COMPOSITIONS OF POSITIVE INTEGERS n VIEWED AS
ALTERNATING SEQUENCES OF
INCREASING/DECREASING PARTITIONS

AUBREY BLECHER

ABSTRACT. Compositions and partitions of positive integers are of-
ten studied in separate frameworks where partitions are given by
g-series and compositions exhibiting particular patterns are specified
by generating functions for these patterns. Here we view composi-
tions as alternating sequences of partitions (i.e., alternating blocks)
and obtain results for the asymptotic expectations of the number of
such blocks (or parts per block) for different ways of defining the
blocks.

1. INTRODUCTION

Compositions and partitions of integers are well studied. For example,
partition theory was extensively studied in [6] where the notion of composi-
tions was also introduced. A simple survey of the history of partition theory
is contained in [1] and a survey of the study of compositions is contained
in [5].

Recently, some studies on compositions and partitions have focused on
the relationship between them. In [2], Andrews develops g-series gener-
ating functions for certain specific types of compositions which consist of
two adjoined partitions (concave compositions). In Section 2.5, Chapter 2
of his book [9], Stanley develops generating functions for another type of
“unimodal” composition (consisting of two adjoined blocks of partitions).

This provides some of the motivation for the current study: i.e., pre-
senting more general compositions as sequences of alternating blocks of
partitions. However, we allow arbitrary compositions resulting in a decom-
position into an arbitrary number of alternating blocks of partitions.

Roughly speaking, any composition of a fixed positive integer n may be
viewed as being split up into blocks where each block is either increasing
or decreasing. In other words, each block is a partition. (As a preliminary
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example the composition 14 3 2 1 2 3 of 16 may be split into partitions
(14) (321) (23).) How compositions are split depends on precisely how the
blocks are defined. In Sections 3 - 5 we make three (different) definitions
for how to split compositions into alternating blocks and then make use of
previous results on subword patterns in compositions (see [4],(5],[8]) to find
generating functions for the number of such blocks contained within all the
compositions of n.

In Theorem 1 (see Section 6), we find, using the aforementioned three
definitions for the blocks, an asymptotic estimate as n tends to infinity for
the expected number of partition blocks within an arbitrary composition
of n as well as an estimate of the number of parts per block in each case.

2. PRELIMINARIES
We need the following definitions.

A composition ¢ = 0102 ...0, of a positive integer n is an or-
dered collection of one or more positive integers whose sum is n.
Each summand o; is called a part of the composition.

A partition of a positive integer n is either a non-increasing or
non-decreasing sequence of positive integers whose sum is n. (So
for example, for the partition n = a3 + a2 + - - - + ai either a; >
az>---2a2lorl<e;<az<---<ax.)

Per the definition found in [7], let [n] = {1,2,...,n} and let [n]®
denote the set of words of length £ in the alphabet [n]. For any word
o in [n)™, let red(o) denote the member of [n]™ obtained by replac-
ing the smallest letter of o by 1, replacing all letters corresponding
to the second smallest element by 2 and so on. For example, if
o = 42244 € [4]° then red(c) = 21122.

We call {red(s): 0 € [n]™, 1 < m < £} the set of subword
patterns in [n]¢. And we say that there is an occurrence of the
pattern 7 = 01,09,...,0m at index i in the composition (word)
o=ap,q,...,0, ifred (@, @it1, .- Qigm—1) =T, (I £ s+1—m).
The number of occurrences of the pattern 7 in « is the num-
ber of different such indices i satisfying red (o, @41, ..+, @igm—1) =
7. For example, if o = 4243233 then there are two occurrences of
the pattern 7 = 212 (corresponding to 424 and 323) and one occur-
rence of the pattern 7 = 11 (corresponding to 33). Note that we
require the letters within a given word corresponding to a pattern
to be consecutive.
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In accordance with the definitions in [5], an occurrence of any of the
patterns

12¢-21
23¢-21 integer ¢ >3
13422

in an arbitrary composition of n is known as a peak (strict if £ = 3 and
weak otherwise). Likewise, any occurrence of the patterns

21¢-22
216-23 integer £> 3
316-22

is known as a valley (strict if £ = 3 and weak otherwise).

In each of the groups above, the generating function for the second pat-
tern is the same as that for third (as can be seen from the reversal mapping
applied to compositions).

We refer to [5], Theorem 4.39, p.120. In these formulae, we ignore the
number of parts (i.e. set y = 1), and we choose our alphabet set as A =N.
We deal with occurrences of the patterns

v, = 12(—21

vy = 23621

vh = 13622

= 2162 €23
T = 214723

5 = 31422

vy = 221

T3 = 211

Vg = 11

and obtain generating functions for the number of occurrences of the spec-
ified patterns:

: 1

o o= 0§ = . \
1-ya 1 (1+0ig-1) £ zor@)

i21 i+l «€B; 4,

T 1

C¥ = Cf =

N N i—1 !
1- ot [T (143i(g=1) 3 aordte)

izl j=1 a€fj 1
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where 3. 541 is the set of compositions a with parts in {7+1,7+2,...} that

are order isomorphic to the pattern 142, and §;_; is the set of composmons
a with parts in {1,2,...,5 — 1} that are order isomorphic to the same
pattern.

In the above formulae z marks the size n of the compositions and ¢
marks the number of occurrences of the pattern under consideration.

So for example, we may write Cy® as

Ci = ZZa(n b)z"q’,

n>0 5620

where a(n, b) is the number of times that compositions of the integer n have
exactly b occurrences of the pattern 7.

Simplifying the formulae above, we have:

pt-2yi+1
ord(a) _ £—2\r _ )
> = > @ =
aeﬁ,“ r2i+l
and
Jj-1 6-2(1_(xe-2)3 1)
d(a) _ =2\ _
Z x°’”-z(f" )* = 1 2i-2
a€fi-1 a=1
So
va 1
CN = ] (z 8—2)3+1 (1)
1->« I (1+a:3(q 1)- __Tz')
izl j2it+l T
and
1
T2
On = i=1

z-2(1 - E-DE-D) ) : (2)

— i J(g —
1 1§1z j];[l(l-i-x(q 1) T
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1

cHr = .
oy c
- . X 1=2)j+1
i1 14+ 7i(1 —q)%r:-r
1
T —
T z

-2 (l_(rl-—2)j-l)

jZl 1 + z](l —_— q) 1=z0=2

(3)

(4)

From (5] Theorem 4.3.5, p.115, again setting y = 1 and A = N and also

£=3, we obtain_

cy = L
N TS ] (1—3:2‘(1—q))
izl i2j+1
and
cp = ! .
.J_l 3
1- 3> 27 [] 1-2%(1-gq))
i>1 di=1

Finally from [5], Table 4.1, pg. 101, we obtain

1

O = —=——
1- Y =D
j=1

(5)

(6)

(7)

The generating function for the total number of occurrences for the asso-
ciated pattern in all compositions of n is found by differentiating the above

formulae with respect to ¢ and setting ¢ = 1. We obtain
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acy:

Oq

aCy
0q

acy?
+ =N ]

acy
0q

acy
+ —aq’]

aCR
9q

g=1

q=1

=1

q=1

q=

q=1

Y (1- fo)'z Yol Y @]

€23 i1 izl i2j+1
( l—=z )22 226-2
1-22) & (1 —z2)(1 — zf)
acy:
. . zi . gE=DG+)
22(1—23”’) DD D e =
>3 i>1 i>1 il
- 2 3(¢-1)
(12 =) S AR
>3
1—z\? 2 — g2¢
(1 - 21:) ; (1-22)(1 -=zt-2)(1 -z
, OCR
aq gq=1

2 1-2 ’ X
1-2z
3 _ 2041 _ 2842 4 z3¢

DI e T ()

>3

(2) T
(11——2:';)2 e x;(41 —z3)

1—-z\% 22
1-2z/ 1—2z2

(8)

3. BLOCKS THAT ALTERNATE BETWEEN WEAKLY INCREASING AND

WEAKLY DECREASING

We first split a composition of n into blocks on the basis that all of the
parts in any particular block have the same relationship, namely, > or <,
to all the other parts of the same block. More precisely, for the arbitrary
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composition of n given by
n=z+T2+- -+,
where either
Ty S22 < ST, ST 41 2 T2 2 2 Tgy < Tgpy1 < o0 T, (9)
or
Ty 2222 2Tg <Tgy41 STqu+2 S 000 S Tgy > Tgpp1 2 - Tgs, (10)
the blocks are defined to be the s partitions

Z1,T2y...ZTq,
Tq+1:Tg 42 ---Tg,

Tq,_1+1s-- - Tq,
derived from (9) or (10), where the value chosen for ¢; is maximal (and,
subsequently, for the remaining ¢;, ¢ > 1). If all parts of the composition
are equal, then there is only one block (which we may regard if we like as
a weakly increasing partition).

Example 3.1. The composition 133222 of 13 will be split into blocks (133)
and (222) (where we might regard the first as being a weakly increasing
partition and the second as weakly decreasing). (1), (33), (222) would not
be correct because the first option above has the larger q, value.

With blocks as defined in this section, an occurrence of a peak or a
valley, whether weak or strict in either case (i.e., any of the patterns
v, Va, V3, T1, T2, T3), marks the beginning of a new block.

Hence for any particular composition the total number of blocks = total
number of peaks 4 total number of valleys + 1.

Thus the generating function for the total number of alternating blocks
is

Gy

_ [eck |, 2ocg | ocy | 200% 1-z
- dq dq dq 9q |, 1-2z

t=3(aS 4 gf+l — 2z _ gHe 4 o260 92041 | 92042
(1 —2)?(1 - zt-2)(1 — 2t 1)(1 — %)

X
>3

+ 11—z
1-2z/°
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The principal pole of the summand in

1—3(1.5 + x2+1 _ 21.£+2 _ xl+4 + m2£ - 2x2¢+l + 2x2€+2
3= A-= )1 -z D1~

@)= =5
3

occurs at z = 5 (with multiplicity 2). Using the asymptotic analysis on
page 257 of [3],

(%)c-a [(_%)5+(_;_)t+1_2(%)u-z_(%)¢+4+(%)u_2(_;_)2¢+1+2(’})u+2'
@ ~\& OG-0

2
. .
X (1—2::) *

[z"]f(z) ~ (0.136681...) (n + 1)2".

Hence

The total number of compositions of n is 2"~1. Hence the expected

number of blocks as n — oo is (0.273362.. )n + 0(1). Because the average
number of parts of a composition of n is 3, the expected number of parts
in the blocks as n — oo is 1.82908..

Remark. Is the number 1.82808... irrational?

4. BLOCKS THAT ALTERNATE BETWEEN WEAKLY INCREASING AND
STRICTLY DECREASING

Consider an arbitrary composition of n =1 + z2 + - - + Tg,- View the
composition in one of the following manners

T Sﬂ'}zs-“squ > Tgy+t >qu+2>"°>qu quz+1 S"‘qug >+ Xgq,
or
Ty > T2 > Tgy < Tyl S Tqaz S0 STgp > Tgpp1 0 > Tgg S0 T,

That is, all equalities are considered as part of a neighbouring (weakly)
increasing block. So the compositions are split into partitions

T1,Z2y.-1Zq
T+ Tq42) -1 T which alternately (weakly) increase
: or (strictly) decrease.

ZTg,_1+1r--+1Tq,

As in Section 2, the sequence above which is used to determine the blocks
is that one with the largest g; value.

220



Example 4.1. The composition 133222 of 13 will be split into blocks (133),
(2) and (22) (where we might regard the first and third as weakly increasing
and the second as strictly decreasing).

With blocks as defined in this section, an occurrence of any of the pat-
terns 121, 231, 132, 221 (all peaks) or 212, 213, 312, 211 (all valleys) marks
the beginning of a new block. These patterns are identical to those in
Section 2 with the restriction that £ = 3 only.

As before, for any particular composition, the total number of blocks =
total number of peaks + total number of valleys + 1.

Thus the generating function for the total number of alternating blocks
is :

G, =

a5+ g+ 515+ 5}

+ 11—z
1-2z/)°

(First square bracket term represents strict peaks; second square bracket
terms represent strict valleys and last term represents weak peaks or weak
valleys)

_ 1=z \* [0+ + e+ 2+ [z +2° 2% (1-2
B (1~m) (1-2)(1 -2%)(1-23) +<1—m)

<l—x) (1 -2z — 22 + 2% + 4z + 32° — 226)
1
2

Ga

1-2z (1 -=z)(1 -=z2)(1 - z3)
1 13 2 (13 -2z -11z?%)
3u-x) t 2  B(-22) 147 (1-23)

Extracting the coefficients of " from this equation, we obtain

( 1 ifn=0
48 27 7.7+l

n_J§+§+ 98
[#"1=1 68  2»  7.274
8 tos ™ o8
109 27 7.2
7 T8 T o

n forn=0mod3 but n#0
n forn=1mod3

n for n=2mod3
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Since there are 2"~! compositions of integer n, the expected number of
blocks is

(1 ifn=0
48 12
5 98_2"‘—+49 7n ifn=0mod3 but n #0
= B L2 ifn=1mod3
98.2n-1 T gg T 70 Hn=imo
109 12 .
kw-l-zg-l'?n ifn=2mod3

Asymptotically as n — oo, the expected number of blocks = % + %n.
It is well known that the average number of parts of each composition of
n is 3. Therefore the expected number of parts in the blocks forming the

compositions of n is 1% as n — 09,

5. BLOCKS THAT ALTERNATE BETWEEN STRICTLY INCREASING AND
STRICTLY DECREASING

By analogy with Section 3, view an arbitrary composition n = z1 +z2 +
-+ + x4, in one of the following manners
Ty < T < - < Tgy 2 Tqu41 > Ty 42 > > Tgy S Tgp41 <00 < Tgy 2 *+* Ty,
or
Ty D> To > Tg STq41 < T2 <00 < Ty = Tgapl > 0+ > Tgy <0+ Tg, -

So the composition is split into partitions

T1,T2y... ,:Z:q,
x z e T
Qi+l Lq1+2y 12 . . . .
) which alternately strictly increase or strictly decrease.
Tquo1+1s-- -1 T,

In the event that a composition begins with equalities, the sequence
above is chosen so that the first block has one part only.

This definition is a generalization of that used in [2] to define the blocks
of the concave compositions.

Examples 5.1. The composition 22212 is split (2)(2)(21)(2) and not
(2)(2)(2)(1)(2). The composition 133222 is split (13)(32)(2)(2).
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With blocks as defined in this section, an occurrence of any of the pat-
terns 121, 231 or 132 (strict peaks) or alternatively 212, 213 or 312 (strict
valleys) or 11 (equalities) marks the beginning of a new block.

Thus the generating function for the total number of alternating blocks

is
" l1-—-2z2
£=3 1-2z
g=1

Gy = { 6;;;: N 2%@;;{2] N [ag:f: N 2363'52] . [agf,]}

1-xz\?11-2z+3z% +25+25
(1 - 2:1:) [(1 —z)(1-22)(1- :1:3)]
1 2 1(1 - z) 5 5

"1 300 T31-2?) 20401 =22) T WA= 22)°

1(18 — 2z — 112?)
147(1 — 29

Extracting coefficients of ™ from this expression, we obtain

m_J 1 ifn=0
[a:]—{ =55 (z(n) + A(n)) n #0 as below

where
(640 if n = Omod6 (n # 0)
188 if n = 1mod6
544 if n = 2mod6
z(n) = { >4 ifn=2mo and A(n) = 95 x 2" + 105 x 2"n.

248 if n = 3mod6
580 if n = 4mod6
152 if n = 5mod6

\
Since there are 2"~! compositions of the integer n, the expected number of

blocks as n — o0 is T + %n. Since the expected number of parts is g,

7
the expected number of parts per block is 5
6. SUMMARY OF RESULTS
Above we have proved:

Theorem 1.  For compositions of n split up into blocks of alternately
increasing/decreasing partitions, the asymptotic expectation for the number
of blocks with corresponding number of parts is:
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Definition of Asymptotically Corresponding
type of ezpected number number of parts
decomposition of blocks per block
Section 3 (Weakly
increasing/weakly decreasing) | (0.273362...)n + 0(1) 1.82098...
Section 4 (Weakly
2 1 3
, ina/stri . 2 1 3
increasing/strictly decreasing) 7 + 9 1 )
Section 5 (Strictly
. . , . 5 95 2
increasing/strictly decreasing) " + 294 15
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