THE SIGNED /i-DOMINATION NUMBERS IN GRAPHS
CHANGPING WANCG

ABSTRACT. For any integer & > 1, a signed (total) k-dominating function is a
function f: V(G) — {-1,1} satistying Z-"E:V[nl flw) >k (Z",E‘w") f(w) 2
k) for every » € V(G), where N(v) = {¢ € V(Q)juv € E(G)} and N[y} =
N(v)u{e}. The minimum of the values of ZveV(C) f(v), taken over all signed
(total) k-dominating functions f, is called the signed (total) k-domination
number aud is denoted by v1.5(G) (7}.5(G), resp.). In this paper, several
sharp lower bounds of these numbers for general graphs are presented.

1. INTRODUCTION

All graphs considered in this paper are finite and undirected without loops or
multiple edges. For a general reference on graph theory, the reader is directed to
(1].

Let G be a graph with vertex set V(G) and edge set E(G). The open neighbour-
hood {u € V(G)|uw € E(G)} and the closed neighbourhood {v} U {u € V(C)|uv €
E(G)} of a vertex v € V(G) are denoted by N(v) and N[v|, respectively. For
a subset § C V(G). degg(v) denotes the number of vertices in § adjacent to v.
In particular. degy (¢ (v) = deg(v). the degree of v in G. For disjoint subsets S
and T of vertices. we use E(S.T) for the set of edges between S and T, and let
e(S.T) = |E(S,T)|. The subgraph of G induced by S is denoted by G|S). The
complete graph on n vertices and its complement are denoted by K, and K,,
respectively. Let & : V(G) — R be a real-valued function. We write z(S) for
Sves T(v) for § C V(G).

Domination in graphs is well studied in graph theory. The literature on this
subject has been detailed in the two books {7, 8]. The signed domination has been
broadly studied in. for instance, [2, 3. 4, 5. 9, 10, 11, 12, 13, 15).

Let & > 1 be an integer and let G be a graph with minimum degree £ — 1. A
signed k-dominating function (SkDF) is a function f : V(G) — {-1,1} satisfying
X,,.E.V,,,, J(w) 2 I for every v € V(G). The minimum of the values of Zvev(c) f(v),
tuken over all signed A-dominating functions f, is called the signed k-domination
ramber and is denoted by 74.4(G). For a graph G with minimum degree k, the signed
total k-dowminating function (STKDF) and the signed total k-domination number,
denoted 5 ¢(G). can be defined analogously by changing ‘closed’ neighbourhood in
the definition of signed &-domination number to ‘open’ neighbourhood. As assump-
tion 8(G) 2 k —1 (J(C) > k. resp.) is clearly necessary, we will always assume that
when we discuss 51.5(G) (v(g(G). vesp.) all graphs involved satisfy 6(G) > k — 1
(8(G) > k. resp.).
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In the special case when k = 1, 71.5(G) and 1i5(G) are the signed domination
number and the signed total domination number investigated in (2, 3, 4, 15] and
[5, 9, 14], respectively. If f maps to {0,1} rather than {-1,1}, then 1s(G) is the
k-tuple domination number introduced by Harary and Haynes in [6].

We establish lower bounds of y1.5(G) and +}.g(G) for bipartite graphs and general
graphs in terms of their orders. We present lower bounds of s(G) and 7} g(G) for
general graphs in terms of their orders and sizes. We also establish lower bounds
of ~1s(G) and 7}(G) for r-regular graphs.

Throughout this paper. if f is a SkDF or STkDF of G, then we let P and Q denote
the sets of those vertices of G which are assigned (under f) the values 1 and -1,
respectively, and we let p = |P| and ¢ = |Q]. Therefore, f(V(G))=p—-q=2p—n.

2. LOWER BOUNDS OF 45(G) AND 7f5(G)

In this section, we first present lower bounds of y1.s(G) and 7 (G) for general
graphs in terms of their orders. Given a positive integer k. We define two families
F and F' of graphs as follows.

Fort> 1, let a = (k+1)t and b = (k+1)t? — kt, and let Fi,, be the set of graphs
of order 7 = a + b = (k + 1)t2 + ¢ obtained from the disjoint union of K, and K,
by adding edges between V(K,) and V(K,) so that each vertex in K, joined to
exactly k + 1 vertices in K, and each vertex in K, joined to exactly (k+ 1)t — &
vertices in K. For t > 2, let @/ = kt and V' = kt? — (k + 1)t, and let F,’;‘t be the
set of graphs of order n’ = &' + V' = kt® — t obtained from the disjoint union of
K. and K by adding edges between V(K,) and V(Ry) so that each vertex in
Ky joined to exactly k vertices in K, and each vertex in K, joined to exactly
¥t — k — 1 vertices in Ky Let F = Uy»y Fre and F' = U,no Fi -

Theorem 1. If G is a graph of order n, then

(1) us(G) = —-1—n+dn(k+1) +1;

(2) 1s(G) 21 - n+Vdnk +1.
The equality in (1) holds if G € F; and the equality in (2) holds if GeF.
Proof. We only prove (1), as (2) can be proved similarly. Let f be a SkDF such that
1ws(G) = f(V(G)). Then 1s(G) = |P| - |Q| = 2p — n. Notice that every vertex
in Q must be adjacent to at least k + 1 vertices in P. By the pigeonhole principle,
there exists a vertex v in P adjacent to at least (k + 1)|Q|/|P| = (k +1)(n - p)/p
vertices in Q. Thus,

k f(N[))

|P| - (k+1)(n-p)/p
p—(k+1)(n -p)/p.

IA A

ie.
pPP+p—(k+1)n>0.
Solving the above inequality for p, we obtain that
1
> (- .
p> 2( 1+ 4~n(L+l)+l).
Therefore. ys(G) = 2p —n > -1 —n+ Vdn(k+ 1) + 1.

Suppose that G € 7. Then G € Fi, for some ¢ 2> 1. Thus, G has order n =
(k+1D)#2 4t a= (k+1)tand b= (k+ 1)t2 - kt. Assigning the value 1 to each vertex
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in K,, and -1 to all other vertices, we define a SkDF f of G satisfying f(V(G)) =
R+t = ((k+1)t2=kt) = —(k+ 1)+ (2k+ 1)t = -1 —n+ an(k+1) + 1.
Thus:. M1s(G) £ =1 = n + /4n(k + 1) + 1. Consequently, 7s(G) = =1 —n +
Vin(k+1) + 1. O
Secondly, we establish lower bounds of y.5(G) and ~}.¢(G) for general graphs in

terins of their orders and sizes.
Theorem 2. If G is a graph of order n and size m, then

(1) ws(G) > Ij-z‘ ((2k + 1)n - 2m):

(2) 45(G) 2 2 - 2in/fk.
The equality in (1) holds if G € F; and the equality in (2) holds if G € F'.
Proof. We only prove (1), as (2) can be proved similarly. Let f be a SkDF such
that 7.5(G) = f(V(G)). Then 1.s(G) = |P| - |Q| = 2p — n. As each vertex in Q
must be adjacent to at least k + 1 vertices in P,

e(P,Q) 2 (k+1)g = (k+1)(n-p)

Notice that for each vertex v of P, degp(v) = degg(v) + & — 1. Thus,

(k+1)(n -p) < e(P.Q) =) dego(v) < Y (degp(v) —k+1).

veP reP
i.e..
(k +1)(n ~ p) < 2|E(GIP]| - (% ~ 1)p.
So.
IE(GIPDI 2 5 ((k +1)n ~ 2p) .
Thus.
m > |ECIP)| +e(P,Q)
> % ((k + 1)m - 2) + (k + 1)(n - p).

Hence.

o1 (8k+Dn
P22 2 :

It turns out that 1
ws(G) 2 T 5 ((2k + 1)n - 2m).
To see this bound is sharp. let G € F. Thus. G € F}; for some ¢t and has order
n = (k+1)2+1 and size . = (k+1)¢ ((k + 1)t — k)+3(k+1)t ((k + 1)t — 1) . Asseen
in the proof of Theorem 1, 445(G) = —(k+1)2+ (2k+1)t = 135 ((2k + 1)n — 2m).
0O

Thirdly, we present lower bounds of v.s(G) and vg(G) for general bipartite
graphs in terms of their orders. Given a positive integer £&. We define two families
H and 7’ of bipartite graphs as follows.

Fort>1.leta = (k+1)t and b= ¢ = (k+1)t? - (k= 1)t, and let Hj., be the set
of gruphs of order n = 2 + b + ¢ = 2(k + 1)t? + 4t obtained from the disjoint union
of K, with the partite sets X and Y. I, and K, by adding edges between X
and V' (X,), and edges between Y and V(K.,), so that each vertex in K, joined to
exactly k41 vertices in X. each vertex in X joined to exactly (k+1)t—k+1 vertices
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in Iy, each vertex in K. joined to exactly k+ 1 vertices in Y, and each vertex in Y
joined to exactly (k + 1)t — k +1 vertices in Ko; let o’ =kt and b’ = ¢/ = kt? — kt,
and let Hj,, be the set of graphs of order n’ = 2a’ + ¥’ +¢' = 2kt? obtained from
the disjoint union of K,/ . with the partite sets X’ and Y’, Ky and K by adding
edges between X' and V(K)). and edges between Y’ and V(K ), so that each
vertex in Ky joined to exactly k vertices in X', each vertex in X' joined to exactly
kt — k vertices in ICy. each vertex in K, joined to exactly k vertices in Y’, and
each vertex in Y/ joined to exactly kt — k vertices in K. Let H = ;> Hr,e and
H = UIZI ket
Theorem 3. If G is a bipartite graph of order n, then
(1) ms(G) 2 —-d4—-n+ 2/2n(k +1) + 4;
(2) 1s(G) 2 —n+ 2V2kn.

The equality in (1) holds if G € H; and the equality in (2) holds if G € H'.
Proof. We only prove (2), as (1) can be proved similarly. Let f be a STkDF of G
such that 7£.5(G) = f(V(G)). Let X and Y be the patite sets of G. Further, let X*
and X~ be the sets of vertices in X that are assigned the value +1 and -1 (under
f). respectively. Let Y* and Y~ be defined analogously. Then P = X+ UY* and
Q = X~ uY~. For convenience, let |X*| = a, X~} =s,|Yt[=band [Y7| =1t
Hence, 7tg(G) =a+b—s—t=2(a+b) —n.

Every vertex in Y~ must be adjacent to at least k vertices in X+. Therefore, by
the pigeonhole principle, there is a vertex v in X + adjacent to at least k|Y ~|/|X | =
kt/a vertices in Y'~. Hence,

k< F(N(@)) € [V*] - kY~ |/1X*| = b kt/a.

ie.
(2.1) ab > k(a +t).
By a similar argument. one may show that
(2.2) ab > k(b + s).

Adding (2.1) and (2.2). we obtain that
(2.3) 2ab > k(s +t+a+b) =kn.

By the fact that 2ab < (a + b)?/2, together with (2.3), we have that

a+b> V2kn.

Thus, 7ig(G) =2(e+b}-n2 -n+ 2v/2kn.

Suppose that G € H. Thus, G € Hy., for some ¢t > 1. Note that G has order
n = 2kt?. Assigning 1 to the 2k vertices of K., and -1 to all other vertices, we
define a STKDF J of G satisfying f(V(G)) = 4kt - 2kt? = —n + 2v2kn. Hence,
1E5(@) € —n +2v2kn. It follows that Y{g(G) = —n + 2V2kn. m]

Remark 4. The following table shows the lower bounds on 125 and vhg of trees of
order 10, 20 and 30 given in Theorems 1, 2 and 3, respectively.
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Bounds on yp5 given in | Bounds on +5¢ given in

Thin 1| Thm 2| Thm 3| Thm 1] Thin 2] Thmn 3
n=101| 0 8 2 0 11 3
n=201{-5 16 -1 -6 21 -2
n=301| -12 23 -6 -13 31 -8

Finally, we present lower bounds of 71s(G) and ~f¢(G) for r-regular graphs in
terms of their orders.

Theorem 5. [f G is r-reqular graph of order n, then

M
ktUn | = (mod 2);
Y. > r+1 ’
s(G) 2 { % otherwise;
(2)

kn k=r (mod 2).
7[1\5(0) 2 { (;H-l)n ( )

T

otherwise.

The lower bounds in Theorem 3 are sharp. as will follow from Corollary 6.

Proof of Theorem. 5. We only prove (1). as (2) can be proved similarly. Let f be a
SkDF such that 4,5(G) = f(V(G)). As G is a r-regular graph,

(24) > ANR]) = (r+ DAV(G)).
veV(()

We discuss the following two cases.

Case 1. k = r (mod 2).

Note that. in this case. |[N[v]| = r +1 £ k (mod 2) for each v € V(G). So,
F(N[v]) 2 k+1 for each v € V(G). By (2.4). it follows that

(r + DSV(G) 2 (k+ Dn.
Hence, 15(G) > 4,

Case 2. k # r (mod 2).
As for each v € V(G). f(N[v]) > k.

> SN[ = k.

veV(G)
By (2.4). it follows that (» + 1) f{(V(G)) > kn. Hence, v.5(G) 2 % O
The following Corollary is immediate from Theorem 5.

Corollary 6. Let k> 1 be an integer. For any integer n > k, we have

1
. -k n =k (mod 2);
s () = { k41 otherwise;

(Ko = 2% n =k (mod 2),
ns{fhnn) = 2(k+1) otherwise.
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Proof. We prove (1) first. As K,, is an (n — 1)-regular graph, by Theorem 5, it
suflices to show that

k n = k (mod 2);
k 4+ 1 otherwise;

ns(Ka) < {

We discuss the following two cases.

Case 1. n =k (mod 2).

Assigning 1 to each of (n + k)/2 vertices, and -1 to the remaining (n — k)/2
vertices, we produce a SKDF f of K, such that f(V(K,)) = k. Hence, vks(Kn) < k.

Case 2. n # k (mod 2).

Assigning 1 to each of (n+k+1)/2 vertices, and -1 to the remaining (n~k—1) /2
vertices, we produce a SkDF f of K, such that f(V(G)) = k+1. Hence, ves(Ky) <
k+1.

We now prove (2). By Theorem 5, it suffices to show that

ot (e 2k n = k (mod 2);
ks (Kun) < { 2(k+1) otherwise;

Let X and Y be the partite sets of K ,,. We discuss the following two cases.

Case 1. n = k (mmod 2).

Assigning 1 to each of (n + k)/2 vertices in X and each of (n + k)/2 vertices
in Y. and -1 to the remaining vertices, we produce a STKDF f of K,,n such that
f(V(Kn,)) = 2k. Hence, 7g(Knn) < 2.

Case 2. n # k (mod 2).

Assigning 1 to each of (n + k + 1)/2 vertices in X and each of (n + k +1)/2
vertices in Y, and -1 to the remaining vertices, we produce a STKkDF f of Knn
such that f(V(K,.0)) = 2(k +1). Hence, vs(Knn) < 2(k +1). O
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