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Abstract: In this paper, we present three algebraic constructions of authenti-
cation codes from power function over finite fields with secrecy and realize an
application of some properties about authentication codes in [1). The first and
the third class are optimal. Some of the codes in the second class are optimal, and
others in the second class are asymptotically optimal. All authentication codes in
the three classes provide perfect secrecy.
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§1. Introduction

The authentication model introduced by Simmons [12] involves three
parties: a transmitter, a receiver, and an opponent. The transmitter wants
to send some information (called source state) to the receiver using a public
communication channel. To provide confidentiality and/or authenticity for
the source state to be transmitted to the receiver, the sender and receiver
need to share a secret key k € K, where X is the key space. Each secret key
k will then specify a secret one-to-one transformation E}, , which transforms
a source state s into a message m = Ei(s). All the possible messages m
form a space M, which is called the message space. All the encoding
rules form the encoding rule space £ = {Ey : k € K}. The source state
space and the key space are associated with a probability distribution. An
authentication code is defined by the four-tuple (S,K,M,E). There are
two types of authentication codes: authentication codes with secrecy and
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those without secrecy. In an authentication code with secrecy, a source
state s is sent to the receiver in an encrypted form. In this case, the secret
key k shared by both the sender and receiver is used for both encryption
and authentication purpose. In an authentication code without secrecy, a
source state is sent to the receiver in plaintext. In this case, the secret
key is used only for authentication purpose. In this paper, we consider
only authentication codes with secrecy. It is possible that more than one
message can be used to determine a source state (this is called splitting).
In this paper, we consider only authentication codes without splitting. An
authentication code with secrecy is used as follows. After encoding the
source state s with Ex , the sender sends the message m = Ey(s) to the
receiver through the public communication channel. When receiving m/,
the receiver will check the authenticy of the received message first. If it is
authentic, the receiver will then recover the source state s with the shared
secret key k and the encoding rule Ei. Otherwise, the receiver will reject
the message.

Within Simmons authentication model, we assume that an opponent
can insert his message into the channel, and can substitute an observed
message m with another message m’. We consider two kinds of attacks,
the impersonation and substitution attacks. In the impersonation attack
an opponent inserts his message into the channel and wishes to make the
receiver accept it as authentic. In a substitution attack the opponent ob-
served a message sent by the transmitter and will replace it with his message
m' # m hoping that the receiver accepts it as authentic. We use Py and
Ps to denote the maximum success probabilities with respect to the two
attacks. Authentication codes with secrecy have been considered in [8, 9].
Most known constructions are combinatorial. In this paper, we present
three algebraic constructions of authentication codes with secrecy. The
first and the third class are optimal. Some of the codes in the second class
are optimal, and others in the second class are asymptotically optimal. All
authentication codes in the three classes provide perfect secrecy.

For all the authentication codes described in this paper, all the keys are
used equally likely, and all source states are used with equal probability.
Since there is a one-to-one mapping from the key space to the encoding
rule space for all the authentication codes in this paper, all the encoding
rules are used equally likely, and the number of keys and the number of
distinct encoding rules are always the same.

§2. Encoding Matrix, Perfect Secrecy and
Authentication Perpendicular Arrays

Given an authentication code (S, K, M, £), we define a |K| x |S| matrix,
where the rows are indexed by the keys (equivalently the encoding rules),
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the columns are indexed by the source states, and the entry in row k and
column s is Ey(s). This matrix is called the encoding matrix or authenti-
cation matrix. In this paper, for all the authentication codes, we assume
that each secret key (and thus each encoding rule) is used for encoding
only one source state. This is the same as in the Vernam one-time-pad
system. As made clear before, we consider only the impersonation and
substitution attacks in this paper. We say that an authentication code of-
fers perfect secrecy if any observed message m gives zero information about
the corresponding source state s, i.e., p(s\m) = p(s). This is exactly Shan-
non definition of perfect secrecy [10]. Shannon proved that if a code offers
perfect secrecy, then
1Kl = 1€l = |S]

An authentication perpendicular array APA;(1,u,v) is a v X u array,
A, of v symbols, which satisfies the following properties:

cl. Every row of A contains u distinct symbols.

2. Every column of A contains each of the v symbols exactly once.

Authentication perpendicular arrays APA,(1,|S|,|K]), |S| < |K]|, can
be used to construct authentication codes with perfect secrecy and with
Py = |S|/|M] [3].

LEMMA 1. (Stinson {3]). If the encoding matrix of an authentication
code with secrecy is an APA,(1,|S|, |K]), |S| < |K]|, then the code offers
perfect secrecy and Py = [S|/|M]|.

This lemma will be used frequently in the sequel. For the generalization
of perfect secrecy into L-fold secrecy and the use of general perpendicular
arrays for the construction of authentication codes with L-fold secrecy, we
refer to Stinson [3].

§3. Bounds on Authentication Codes

We summarize some of the known bounds needed in the sequel. We also
use M , £ and S to denote the random variable of the messages, encoding
rules, and source states. We use M" to denote the random variables of the
first r messages, and H(E\ M) the conditional entropy of £ given that the
first r messages have been observed.

LEMMA 2. [Brickel [2]]. In any authentication system without split-
ting,

8 Pg > 2H(M)—H(E)-H(S)
The following is called the information-theoretic bound [6,7,8].
LEMMA 3. In any authentication code,
P> 2”(5\M)—H(5), Ps > 2H(5\M2)-H(5\M).
The following are combinatorial bounds [4,5].
LEMMA 4. In any authentication system without splitting,

Pi 2 (3 and Py > {3k
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If both equalities are achieved, then |£| > |M|.
§4. Construction I

Let n and m be two positive integers such that m | n, it means that m is
a factor of n. Let p(z) be a power function z* from GF(g") to GF(q™). We
use S, K, M, and £ to denote the source state space, key space, message
space, and encoding rule space, respectively. Define
(8,K, M) = (GF(q"),GF(q") x GF(q™),GF(¢") x GF(q™)) (1)
&= {Eklk (S /C},

where for any k = (k1,k2) € K and s € S,
Ei(s) = (s.+ k1,p(sk1) + k2)

We denote m; = s + k; and mo = p(sk1) + ka. The first part is
the encrypted message. The second part m; is the redundant part for
authentication.

4.1 The parameters and properties of the codes

THEOREM 5. The authentication code of (1) provides perfect secrecy.
Furthermore, we have

P 1= '%n"v P S = anw

proof. We first prove that the encoding matrix of this authentication
code is an authentication perpendicular array APA,(1,|S|,|K|), where
|S| = ¢* and |K| = g**t™. For every fixed key k = (k1, k2), Ej is a one-
to-one mapping. Hence each row of the encoding matrix contains ¢" = |S|
distinct symbols of M. Hence condition (c1) is satisfied.

On the other hand, for every fixed source state s and any pair (a,b) €
GF(g™) x GF(¢q™), the equation

Ex(s) = (s + k1,p(sk1) + k2) = (a,b) appears exactly once in each
column of the encoding matrix, and condition (cl) is satisfied.

Since both (c1) and (c2) are satisfied, by definition the encoding matrix
is an APA;(1,]S|,|K|). It then follows from Lemma 1 that this authenti-
cation code provides perfect secrecy and P = ljf—;(l-[ = qu,..

‘We now consider the substitution attack and compute Ps. An opponent
has observed one message

my = s + k1, mg = p(sky) + ka. (2)

This message gives log,¢™ bits of information about the key k =
(k1,k2), but gives no information about k;. The opponent wants to re-
place m with another message m’ = (m}, mj), where m; # mj. He wishes
to analyze the whole system and to choose a message m’ such that the
success probability is maximal.
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Whatever m’ = (m], mj) the opponent chooses, there is a pair (61, J2)
such that (m},mj) = (m; + §;,m2 + &), where §; # 0. Thus the sub-
stitution attack is equivalent to adding an element §; # 0 to m,, and an
element d; to ms. This is successful if and only if

p(sk1) + k2 + 82 = p((s + 61)k1) + ka2,
which is equivalent to

p(alkl) = 62.
Hence

Ps = smax Prp(6,1k;) = 82).

Note that the observed message gives no information about k;. We
obtain
Pr[p(élkl) = 52]
for any ﬁxed 6 #0 and 62 I-fence
Ps=-L -

This cor%pletes the proof.

4.2, Optlmahty of the Codes

Clearly, P = - meets the lower bound on P; given in Lemma 4. Note
that all encoding rules are equally likely and all source states are equally
likely. Then all messages are used with equal probability. It follows that

H(S) = log, ¢"+™, H(E) = logy ¢"*™, H(M) = log, ¢".

Hence 2H(M) H(E)-H(S) = 1 /g,

If n = m, the code of (1) is optimal with respect to the bound on Pg
given in Lemma 2.

We now compare the Ps of Theorem 5 with the information-theoretic
bound of Lemma 3. We first determine H(€\M). Suppose that a message
m = (my,mg) = (s + k;,p(sk;) + k2) has been observed. Then we have

kg =mg — p(kl(ml - kl))
Hence
H(E\M) = log, ¢".

We now determine H(£\M?). Suppose that two distinct messages
m =m; +mg = (s + k1, p(sk1) + k2) and
m' =m) +mh = (s + k1,p(s'k1) + k2)

have been observed. Since m # m’, the uncertainty of k, is log, g"~™.

So
H(E\M?) =log, g"~™.
Combining the formulas for H (E\M) and H(E\M?) yields
P .= oHEWM?)—H(E\M) _

This is the lower bound on 373 given in Lemma 3. Hence the code of
(1) is optimal with respect to the bound on given in Lemma 3 in all cases.

Thus we have arrived at the following conclusions.

THEOREM 6. The code of (1) is optimal with respect to the bound
on Ps given in Lemma 3. In addition, it is also optional with respect to
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the bound on Ps given in Lemma 2 in the case n = m. Furthermore, it is
optimal with respect to the bound on P; given in Lemma 4.

85. Construction 11

let n and m be two positive integers such that m\n. Let p(z) be a
power function from GF(q") to GF(q™). We use S, K, M, and € to
denote the source state space, key space, message space, and encoding rule
space, respectively. Define '

(8,K, M) = (GF(¢")*,GF(q")* x GF(¢™),GF(¢")* x GF(g™)) (9)
& = {Exlk e K},

where for any k = (k1,k2) € K and s € S,
Ey(s) = (sk1,p(s + k1) + k).

We denote m; = sk; and my = p(s + ki) + ka. The first part is
the encrypted message. The second part mg is the redundant part for
authentication.

5.1 The parameters and properties of the codes

THEOREM 7. The authentication code of (3) provides perfect secrecy.
Furthermore, we have

Pr=gx, Ps = gx + =y

proof. Similarly as in the proof of Theorem 5, we can show that the
encoding matrix of this authentication code is an authentication perpendic-
ular array APA;(1,|S|,]K|), where |S| = ¢" — 1 and |K| = (¢" — 1)¢™. It
then follows from Lemma. 1 that this authentication code provides perfect
secrecy and Py = T'A%l[ = 3}7‘

We now consider the substitution attack and compute Ps. An opponent
has observed one message m = (mj, m3), where

my = sk1, mg =p(s+ k1) + ka. (4)

This message gives log, g™ bits of information about the key k =
(K1, k2), but no information at all about the source state s and k;. The
opponent wants to replace m with another message m’ = (mf, mj3), where
m; # m}. He wishes to select an m' such that the success probability is
maximal.

Whatever m' the opponent chooses, there is always a pair (41, d2) such
that (m}, m}) = (m181, m2 + 82), where §; # {0,1}. Thus the substitution
attack is equivalent to multiplying an element &; # 1 to m;, adding an
element 62 to ma. This is successful if and only if

p(s + k1) + ko + 62 = p((s8,) + k1) + k2, which is equivalent to
p[(61 - 1)8] = 62. Hence
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= max Prlp[(§; - 1)s] = &].
s =, max | Pripl(6: — 1)s] = &)
Note that the observed message gives no information about s. Hence

Prip(8 — 1)s] = 0] = L2
for any 6, ¢ {0,1} and

Pf'h)[(él el l)s] = O] = QF;—‘l
for any &, ¢ {0,1} and &2 # 0. Hence

Ps = 3= + Fery-

This completes the proof.

5.2. Optimality of the Codes

Clearly, P = % meets the lower bound on P; given in Lemma 4.
Hence the code is optimal with respect to impersonation attack.

If n = m, then Pg = 2HEM)-HE\M)-H(S) _ 1/q™, which meets the
bound of Lemma 2. Hence the code is optimal with respect to both attacks.
If n > m, we can prove that

P = 9HE\M?)—H(E\M) _ (a"~ "=V I" (gn-m)a™ —1/a™

. g7 -1
is the lower bound on Ps given in Lemma 3.

Note th:.t . Py p————
Jim gy = Jim Gy = lim 7 =1

Hence the code of (3) is asymptotically optimal with respect to the
bound on Ps given in Lemma 3.

Thus we have proved the following conclusions.

THEOREM 8. The code of (3) is optimal. If » > m , it is optimal with
respect to the lower bound on P; given in Lemma 4, and it is asymptotically
optimal with respect to the bound on Ps given in Lemma 3.

§6. Construction III

Let (A, +) and (B, +) be two finite abelian groups, and let IT be a homo-
morphism from A to B. We construct an authentication code (S, K, M, £)
by defining

(8, K, M, &) = (A, Ax B,A x B,{E|k € K}), (5)

where for any k = (k;,k;) € K and s € S,
Ei(s) = (s + k1, TI(s) + k2)

We denote my = s+ k; and my = II(s) + ko. The first part is the
encrypted message. The second part mg is the redundant part for authen-
tication.

6.1 The parameters and properties of the codes

THEOREM 9. Let (A4,+) and (B, +) be two finite abelian groups, and
let IT be a homomorphism from A to B. Then for the authentication code
of (5), we have
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Pr= ]';@'l'a
Ps = ngé%)gz Pr(II(s + 6,) — II(s) = &3).

In addition, the authentication code provides perfect secrecy.

proof. Similarly as in the proof of Theorem 5, we can show that the
encoding matrix of this authentication code is an APA,(1,|S|,|K|), where
|S| = JA| and |K| = |A||B|. It then follows from Lemma 1 that this
authentication code provides perfect secrecy and Py = ]lﬁﬂ/ﬂ = l'é'[

We now consider the substitution attack and compute Ps. An opponent

has observed one message m = (m;, mz), where

m = s+ k1, mg =II(s) + k2. (6)

He wants to replace m with another message m’ = (mj},m5), where
my # m)}. Note'the observed message gives no information about s and &,
although it gives information about (ky, k2).

Whatever m’ = (mf, m}) the opponent chooses, there is always a pair
(61,82) such that (mf{,m}) = (m1,mg) + (81,02). Hence the substitution
attack is equivalent to adding an element ; # 1 to m;, and an element 6,
to mo. This is successful if and only if TI(s) + k2 + 62 = II(s + 61) + ko,
which is equivalent to II(s + 8;) — II(s) = d2. Then the formula for Pg
follows.

By Theorem 9, the probability P; is independent of the choice of II.
However, the probability Ps depends totally on the mapping II. In the
sequel, we construct codes by choosing proper mapping II with general
framework. To this end, we need optimal nonlinear functions. Clearly, the
codes provide perfect secrecy and this does not depend on the properties
of II.

6.2 A General Construction Using Perfect Nonlinear Function

Let f be a mapping from an abelian group (A4,+) to (B,+). The
derivatives are defined as D, f(z) = f(z + a) — f(z). A robust measure of
the nonlinearity of function is given by

Py = max, max Pr(Daf (z) =b), (M

where Pr(E) denotes the probability of the occurrence of event E.

It can be proved that Py > 1/|B| [11]. If the equality is achieved, we
say that function f : A — B has perfect nonlinearity. In this case |B| must
divide |A|.

COROLLARY 10. Let (A,+) and (B, +) be two finite abelian groups,
and let II be a homomorphism (clearly it is a perfect nonlinear mapping)
from A to B. Then for the authentication code of (5), we have

PI:]%T’ P3=T}§l-.
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In addition, the authentication code provides perfect secrecy, and this
does not depend on the perfect nonlinearity of II .

proof. The constructions follow from Theorem 9 and perfect nonlinear-
ity of II.

6.3 Optimality of the Codes of Theorem 9

Clearly, P; = TéT meets the lower bound on Pj given in Lemma 4. Thus

it is optimal against impersonation attack. We now prove that Pg = I—}Bf
meets the bound on Ps given in Lemma 3. To this end, we need to compute
H(E\M) and H(E\M?).

Assume that one message (m;,m2) = (s + k1,II(s) + k2) has been
observed. We have then

mag — kz = H(ml - kl)

Thus the uncertainty of k = (k1, k2) is log, |A|.

Suppose that two message (my, ma) = (s+k;, II(s)+k2) and (m},my) =
(s’ + k1,TI(s’) + k2) have been observed. Both the two messages depend on
k. Then we obtain my = II(m; — k1) + ka, m} = II(m} + k,) + k2 which
gives

H(m1 - kl) - l'I(m'l - kl) =My — m’2 (8)

Since m; # m} and IT has perfect nonlinearity, (8) has exactly |A|/|B]|
solution k;. Hence H(E\M?2) = log,(|A|/|B|).

Thus the bound on Ps given in Lemma 3 is

P = 2HE\M?)—H(EWM) _ L

Hence the code of Theorem 9 is optimal with respect to the bound on
Ps given in Lemma 3.

In summary, we have proved the following.

THEOREM 11. The code of Theorem 9 is optimal against both imper-
sonation and substitution attacks.

§7. Concluding Remarks

We remark that in the definition of the encoding algorithm Ej in Con-
structions I and II, the trace function in [1] has been replaced by power
function in this paper. Construction III is a promising application of per-
fect nonlinear mappings in the construction of authentication codes with
secrecy, because it gives optimal authentication codes whenever II is perfect
nonlinear, and II has been replaced by homomorphism in this paper.

Although the authentication codes constructed here are for providing
both secrecy and authenticity at the same time, they can also be used as
authentication codes without secrecy. To this end, in all the three con-
structions, we set k; = 1 and make k; public.

The implementation of these authentication/secrecy codes involves the
arithmetic of power function between two fields and also realize an appli-
cation of some properties about these authentication/secrecy codes from a
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trace function between two fields in [1}, and the computation of the values
of power function. The homomorphism in the authentication code of (5) in-
volves a number of multiplications and additions over a field, and its values
can be computed efficiently in both hardware and software. Hence the per-
fect nonlinear functions used in Construction III can also be implemented

efficiently.

Note that the authentication/secrecy codes presented in this paper pro-
vide perfect secrecy and are optimal against the impersonation and substi-
tution attacks with respect to certain bounds on P and Ps.

Highly nonlinear functions are used to construct authentication codes
without secrecy in Chanson et al.[11], here we use them to construct op-
timal authentication codes with secrecy from homomorphism between two
abelian groups within the framework of Construction III.
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