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Abstract. Let AK, be the complete multigraph with v ver-
tices, where any two distinct vertices z and y are joined by
A edges {z,y}. Let G be a finite simple graph. A G-packing
design (G-covering design) of AK,, denoted by (v, G,A)-PD
((v,G,A)-CD) is a pair (X, B), where X is the vertex set of
K, and B is a collection of subgraphs of K, called blocks,
such that each block is isomorphic to G and any two distinct
vertices in K, are joined in at most (at least) A blocks of B. A
packing (covering) design is said to be maximum (minimum)
if no other such packing (covering) design has more (fewer)
blocks. There are four graphs with 7 points,7 edges and a
5-circle, denoted by G;,i = 1,2,3,4. In this paper, we have
solved the existence problem of the maximum (v,G;, \)-PD
and the minimum (v, G;, A)-CD.

Keywords: G-packing design, G-covering design, G-holey de-
sign, G-incomplete design.

1 Introduction

A complete multigraph of order v and index A, denoted by AK,, is a graph
with v vertices, where any two distinct vertices x and y are joined by A
edges {z,y}. A t-partite graph is one whose vertex set can be partitioned
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into ¢ subsets X1, X2, -+, X, such that two ends of each edge lie in dis-
tinct subsets respectively. Such a partition (Xy, X2,---,X;) is called a
t-partition of the graph. A complete t-partite graph with replication A is
a t-partite graph with t-partition (X;, X2, -+, X;), in which each vertex of
X; is joined to each vertex of X; by A times (where i # j). Such a graph
is denoted by AKp, np, . if | Xi| =7n: (1 £ L0).

Let G be a finite simple graph. A G-packing design (G-covering design,
G-design) of AK,, denoted by (v,G,\)-PD ((v,G,))-CD, (v,G,N)-GD),
is a pair (X, B), where X is the vertex set of K, and B is a collection of sub-
graphs of K, called blocks, such that each block is isomorphic to G and any
two distinct vertices in K, are joined in at most (at least, exactly) A blocks
of B. A packing (covering) design is said to be mazimum (minimum) if
no other such packing (covering) design has more (fewer) blocks. The num-
ber of blocks in a maximum packing designs (minimum covering design),
denoted by p(v, G, ) (c(v, G, X)), is called the packing (covering) number.
It is well known that

pv,G,N) < | 28D < (38201 < c(v, G, ),

where e(G) denotes the number of edges in G, |z ([z]) denotes the greatest
(least) integer y such that y < z (y > z). A (v,G,A)-PD ((v,G,N)-CD),
(X, B), is called optimal if |Bl=p(v,G, ) (¢(v,G, A)). For convenience,
we denote an optimal (v,G,\)-PD ((v, G, A)-CD) satisfying p(v,G,A) =
|2852] (e(v, G, N) = [25G=47) by (v,G,X)-OPD ((v,G,A)-0CD). Ob-
viously, there exists a (v, G, A)-GD if and only if p(v,G,A) = c(v,G, ).
So a (v, G, \)-GD can be regarded as a (v,G,A)-OPD or a (v,G,A)-OCD.
The leave graph Lx(D) of a packing design D is a subgraph of AK, and
its edges are the supplement of D in AK,. The number of edges in Ly(D)
is denoted by |Lx(D)|- Especially, when D is optimal, |Lx(D)| is called
leave-edge number and is denoted by Ix(v). Similarly, the excess graph
R(D) of a covering design D is a subgraph of AK, and its edges are the
supplement of AK, in D. When D is optimal, |RA(D)| is called the repeat-
edge number and denoted by 7(v). Generally, the symbols Ly(D), lx(v),
Rx(D) and 73 (v) can be denoted by Ly, I, Ry and r briefly. For some
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graphs, which have less vertices and less edges, the problem of their graph
designs, packing designs and covering designs has been researched (see [1-
9], [12-18]). Let graph G has six vertices and its edge number not greater
than 6. The G-designs, maximum G-packings and minimum G-coverings
of AK, were solved completely by Liang and Yin et al. (see [19-23]).

Let (X1, X3, -, X;) be the t-partition of AKq, ngym,» and | X;| = n;.
Denote v = zt: n; and G={X,, Xs,--+,X;}. For any given graph G, if
the edges of A'?(ln,m|...,,,, can be decomposed into edge-disjoint subgraphs
A, each of which is isomorphic to G and is called block, then the system
(X,G,A) is called a holey G-design with index ), denoted by G-HD\(T),
where T = nini---n} is the type of the holey G-design. Usually, the type
is denoted by exponential form, for example, the type 1:273% ... denotes 3
occurrences of 1, 7 occurrences of 2, etc. A G-HD,(1*"%w!) is called an
incomplete G-design, denoted by G-IDy(v;w) = (V, W, A), where |V| =
v, |W| = w and W C V. Obviously, a (v,G, )-GD is a G-HD,(1*) or
a G-1D)(v;w) with w = 0 or 1. For HD), and ID,, the subscript can be
omitted when A = 1.

There are four graphs with 7 points,7 edges and a 5-circle, denoted by
G;,i=1,2,3,4. In this paper, we have solved the existence problem of the
maximum (v,G;,A)-PD and the minimum (v, G;,A)-CD. The existence
spectrums of (v, G;, A)-GD have been obtained in [10] and [11]. The four
graphs G; (i = 1,2, 3,4) are listed as follows.

g9
f b b
= 1K LY 1Y
9
[-4 [] e e
e Gy Gs Gy

For convenience, the graphs G,-G, above are denoted by (a,b,¢,d, ¢, f, g).

2 General structures

Theorem 2.1 Let G be a simple graph. For positive integers h,m, ) and
nonnegative integer w, if there exist G-HDy\(h™), G-IDy(h + w;w) and
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(w,G,A)-OPD (or (h+ w,G,\)-OPD), then there exists (mh + w,G, A)-
OPD -with the same leave graph to (w,G,A)-OPD’'s (or (h + w,G, })-
OPD's). The conclusion still holds by replacing OPD with OCD.

Proof. Let X = (Zn x Z,»)|UW, where W is a w-set. Suppose there exist
G-HD)(h™) = (Zh X Zm, A), A
G-ID)\(h+w;w) = ((Zn x {i})UW,B;), i € Zm or i€ Zy \ {0}, and
(w,G,\)-OPD = (W,C) or (h+w,G,A)-OPD = ((Zy, x {0}) UW, D),

m-—1
then (X, Q) is a (mh+w, G,A)-OPD, where Q = AU (U B:;)UC or A|J
i=0

m-1
(U B:) UD. Note that

i=1

AR +mx M(5)+wh) + lz ;‘)J

Q| '\(mhzw)} =) @) (%)
= = A™)h? AM(B)+wh) A(wih
K2 2 4 (m -1y x 2GR | X2 |
( m=1
Al + > |1Bi| +C]
i=0

- m—1 ’
ﬁ A+ > |1Bil +1D|

\ i=1

if (W,C) (((Zn x {0}) UW, D)) is a (w, G, A)-OCD ((h +w,G,A)-OCD),
then a (mh +w, G, \)-OCD will be obtained, since the above equation still
holds by replacing the symbol | | by [ 1. (]

Lemma 2.2 19 There ezists a G;-HD(7#1!) fori=1,2,3,4.

Lemma 2.8 (1Y There exist G;-ID(7+ w;w) for2<w <6 and9<w <
13, wherei=1,2,3,4.

Lemma 2.4 11 Given positive integers v, A, and pu. Let X be a v-set.

(1) Suppose there exist both a (v,G,A)-OPD = (X, D) (with leave
graph L\(D)) and a (v,G,p)-OPD = (X,E) (with leave graph L,(£)).
IF|LA(D)| + | Lu(E)l = Uagn, then there exists a (v,G, A + p)-OPD and its
leave graph is just Lyx(D)J Ln(£);

(2) Suppose there ezist both a (v,G,))-OCD = (X,D) (with excess
graph Ry(D)) and a (v, G, p)-OCD = (X,E) (with excess graph R,(£)). If
|RA(D)| + |RL(E)| = Trtn, then there ezists a (v,G,A + p)-OCD and its

196



excess graph is just Rx(D)|J Ru(E);

(3) Suppose there exist both a (v,G,\)-OPD = (X,D) (with leave
graph Lx(D)) and a (v,G,p)- OCD = (X,E) (with excess graph R,(E)).
If Lx(D) D> Ru(€) and |LA(D)] — |Ru(E)| = lxyp, then there exists a
(v,G, A+ p)-OPD and its leave graph is just Ly(D)\R,(E);

(4) Suppose there ezist both a (v,G,\)-OCD = (X,D) (with excess
graph Ry\(D)) and a (v,G,p)-OPD = (X,£) (with leave graph L,(E)).
If Ry\(D) D L,(€) and |RA(D)| — |Lu(€)] = Taty, then there ezists a
(v,G, A+ p)-OCD and its excess graph is just Ry\(D)\L,(£).

3 Packing and covering for A =1

The existence spectrums of (v, G, A)-G D are as follows(see Lemmas 3.1,3.2).

Lemma 3.1 (10-1 For i = 1,3, 4, there exist (v, G;, \)-GD if and only if
Av(v—1)=0 (mod 14) and v > 7.

Lemma 3.2 (1011 There exist (v,G2,A)-GD if and only if Av(v — 1) =
0 (mod 14), v > 7 and (v,A) # (7,1).

In order to construct the optimal packing designs and covering designs for
A =1, by Theorem 2.1, Lemma 3.1, Lemma 3.2 and the following tables, we
only need to give the constructions of HD, ID and OPD for the pointed
orders, where the leave graph of OPD has to be a subgraph of G;. How-
ever, the needed HD and ID have been shown in [10-11], so we only need
to construct the OPD listed in the Table 3.1.

(Table 3.1) For G;, i=1,2,3,4

v(mod14) | HD 1D OPD (A=1)
2 7T [7(16; 9) 9°
3 72t+1 | (17;10) 10
4 72t+1 | (18;11) 11
5 72t+1 | (19;12) 12
6 72t+1 | (20;13) 13
9 7241 | (9;2) 9°
10 72t+1 | (10;3) 10
11 7241 | (11;4) 11
12 72t+1 | (12;5) 12
13 72t+1 | (13;6) 13
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*: (9,G;,1)-OPD=G;-I1D(9;2).
Lemma 3.3 There ezist (w,G1,1)-OPD for w =9,10,11,12,13.

Proof. Let (w,G,1)-OPD=(X, B).

w=9 : X=2Z;U{a,b},
(0,4,1,3,6,5,2), (1,4,4,5,6,0,b), (2,0,2,5,b,4,3), (3,b,4,6,2,5,1),
(a,2,1,b,6,3,0). '
L(B) = {(a,b)}.

w=10 : X =Zs{a,b,c,d},
(0,3,5,5,2,1,a), (1,b,4,5,¢,3,d), (2,d,4,0,b,1,5),
(3,¢,a,0,5,2,4), (a,3,4,c,2,d,b), (d,1,4,a,5,0,c).
L(B) = {(a, ), (b,c), (c,d)}.

w=11: X =2Z5U{a,b,cde f},
(01 d: 2,4,a,¢, 1)’ (l’bs4,3’a, d) f)s (2a 1,¢0, 313:4)1 (33 f) L,4,c, b) 0))
(4a fa C 2,0, d3 3): (a'a c e, b’ d: 2, f)’ (f’ 01 1,3,¢, ba 2)
L(B) = {(a'a b), (b) c), (e, d), (d, e), (a,€), (a'! f)}

w=12: X = ZgJ{a,b0cd},
(0,1,d,2,b,3,0), (1,7,3,4,b,2,a), (2,3,6,7,¢,4,a), (3,d,b,6,¢,1,0),
(4,¢,5,7,d,0,a), (5,d,6,4,1,0,¢), (6,0,7,2, 51,¢), (7,b,3,5,4,a,¢),
(,6,2,0,d,5,b).
L(B) = {(a,b), (b,¢), (c,d) }.

w=13: X = Zu U{a, b},
(1,a,3,4,6,0,7),(2,10,3,b,8,9,4),(3,6,9,8,5,1,2), (4,,10,8,0,5,9),
(5.0,10,6,2,a,8), (6,5,9,10,5,7,3), (7,5,b,0,2,10,4),(8,3,9,0,6,1,5),
(9,1,4,8,7,a,6),(a,0,3,2,4,7,1), (b, 1,10,4,2,7, 4).
L(B) = {(a, b)}. o

Theorem 3.4 There exist (v,G1,1)-OPD and (v,G1,1)-OCD forv 27.

Proof. By Theorem 2.1, Lemma 2.2, Lemma 2.3 and Lemma 3.3. The
leave graphs L, for these OPDs are as follows:

v=(mod?7)]26]|35]| 4

L1 |P2\P4IQ-_

Obviously, each L, is a subgraph of the graph G. So, the optimal covering

designs can be obtained by adding a block containing this L,. And their
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excess graph R; can be listed in the table:
v=(mod7)| 2,6 |35] 4

e

Lemma 3.5 p(7,G3,1) =2, ¢(7,G2,1) = 4.

Proof. We know that there is no (7,G2,1)-GD (see [10]). Therefore, the
packing number p(7,G3,1) < 3 and the covering number ¢(7,G2,1) > 3.
In fact, there exist a maximum (7,G2,1)-PD = (Z,,B) and a minimum
(7,G2,1)-CD = (Z4,C) as follows:

B ={(0,5,1,6,4,2,3), (2,3,1,0,6,4,5)},

L(B) = {(1’ 2)’ (1’ 4)v (3’ 4)! (3v 5): (3, 6): (4, 5), (5, 6)};
¢ =BU{(4,1,2,6,3,0,5), (5,0,1,2,4,3,6)},

R(C) = {(Oi 1)’ (0: 4)1 (01 5)1 (1’ 2)1 (2) 4)’ (2’ 6)’ (4’ 5)}

SO, P(7a G2, 1) =2 and 6(7, Gg, 1) = 4. O
Lemma 3.6 There ezist (w, G2,1)-OPD for w =9,10,11,12,13.

Proof. Let (w,G2,1)-OPD=(X, B).

w=9 : X =2;{{ab},
(4,0,3,2,1,b,5), (5,1,3,4,2,a,6), (6,,2,4,0,3,4), (a,3,5,0,1,4,6),
(5,0,2,6,1,3,5).
L(B) = {(a,8)}.

w=10 : X = Zs|Ha,b,c,d},
(0,¢,4,b,d,a,1), (1,q,5,2,b,3,¢c ), (2,0,5,3,c,a,4),
(3,5,d,4,a,0,2), (4,1,2,d,3,5,0), (5,1,d,qa,c,0,b).
L(B) = {(a,b), (b,e), (c, d)}

w=11: X =2Zs\J{a,bc,d,e, [},
(O’da 2’ e ¢ a, f)’ (ly f) d1 b) 01 4, 2)1 (2: f» €, 3s b, a, 0)) (3) 01 &4, 6,2, 1)!
(4»b, l,d, 3,0, a), (a)ci 2,4, d’ 3, 1)’ (f’ br el,¢3, 4)
L(B) = {(a,}), (b,¢), (c,d), (d, e), (a,€), (a, H}

w=12: X = Zg|J{a,b,c,d},
(O’dib76’4’57c), (11d75’2’0)b’4), (2,03 b 7c! 3) (3 c, ’ ‘) ) b ),
(4)5, 1’ 6’ a,b’ 2)’ (5’ 6’ 31 4’ c7b)a)’ (6, d’ ? 70’ ’7) ( , ’ 7 ’ ))
(a,0,3,7,d,¢,1).
L(B) = {(a, b), (b, ¢), (c,d)}.

w=13: X =2y U{a! b}1
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(1,6,3,4,8,4,10),(2,b,1,7,10,4,3),(3,4,2,6,10,b,1),(4,7,4,0,1,5,b),

(5,10,9,2,0,7,1),(6,0,8,10,4,9,7),(7,0,6,5,2,b,3), (8,5,6,0,9,6,7),

(9,1,2,8,3,5,7), (a,10,0,3,5,4,9), (b,9,4,0,8,10,6).

L(B) = {(a,b)}- a)
Theorem 3.7 There erist (v,Ga,1)-OPD and (v,G2,1)-OCD forv 2 8.
And, p(7,G2,1) = 2 and ¢(7,G2,1) = 4.

Proof. It is easy to prove by Theorem 2.1, Lemma 2.2, Lemma 2.3, Lemma
3.5 and Lemma 3.6. Note that the leave graphs L; for (v, G2,1)-OPD are
same to (v, G1,1)-OPD. Further proof is similar to Theorem 3.4. m]

Lemma 3.8 There ezist (w,G3,1)-OPD for w = 9,10,11,12,13.

Proof. Let (w,Gs,1)-OPD=(X, B).
w=09: X=2;U{a, b},
(a’ 01 57b’ 47 2’ 6)" (a’ 1’0’ 4’ 6, 3, 5)’ (b’ 2’ 3) 6, 1’0’ 4), (4’ 31 0, 2’ 5’ 1’ b)’
(6,5,3,1,2,b,a).
L(B) = {(a,)}.
w=10 : X =ZsU{a,b,cd},
0,a,5,4,3,d,1), (1,3,5,2,0,c,b), 2,¢,5,b,1,d,3),
(3,d,b,4,2,a,1), (4,4,2,,0,1,¢c), (5,d,4,¢,0,1,a).
L(B) = {(a,b),(b,c),(c,d)}-
w=11: X =ZsU{a,bcd,e f},
(O,C, 1)b1 d’ e’ 3), (0’ a’ 2, 1’3, f? d)’ (4’ f, cl e) b’ 3’ 1)7 (2) f’ d! 1’ e! 3, b)’
(3’ d7 4’ 0’ b’ e’2), (4! a)3) f1 e’ 2) 1)! (2, c’ 47 1, 01 b’ a)
L(B) = {(a,b), (b,¢), (c,d), (d, €), (a, €), (a, f}}-
w=12: X = ZzsJ{a,bcd},
0,a,3,5,4,1,4d), (1,a,5,0,7,2,4), (2,a,7,3,0,b,6), (8,d,0, b,6,¢,7),
(4,d,6,0,c,3,5), (5,,4,2,6,7,1), (6,¢,2,5,1,4,a), (7,c,1,3,2,6,5),
(b,d,1,4,7,3,2).
L(B) = {(a”b)t (bs C), (c’ d)}
w=13: X = Z;; {a,b},

(1,a,0,2,10,b,5),(2,4,3,0,1,9,6),(3,),10,6,4,9,7),(4,b,0,7,0,2,6),
(5) 1, 3’ 8’ 101 b, 4)) (67 2) 51 4’ 0’ 91 b)) (7) 3) 10) g) 1! 5! 2)7 (8) 41 10) 71 2) 1’ 9),
(9,5,0,8,b,a,6), (7,6,3,5,8,4,1), (9,8,0,10,0,7,6).

L(B) = {(a,b)}. o
Theorem 3.9 There exist (v,G3,1)-OPD and (v,Gs, 1)-OCD forv >1.
Proof. It is easy to prove by Theorem 2.1, Lemma 2.2, Lemma 2.3 and

Lemma 3.8. Note that the leave graphs L, for (v,G3,1)-OPD are same to
(v,G1,1)-OPD. Further proof is similar to Theorem 3.4. a

200



Lemma 3.10 There exist (w,G4,1)-OPD for w = 9,10,11,12,13.

Proof. Let (w,G4,1)-OPD=(X, B).

w=9: X=2;{J{a,b}
(a,3,0,6,1,5,b), (a,0,1,5,4,2,3), (6,4,2,3,b,aq, 0), (b,5,3,6,2,1,4),
(5,0,4,1,2,6,b).
L(B) = {(a,b)}.

w=10: X = Zg|{a,b,c,d},
(0,5,0,, 1!4’b73)1 (1,0,0.,4,b,2,d), (2,3,d,0,c,a.,5),
(3,1,d,2,0,5,b), (4,2,b,5,¢,4,3), (5,1,¢,3,4,2,0a).
L(B) = {(a, ), (b, c), (¢,d)}.

w=11: X = Zs|J{a,b,c,d,e, f},
(0’ ¢ a, 3, d) 4: 1)1 (f$ &¢q 3: 01 4, 2)v (11 b! d: 41 ¢, O,Cl), (2) ba €, 11 3: d; 4))
(3,4,a,2,e,b,0), (4,2, f,d,1,b,3), (£,b,0,2,1,c,e)
L(B) = {(a,b), (b,c), (c,d), (d,e), (a, €), (a, f)}.

w=12: X = Zg|H{a,b,c,d},
(0,3,a,6,b,1,¢), (1,5,7,4,6,2,3), (2,7,0,0,6,4,5),(3,4,d,0,2,1,a),
(¢,1,d,5,3,4,6), (5,2,4,7,0,6,3), (6,3,b,2,¢c,7,d), (a,1,b,5,4,2,7),
(4,0,¢,7,1,b,5).
L(B) = {(a:b)! (b’ C)v (c! d)}

w=13: X = Zn U{a,b},
(1,0,a,2,7,5,3),(2,10,5,8,0,4,1),(3,2,1,10,0,6,8), (4,6,2,9, 10,8, 5),
(5,6,3,7,10,8,1),(6,0,4,3,10,1,a), (7,0,5,4,9,b,3), (8,7, 6,5,a,2, b),
(9,5,7,0,6,b,4),(a,10,8,3,9,1,6), (5,0,9,1,4,2, 8).
L(B) = {(a,b)}. o

Theorem 3.11 There exist (v,Gy4,1)-OPD and (v, G4,1)-OCD forv > 7.

Proof. It is easy to prove by Theorem 2.1, Lemma 2.2, Lemma 2.3 and
Lemma 3.10. Note that the leave graphs L, for (v,G4,1)-OPD are same
to (v, G1,1)-OPD. Further proof is similar to Theorem 3.4. o
3.1 Packings and Coverings for A > 1

Lemma 3.12 There exist (v, Gi, A)-OPD and (v,G;,\)-OCD forv=2, 6
(mod 7) and A > 1 (where i = 1,2,3,4).

Proof. By Lemma 2.4, we have the following table:

A1 2 3 4 5 6
|l 2 3 4 5 6 (L,\ =LV L)\_l) ,
(SN 6 5 4 3 2 1 (RA = R)‘_I\Ll)
where L) = P, and R, is Cs plus a pendant edge by Theorems 3.4, 3.7, 3.9
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and 3.11. m}

Lemma 3.13 There exist (v,Gi, A\)-OPD and (v,G;, \)-OCD forv=3, 5
(mod 7) and A > 1 (where i =1,2,3,4).

Proof. By Lemma 2.4, Theorems 3.4, 3.7, 3.9 and 3.11, we have the

following table:
A 1 2 3 4 5 6
Ih | 3 6 2 5 1 4
Ly | Py, Liul, Li\R> LiULs L3\R2 LiuLs .0O
) 4 1 5 2 6 3
Ry, | P R\ RiURy, R,UR; R;UR3; R;UR,

Lemma 3.14 There ezist (v,Gi, \)-OPD and (v,Gi, A)-OCD forv = 4
(mod 7) and A > 1 (wherei =1,2,3,4).

Proof. By Lemma 2.4, we have the following table:
All 2 3 4 5 6
Ih[6 5 4 3 2 1 (Ly=Lx1\R1) ,
w1 2 3 4 5 6 (Rh=RU R,\_l)
where L, is Cs plus a pendant edge and R; = P, by Theorems 3.4, 3.7, 3.9

and 3.11. m]

Theorem 3.15 There erist (v,G:,A)-OPD and (v,G;,A)-OCD for any
v>7and A > 1 (wherei=1,2,3,4).

Proof. By the results of graph design with index A > 1 (see Lemma 3.1
and Lemma 3,2), and Lemmas 3.12, 3.13 and 3.14. ]
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