give a building-up construction method of Euclidean self-dual
codes over GF(4) from smaller length self-dual codes.

Theorem 2.4 (Building-up). Let Go = (L|R) = (L|r:) be a generator
matriz (may not be in stundard form) of a Euclidean self-dual code Co over
GF(4) of length 2n. where I; and v; are rows of n x n matrices L and R
respectively for 1 <i < n. Let x = (T1,°+* \Tny Tn41y - ,Ton) be a vector
in GF(4)?" with x-x = 1. Suppose that y; := (T1,*** 1 Tny Tnt1y* " ,Ton) -
(L|rs) for 1 < i < n under the Buclidean inner product. Then the following
matric

1 0 I:B1 cer Ty Tpgl v T2n
n o un
G=| . .
: : L R
Yn Yn
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generates a Euclidean self-dual code C over GF(4) of length 2n + 2.

Proof. This is a modified construction of Hermitian self-dual codes over
GF(4) in [16]. O

Using Theorem 2.4 we can prove the following.

Theorem 2.5. Any Euclidean self-dual code C over GF(4) of length 2n
with minimum Hamming weight dy > 2 is obtained from some Euclidean
self-dual code Co of length 21 — 2 (up to equivalence) by the construction in
Theorem 2.4.

Proof. The proof is similar to that of [15, Theorem 2]. We omit the details.
(]

Corollary 2.6. Any Euclidean self-dual code C over GF(4) of length 2n
with minimum Lee weight d;, > 4 is oblained from some Euclidean self-
dual code Cy of length 21 — 2 (up to equivalence) by the construction in
Theorem 2.4.

Proof. We note that if C has minimum Lee weight d; > 4 then it has
minimum Hamming weight dy > 2. The reason is that if dy < 2 then there
are at most two nonzero positions in any codeword of Hamming weight 2.
To have minimum Lee weight d; > 4, such codewords should have two
1’s and 0’s in the rest of coordinates. Then since C is linear we have
a codeword with two w’s and 0's in the rest of coordinates. Then the
codeword has Lee weight 2. a contradiction. Hence the corollary follows
from Theorem 2.5. O

When a Euclidean scif-dual code C over GF(4) of length 2n has mini-
mum Hamming weight 2. we can decompose it as in the case of a binary
self-dual code with minimum weight 2 [23].

Theorem 2.7 (Dccomposition). If C is a Euclidean self-dual code over
GF(4) of length 2n with minimum Hamming (also Lee) weight 2, then C
is permutation equivalent to the direct sum of iy and C', where is is the
repetition code with gencrator matriz [1 1] and C' is a Euclidean self-dual
code over GF(4) of length 2n — 2.

3 Equivalence between Euclidean codes over
GF(4)

We recall that two Euclidean codes C; and Cy of length n over GF(4) are
equivalent if there is a permutation of coordinates which sends C; onto Cs.
We associate to such a permutation of length n a permutation of length 2n
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as follows because a direct checking of equivalence of two codes over GF(4)
seems to be hard.

Let 8 : GF(4) — GF(2)? he dcfined as B(0) = (0,0), B(1) = (1,1),
B(w) = (1,0), and 8(@) = (0.1). For x = (z1,- '+ ,Zn) € GF(4)" we define
B(x) = (B(z1), - ,B(x,)). If two Euclidean codes C; and Cz over GF(4)
are equivalent, then clearly 8(C,) and B(C2) are equivalent. Let T, be
the permutation group on 2n clements generated by a; = (13 5---2n —
1)(2 4 6---2n) and a2 = (1 3)(2 4). Then T, is isomorphic to S, (the
symmetric group on n clements). We observe that given a Euclidean code
C over GF(4) of length n and its binary image 8(C) = B, the permutations
of coordinates of C correspond to the permutations of B generated by a;
and as. Thus we have the following proposition.

Proposition 3.1. Let C be a Euclidean code over GF(4) of length n asso-
ciated to the binary code 3(C) = B. Then PAul(C) = Aut(B) NT,.

Lemma 3.2 ([8]). Let B, By be binary codes with a permutation P such
that B1 P = By. A permutation Q satisfies B1Q = By if and only if Q €
Aut(B,)P, a right coset of Aul(B,) in the symmetric group on the length
Of B].

Using Lemma 3.2 we have a way to check equivalence as follows and
this was implemented in Magma.

Proposition 3.3. Let C, and C, be Euclidean codes over GF(4) of length
n associated to binary codes 3(Cy1) = By and B(C2) = Ba of length 2n.
Suppose P is a permutation on 2n clements such that By P = B,. C; and C,
are equivalent as Euclidean codes over GF(4) if and only if Aut(B,)PNT, #
9.

4 Classification of Type I codes of lengths up
to 12

We give the mass formula for Type I codes over GF(4) of length n.

Proposition 4.1. Let N(n) be the number of Type I codes over GF(4) of
length n. Then N(2) = 1. N(4) = 3 and for any even n > 6,

2_9

4z7'=1) H 4 +1)ifn=0 (mod4), (3)

i=1

N(n)

g-1

N(n) = H 4'+1)ifn=2 (mod 4). (4)

i=1
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Proof. The first equality (3) and :V(4) = 3 follow by subtracting the mass
formula for Type II codes in [10] from the mass formula for Euclidean (Type
I or Type II) self-dual codes in [23]. The second equality (4) and N(2) =1
are just the mass formula for Euclidean (Type I or Type II) self-dual codes
in [23]. O

A complete classification of hinary self-dual codes of lengths < 24 was
given in [19],[21]. Using information there we can classify all Type I codes
over GF'(4) of lengths up to 10 and cxtremal Type I codes of length 12. We
observe the following lemina which is used in determining indecomposable
codes.

Lemma 4.2. If the Gray imagc of a self-dual code C over GF(4) is inde-
composable, so is C. If the Gray image of a self-dual code C over GF(4)
is decomposable and each component of the image is also the image of a
smaller code over GF(4), then C is decomposable.

4.1 Lengths 2 and 4

It is clear that there is ouly onc Type I code of length 2 whose generator
matrix is 1 1] . Its binary image is equivalent to CZ [19]. We now consider
n = 4. There is a unique Euclidcan sclf-dual Type I code Cy,; of length 4.
This is a cyclic code with generator (1010). We have verified it by using the
mass formula as follows. The group order of Cy4,) is 8 as in Table 2, where
A; denotes the number of codewords with Lee weight 4, |PAut| denotes the
order of the permutation automorphism group of the corresponding code
C over GF(4), (C) is the Gray image of C, and ‘de’ means decomposable
and ‘in’ indecomposable. Hence we check that 4!/]PAut(Cy )| = 3 = N(4).
There is a unique Type 11 code [10], denoted by Cy 2 here. It is generated
by {(10ww), (01@w)}. We remark that Cy2 is a Reed-Solomon [4,2] code
over GF(4) with d =4 and dy = 3.

4.2 Length 6

Using Theorem 2.4 with gencrator imatrices of C4,; and C4,2, we obtain three
inequivalent codes. denoted by Cq.1,Ce 2, and Ce 3. Cs,1 is a cyclic code with
generator (100100). Cgo is gencrated by {(100100), (0100ww), (0010ww)}
and Ce3 by {(100wm0), (01015w). (001wlw)}. We remark that the code
Ce,3 is equivalent to C; in [2]. We compute the Lee weight distribution and
group order in Table 2. We checked that
6! 6! 6!

a3ty 3tase
It is easy to sec that d; = -1 if and only if dy = 3 or 4. The following is
proved,

=85 = N(6).
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Theorem 4.3. There are exactly three Euclidean self-dual Type I codes of
length 6, one of which is an extremal [6,3] code with df, = 4 and dyg = 3.

4.3 Length 8

We denote a generator matrix of a code C by G(C). One Type I [8,4]
code with d;, = 4 was given in [2). We obtain six inequivalent Type I
codes by using Theorem 2.4 with G(Cg,1) with x = (000ww1), (000001), or
(0000@w) and G(Cg,2) with x = (000111), (000wwl), or (000001). We also
construct two inequivalent Type II codes by the same method with G(Cs,1)
with x = (000111) and G(C.3) with x = (000@w0). We denote these eight
codes by Cg 1, ,Cs g in the displayed order. We compute the Lee weight
distribution and group order in Table 2. There are exactly two Type II
codes of length 8 up to permnutation-equivalence [10]. The codes Cs 7 and
Cs s are such. We check that for the six Type I codes

8! 8! 8 8l 8 8!

<4

PRI Tr T I Rkt

Hence the following is proved.

Theorem 4.4. There are czactly siz Euclidean self-dual Type I codes of
length 8, three of which arc indecomposable and extremal [8,4] codes with
d;, = 4. There are ezactly two Type I codes of length 8 with dy = 4 and
one Type II code of length 8 with dy = 4.

4.4 Length 10

It is known [2] that there is a Type I [10,5] code with dz = 4 whose Gray
image is Map. We obtain five inequivalent Type I {10, 5] codes with d;, = 4,
denoted by Cio,1,--- ,C10,5 from Cy,; with

x = (00000111), (0000@w11), (00001&w1), (6000&01), (0000Fwww).

Similarly four such codes Cyu6,- - ,C10,9 are obtained from Cg 3 with x =
(00000111), Cg4 with x = (00001101), and Cgs with x = (00001wwl),
or (000000@w), respectively. We compute the Lee weight distribution and
group order in Table 3. We note that any Type I [10,5] code with dy, =
2 is a direct sum of {1 1] and onc of the eight codes in Section 4.3 by
Theorem 2.7. There are eight incquivalent such codes, denoted by Dyg i =
[11]®Cs; for 1 < i < 8. The group orders of Dyg; (1 < i < 8) are
64,3840, 144, 384, 36, 576, 2688, and 576, respectively. We check that

3 ————10! 3 —-—10! 1419925 = N(10
; PAut(Ca)] ,2:1 [PAut(Dg,:)| = N10).
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Hence the following is proved.

Theorem 4.5. There are cxactly nine Type I extremal [10,5] codes with
dy, = 4, eight of which are indecomposable and four of which have dg = 4.
There are ezactly cight Type I[10.5] codes with d, = 2.

4.5 Length 12

We want to classily Type | codes of length 12. Since binary self-dual
[24k, 12k, 4k + 4] codes are doubly-even [22], there is no extremal Type
I [12,6] code with d;, = 8. One Type I [12,6] code with d;, = 6 was given
in [2]. We note that Euclidean self-dual [12, 6] codes with d;, = 6 cannot be
built from decomposable sell-dual 10, 5] codes with d = 2. So by consider-
ing all possibilities of x with the ninc (10, 5] codes Cyg; (1 < ¢ < 9), we prove
that there are exactly two Tvpe I [12, 6] codes with d;, = 6, denoted by C;2;
and Cjy22 up to equivalence. In fact Cy2,; and Cip2 can be obtained from
Cio2 with x = (DZwwl11111) and (@lwwwlll1l), respectively. There
exists a unique Type II [12.6] code with dy = 8 (cf. [2],[10]). This is per-
mutation equivalent to the extended quadratic residue code of length 11
over GF(4). We can reconstruct it from Cyo with x = (Qww@l®1111).
See Table 3 for the Lee weight distribution and group order of these codes.
Also by considering Cjg,; with all possibilities for x we obtain exactly 26
self-dual [12, 6] codes with d; = 4 (available from the authors), 25 of which
are Type I. We further obtain exactly 17 more inequivalent Type I [12, 6]
codes with d; = 4 and two more Type II [12,6] codes with dp = 4 from
Cio,i for i = 2,.-- .6. Duc o the computational problem by Magma, we
stop considering more (12, 6! codes with dy, = 4.

Theorem 4.6. There are cractly two Type I optimal [12,6) codes with
dr = 6, both of which are indecomposable and have dy = 5. There are at
least 42 Type I [12,6] codes with d;, = 4.

Corollary 4.7. A Euclidean self-dual [12,6] code with diy = 6 over GF(4)
is unique; it is permutation equivalent to the ertended quadratic residue
code of length 11 over GF(.1).

Proof. If such a code C exists, then dp = 6 or 8 by the fact that dy <
dr. Since there is no Type I [12.6] code with d; = 6 and dy = 6 by
Theorem 4.6, C should have df, = 3 and be of Type II. Thus C is equivalent
to the extended quadratic residue of length 11 by the uniqueness of a Type
II [12, 6] code with d; = 8. (|

Remark 4.8. This corollary completes the entry n = 12 in Table 6 of [9)]
as only one code.
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5 New extremal Type I codes of lengths n >
14

For lengths n > 14 wc are mainly interested in extremal codes. For example,
for n = 16 there arc at least (1—[;1(4‘ + 1)) /16! = 4670 Euclidean Type I
or Type II self-dual codes over GF(4).

5.1 Length 14

For the length 14 we construct as many optimal Type I codes of that length
as possible. In Scction 4.5 we showed that there are two optimal Type
I [12,6] codes with d, = 6 and one extremal Type II [12,6] code with
dr = 8. By attempting all possibilities of x with C;22 we obtain exactly
25 inequivalent Typc I [14,7] codes with dp = 6. Further these codes have
dy = 5. We remark that one Type I [14,7] code with d; = 6 was given in
[2]. On the other hand therc are 21 inequivalent Type I [14, 7] codes with
dr = 6 from Cj2,; and two inequivalent Type I [14,7] codes with dz = 6
from C12,3. These are all equivalent to one of the 25 [14, 7] codes (dy, = 6)
from Cy22. Since sclf-dual {14,7] codes with di = 6 can also come from
self-dual {12, 6] codes with d, = 4. it is possible to have more Type I [14,7]
codes with d;, = 6. \We statc our result in the following and omit the detail.

Theorem 5.1. There are at least 25 Type I optimal [14,7] codes with df, =
6 and dy = 5. There exist at least siz [14,7] codes (dy = 6) with trivial
automorphism group.

5.2 Length 16

It is known [2] that there cxist at least one cxtremal Type I [16,8] code
with dz = 8 and at lcast four extremal Type II [16, 8] codes with d = 8.
Using the Type I [14,7] codes with d = 6, we construct five extremal
Type I [16,8] codes with d;, = 8 and four extremal Type II [16, 8] codes
with d;, = 8. The Gray images of the five extremal Type I [16,8] codes
(dr = 8) produce two singly-even binary self-dual [32, 16, 8] codes which are
two of the three such codes in [4] or [8, Table 5]. We omit their generator
matrices. Table 4 gives the Lee weight distribution and group order of these
codes. Again using Tvpe I [14,7] codes (dr = 6), we construct at least 605
inequivalent Type I [16.8] codes with d; = 6, most of them have a trivial
automorphism. It is interesting to note that the Gray images of some of
these [16, 8] codes have an antomorphism group of order 2. It is known that
if there is a rigid binary sclf-dual code of length 32, then it is a self-dual
[32,16, 6] code [18]. So it is possible to have a rigid binary self-dual code
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of length 32 which is the Gray image of some rigid Type I (16, 8] code over
GF(4) with d, = 6.

Theorem 5.2. There are at least five Type I extremal [16,8) codes with
dp =8 and dy = 6 with distinct Hamming weight distribution. Their Gray
images produce two singly-cven binary self-dual [32,186, 8] codes. There are
at least four Type II extremal (16,8] codes with d; = 8 and dy = 6 whose
Gray images are the quadratic residue (32,16, 8] code q32, C84, or C85.

5.3 Length 18

In 2], the first extremal Type I [18, 9] code (d;, = 8) was given. It has the
Lee weight enumerator

Wis1(y) = 1+ 2254" + 2016y + 9555412 + ...

which is one of the two weight cnumerators of extremal singly-even self-
dual [36, 18, 8] codes in [4]. Using Dyg (2] with many possibilities of x, we
construct five extremal Type I [18,9] codes (dy = 8), all of which have the
above weight enumcrator. See Table 6 for the generators. Here vectors
in the second colummn correspond to the right eight coordinates, the left
half being 0’s. In particular. the Gray image of C15 4 gives a new extremal
singly-even sclf-dual hinary [36, 13, 8] code with previously unknown auto-
morphism group of order 384 = 27 - 3. It was shown (4],(13],[15] that there
are at least 14 inequivalent singly-even self-dual binary (36,18,8] codes. We
summarize our results as follows.

Theorem 5.3. There are at least five incquivalent Type 118, 9] codes (dy =
8) over GF(4) with Vg, and al least 15 inequivalent singly-even self-dual
binary [36, 18, 8] codes.

5.4 Length 20
In [2], the first extremal Type 1 [20, 10] code with d;, = 8, Dag, was given.
It is a pure double circulant code. It has the Lee weight enumerator

1+ 2854 + 1024y'° + 1104042 4 ... .

Using two codes with generator matrices J 18,1 and K52 (see Table 5) with
many possible vectors x. we construct five new extremal Type I [20, 10]
codes with d = 8. all of which have previously unknown Lee weight enu-
merators. See Table G for such codes. The possible Lee weight enumerator
of a Type I [20, 10] code with d;, = 8 is as follows [4].

Wao(y) =1+ (125 + 163)y® + (1664 — 648)y"0 + ... .
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The code Dy has the weight enumnerator for 8 = 10. The five codes have
Lee weight enumerators for

3=0,1,2,3, or 4.
We summarize our results as follows.

Theorem 5.4. There are at least siz inequivalent Type I[20,10] codes with
dp, = 8 and Wy for 3=0,1.2,3.4, or10.

5.5 Length 22

In [10, Table II}, one extremal Type I [22,11] code with df, = 8 was given.
The possible Lee weight enumerator of an extremal Type I [22,11] code
(dr = 8) is as follows [4].

Waon(y) = 1+(44+4B)® + (976 —88)y'° + ---
or
Wasa(y) = 1-+(44+48)y°+ (1232 -88)y +---.

Using Dyp [2] with many possibilities of x we construct 12 new extremal
Type I [22,11] codes (dy, = 8) with weight enumerator Wz 2 for

8=10,12,13. 14,15.16,17,18,19, 20,21, or 22.
See Table 6 for such codes. We summarize our results as follows.

Theorem 5.5. Theie are al least 12 inequivalent Type I [22,11] codes with
dy, = 8 having distinct Lee weight enumerators.

5.6 Length 34

There are two possible Lee weight enumerators of an extremal Type I
[34,17) code over GF(4) with d;, = 12 according to [6] as follows.

Wagi(y) = 14 (442 +4B8)y'? + (10864 — 88)y™ + - -
or
Wasa(y) = 14 (442 +43)y'? + (14960 — 83 — 2564)y™ + - -- .

An extremal Type I {34.17) code with df, = 12, dy = 10, and W34, for 8 =
104 was in [10, Table 11]. By Dy, [2] with x = (0 - - Ow@@1@w00w1111111)
of length 32, we construct an extremal Type I [34,17] code with df = 12
and dg = 9 with the Lee weight cnumerator Wag 2 for 8 =95 and v = 1.
This weight enumerator is previously unknown (see [24], [14] and references
therein). We summarize our results as follows.
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Theorem 5.6. Therc exisls an extremal Type I [34,17) code over GF(4)
with d;, = 12, dy = 9 and the Lee weight enumerator Way2 for B = 95
and v = 1. Its Gray image is a new singly-even self-dual binary eztremal
(68,34, 12] code with weight enumerator Way o for 8 =95 and vy = 1, where
Waa,2 := Wy in the notation of [14].

6 Conclusion and open problems

We have classified Euclidean Tvpe I codes over GF(4) of lengths up to
10 and extremal Typc I codes of length 12, and constructed many new
extremal Type I codes of lengths from 14 to 22 and 34 efficiently by building-
up smaller self-dual codes. As a byproduct, we construct a new extremal
singly-even self-dual binary (36. 18, 8] code (recently classified in [7]) and a
new extremal singly-cven scll-dual binary (68,34, 12] code with a previously
unknown weight cnumerator. We also prove that a Euclidean self-dual
[12,6] code with dfy = G over GF(4) is unique; it is permutation equivalent
to the extended quadratic residue code of length 11 over GF(4). (We
remark that this resull also follows from the fact that there is a unique
linear (12,6, 6] code over GF(4). recently done by Gulliver et. al. [11].)

There are other interesting lengths n > 14 for which the existence of
extremal codes is not known. We mention some problems here.

1. In [2], an example of Type I [24,12] code over GF(4) with dy, = 8
was given. The cxistence of an optimal Type I [24,12] code with
dy = 10 is not known cven though there exist several binary self-dual
(48,24, 10] codos.

2. The existence of an extremal Type I [28,14] code over GF(4) with
dp = 12 is interesting since if so then its Gray image will be an ex-
tremal singly-cven sclf-dual [56,28, 12] code whose existence is open.

3. In (2], a Type I [36, 15! code over GF(4) with dy, = 12 was given. So
far the existence of an optimal Type I [36, 18] code over GF(4) with
dp = 14 is not known. If cxists, it will imply an optimal binary self-
dual [72, 36. 14] code whose existence is a long standing open problem.
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Table 1: The highest minimum Lec weight of a Euclidean self-dual code
over GF(4) of length n and its attainable Hamming weight

n |dp(I) | dp(I1) | no. of codes | (dx; no.) | dy for our codes
2| 2 1. (2;1)

41 2 4 1.; 1.[2] (3;1)

6] 4 1. (3;1)

8| 4 4 | 82010 | 43)

10| 4 9. (4;4)

12| 6 8 2.: 12 | (61)

14| 6 >25 dy =5
16| 8 3 |25 252 dy =
18| 8. =5 dy =6
20 8 3 >6; >1[2 dy =6
22| 8 >12 dy =6
34| 12 >2 dy =9

Table 2: Lec weight clistribntion and group order of all Type I codes of
lengths n = 4,6,8

codes C| Ag | Ao | Ag | 46| As |PAut| d)(C) (m)de du
Cap [1]4]6]a]l1 ]| 28 (o] de [ 2
C4,2 1 14 1 22 -3 As in 3
Cey |1]6(15[20]15](2%.3 C$ de | 2
Ceo |1 |2]15|28|15[23-3|Ci@Ag| de |2
Ce,3 1 15(32] 15| 2.32 Bjs in 3
c8,1 1 2164|102 32 F 16 in 4
Cg2 |18 |28|56|70 | 384 0; 1 de | 2
Css | 1|2]16|62|94| 36 |C3@Bi2| de |2
C3,4 1 12 |1 64 | 102 192 F16 in 4
Css |1 12|64 |102| 18 Fie in |3
Csg | 1|4 |20({60|8 | 96 [Ci@Ag| de | 2
Cs7z |1 28 198 | 1344 A2 de | 3
Cg,s 1 28 198 288 Ag de 4
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Table 3: Lee weight distribution and group order of extremal Type I codes

of lengths n = 10,12

codes C | Ag | Ag | As | Ao | Ar2 | |PAut| o(C) (in)de. | dy
clo,l 13 | 64 | 242 ) 334 48 Szo in 4
Cio,2 5 180|250 352 10 My in 4
Cio3 5 | 80 ]250 | 352 24 Mag in 4
Crq |13 [64]242(384 18 Sao in 3
Cc 10,5 9 72 | 246 | 368 12 Rzo in 3
Cio 9 [72]246 | 368 72 Rog in 4
Cio,7 | 17 | 56 | 233 400 504 Log in 3
CIO,8 9 . 72 121G | 363 81 Rao in 3
Croo 2932226448 216 Ag @ B2 de 3
Ci2,1 64 | 375 | 960 | 1296 12 Zog in 5
Cizp 64 | 375 960 | 1296 10 Zoq in 5
Ci23 759 2576 | 660 | Golay Code in 6

Table 4: Lee weight distribution and group order of extremal Type I or

Type II codes of length n = 16 with dyg =6

codes C | Ag | Ao | A1z |[|PAut| | ¢(C) or ref. | |[Aut(¢(C))| | Type
Cis, |364(2048) G720 [ 8 4],(8] 212.3.7 I
Cis2 |364]2043) 6720 | 14 [4],[8) 212.3.7 I
Cies (36420431 6720 | 128 (4],8] 215.32 I
Cisa [364 20481 6720 [ 16 [4],[8] 212.3.7 I
Cies |364[2043. 6720 | 16 [4],[8] 212.3.7 I
Ciss | 620 13888 | 24 | C85(f3%) | 2°-32.5 | II
Cir | 620 | 13883 16 C85(f3%) | 29.32.5 | 1I
Ci,s |620 13888 8 C81(q32) 25.3.5.31( II
Ciso |620 I 13888 14 C84(f8) 212.3.7 [ 1II
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Table 5: Generator matrices Ky, and Kis2

[ 1000000000.w111111
0100000001 1051 1ww
0010000001 lww1Zwll
00010000005ww11w00
000010000w1wlwl 1wl

0000010007 1 Twww 10w
0000001000xw00wwll
0000000101005w0w0w

" 1000000000001 1wl |
010000000ww1w00w10
001000000wz0110ww0
000100000ww10wwwiw
0000100001 0woww lww
00000100010w1w0110
000000100w1wwwwwl0
0000000101 0wwlwww

L 00000000105w11200w |
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Table 6: New extremal Type I codes of lengths n = 18,20,22, all with
dp=8anddy =6

codes C | x with left half 0°s | 8 | [PAut| | JAut(é(C))| [ using | W(y)
cls,l 0501111 1 2-3 Dis [2] WlS,l
cls‘z Owwwwlll 3 2.3 Dlﬁ W18,1
Ciss 101w@111 2 2%.3 Di¢ W13|1
Cisa 001Z1wll 1 27.3 Dig W18,1
613,5 wwwlwll 1 23.3 Dig WlS,l
Ca0,1 wloZwwwll 1 1 1 K 18,1 | Woo
C20.2 1101011 2 1 1 Klg,l Wao
Ca03 Www lww.w1l 3 1 1 K18,1 Wao
C20,4 1111011 4 1 1 Klg'l Wao
c20'5 wwwwlllll 0 1 1 Klg,g Wao
022,1 WlwwTww010 10 1 1 Dy [2] W22,2
Coo2 lww10L010T 12 1 1 Doy W22'2
Caas wwl1001w(51 13 1 1 Dy W22,2
Co2q wewl01001w 14 1 1 Dyg W22,2
Coos wwwlow0 1w 15 1 1 Dy W22'2
C 22,6 w1z 0wwlw 16 1 1 Doyg W22,2
Caoz7 0715001Tw1 17 1 1 Dy W22’2
Coog 01011101 18 1 1 Dqyo W22,2
c 22,9 W0ww0T1T0w 19 1 1 Dy W22,2
Ca2.10 w0001 20 1 1 Dy W22,2
C22,1 1 11502350 10 21 1 1 Doy W22,2
C22,12 @12000w 1wl 22 2 4 Doy Waz,2
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