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Abstract: Let AK, be the complete multigraph with v vertices.
Let G be a finite simple graph. A G-design G-GDy(v) (G-
packing G-PD,(v), G-covering G-CDy(v)) of MK, is a pair
(X,B), where X is the vertex set of K, and B is a collection
of subgraphs of K, called blocks, such that each block is isomor-
phic to G and any two distinct vertices in K, are joined exactly
(at most, at least) in A blocks. In this paper, we will discuss the
maximum packing designs and the minimum covering designs for
four particular graphs each with six vertices and nine edges.
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1 Introduction

A complete multigraph of order v and index A, denoted by MK, is an
undirected graph with v vertices, where any two distinct vertices z and
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y are joined by A edges {z,y}. Let G be a finite simple graph. A G-
design G-GDy(v) (G-packing G-PD)(v), G-covering G-C D\ (v)) of AK, is
a pair (X, B), where X is the vertex set of K, and B is a collection of
subgraphs of K, called blocks, such that each block is isomorphic to G and
any two distinct vertices in K, are joined exactly (at most, at least) in A
blocks. A packing (covering) is said to be mazimum (minimum) if no other
such packing (covering) of the same order has more (fewer) blocks. The
number of blocks in a maximum packing (minimum covering), denoted by
p(v,G, ) (c(v, G, N)), is called the packing (covering) number. Obviously,

0 2006 = 255
< [$#55}] = V.6 <cw 6N, ()

where |z| ([z]) denotes the greatest (least) integer y such that y <z (y >
z). A G-PD)\(v) (G-CDy(v)) is called optimal, denoted by G-OPD(v)
(G-OCDy(v)), if the left (right) equality in () holds. Obviously, there
exists a G-GD\(v) if and only if p(v,G,\) = ¢(v,G,A). So a G-GD(v)
can be regarded as a G-OPDy(v) or a G-OCD)(v).

The leave Ly(P) of a packing G-PDy(v) = (V,P) is a subgraph of
MK, and its edges are the supplement of P in AK,. When P is maximum,
|LA(P)| is called leave-edges number and is denoted by Ix(v). Similarly,
the ezcess Ry(C) of a covering G-C D) (v) = (V,C) is a subgraph of AK, and
its edges are the supplement of AK, in C. When C is minimum, |R(C)|
is called excess-edges number and is denoted by rx(v). Generally, the
symbols Ly(P) and lx(v) (Rx(P) and rx(v)) can be denoted by Ly and )
(R»x and 7,) briefly.

Let X = LtJXi be the vertex set of Kj,,....n,, & complete multi-

i=1
partite graph consisting of ¢ parts with size n,---,n;, where these sets

t
X;, 1 < i < t, are disjoint and |X;| = n;. Denote v = Y n; and
i=1

G= {X1, X2, -+, X.}. For any given graph G, if the edges of AKn, n;,-,n,)
a t-partite graph with replication A, can be decomposed into edge-disjoint
subgraphs A, called by block, each of which is isomorphic to G, then
the system (X,G,.A) is called a holey G-design with index A, denoted
by G-HD,(T), where T = nln}---n} is the type of the holey G-design.
Usually, the type is denoted by exponential form, for example, the type

12



nf'nf? .. .nkm denotes ny occurrences of k1, na occurrences of kg, - -+, 1y,

occurrences of km. A G-HD)\(1°~*w?) is called incomplete G-design, de-
noted by G-IDj(v,w) = (V,W, A), where |V| =v, |W|=wand W C V.
For A = 1, the index A in GDj (or HD,,IDy,OPD),0CD,) is often
omitted.

Suppose, in graph G, there are ¢; vertices with degree m;, where m; are
distinct integers, 1 < ¢ < p. For a graph design (or packing, or covering)
(X, B), the block-set consists of b blocks, each vertex u in the vertex-set X
need to join with n(u) other vertices. All vertices in X are divided into s
classes Cy, - - -, Cy, according to different n(u), [Cy| = cu,1 < u < 5. The
vertex u occurs exactly in z;(u) blocks as m;-degree vertices, 1 < i < P
Define

mimi ... mf,,” — the degree-type of graph G,

zx(u)mgz(u) }

m] .- mg*™— the degree-distribution of the vertex u.

P
Obvious, |V(G)| = Z t; and |[E(G)| = 1 Y mut;. We have the degree-
=
equations as follows
P
2. mizi(u) = n(u)
i=1
P
S xi(u) <b zi(u) >0
i=1
where u € Cy,1 < u < 5. Obviously, each solution (z1(u), -+, zp(u)) of
the above system gives a possible block distribution degree-type of the ver-
tex u. For each u € C,, suppose there are g() such solutions (z1,5(u),---,
Zp,j(1)), 1 < j < g(u). Then, we have the degree-type distribution equa-
tions as follows:

s q(u)
ZZ zij(u)yi(u) =bt;, 1<i<p
‘u

Ey_,(u)—cu, 1<u<s

S

Any solution (y;(u), yg(u), -+, yq(u)) of the above system corresponds
to a kind of degree-type distribution of all vertices on X in all blocks: the
block distribution degree-type of y;(u) vertices is

m‘i‘:l-i(“)m;mi(“) .. .m;p..i(u), 1<u < s, 1 < J < q(u).

In this paper, we will discuss the maximum packing designs and the
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minimum covering designs of four graphs with six vertices and nine edges
for A = 1, which are listed as follows. For convenience, as a block in design,
each graph may be denoted by (a,b,¢,d,e, f) according to the following
vertex-labels.

P Q T H
N a_f a f a
b \e foob e b < e @ .
c d c d c d c d
Lemma 1.1 For graph G € {P,Q,T} or {H},

v>6
there ezists G-GDyx(v) <= { Mv(v—1) =0 (mod 18)
(A v) #(1,9) (or (1,9),(3,6))
Lemma 1.2[8 Given positive integers h,m,w and A, where m > 1, suppose
there exist G-IDy(h + w,w) and G-HD(h™).
(1). If there ezists G-OPDy(w) or G-OPD)\(h +w), then there exists
G-OPD)(mh + w).
(2). If there exists G-OCDj(w) or G-OCD(h +w), then there ezists
G-OCDy(mh +w).

2 Existence for small orders

Lemma 2.1 (1). p(6,P,1) =1 and ¢(6,P,1) = 2;

(2). p(7,P,1) =1 and ¢(7, P, 1) = 3;

(3)- p(8,P,1) =2 and c(8,P,1) = 4;

(4). p(9,P,1) =3 and ¢(9, P,1) =5.
Proof. Below, the symbol L (or R) represents the leave (or excess).
(1). A P-OPD(6) : (0,1,2,3,4,5). Its leave is a subgraph of P, so P-
OCD(6) can be obtained.
(2). P-OCD(7) : (1,2,3,4,5,6), (0,2,4,5,6,1),(3,5,6,4,1,0),

R = {02,04, 14, 34, 56,45}.

The packing number p(7,P,1) < U(7,P,1) = 2. The degree-type of P
is 113342 and the four 4°-vertices form a 4-cycle. If p(7,P,1) = 2, then
P C K7\ P = G, where G is as follows.
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But, the 4°-vertex of P can only be chosen from z or y in G. However, there
is no 4-cycle in the subgraph G\{z} and G\{y}. Therefore, p(7,G,1) = 1.
(3). Suppose that p(8, P,1) = U(8, P,1) = 3, then there exists a P-OPD(8)
with three blocks and |R| = 1. In the packing, six vertices have degree 7
and two vertices have degree 6. By the degree-type of P, the solutions of
the degree-equations x; +3z2+4x3 = 7 (or 6) are expressed in the following
table.

711 3 4 6{1 3 4

al0 1 1 cl2 0 1

bf1 2 0 d{0o 2 0

The degree-type distribution equation is expressed by the following matrix:

a b c d
(O 1 20 3\
1 20 2 9
1 010 6
1100 6
\0 0 112 )

It has the unique solution: a = 5, b = ¢ = d = 1. Denote the vertices
with degree-types 3'4! (for a = 5) by 0,1,2,3,4, and others by z (1241,
for b=1), y (32, for c = 1) and w (1132, for d = 1). First, arrange z, z, w
in three 1°-positions. Next, arrange 0,1,2,3,4 and z in six 4°-positions.
Without loss of generality, the distribution can be as follows:

0 2 *

o
where two * are 4 and z. Further, two positions o must be arranged by 0
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and 2, respectively. Thus, the vertex 4 must appear in 3°-position in first
or second block, which is impossible. So, p(8, P,1) < 2. We have
p(8,P,1) =2:(1,2,3,4,5,6),(0,2,4,6,7,1),
L ={(0,1),(0,3),(0,5),(1,6),(2,6),(3,5), (3,6), (3,7), (4, 7), (5, )}-
c(8,P,1) =4:(1,2,3,4,5,6),(0,2,4,6,7,1),(3,5,7,2,6, 1),(1,7,4,5,0,3),
R={(0,7),(1,4),(1,5),(1,7),(2,3),(2,7),(5,6), (4,5)}-
(4). By Lemma 1.1, there exists no P-GD(9). So, p(9,P,1) < 3 and
c(9,P,1) > 5. But, we have
p(9,P,1) =3:(1,4,5,2,3,6),(6,8,2,4,7,1),(0,3,8,5,7, 2),
L ={(0,1),(0,2),(0,4),(0,6),(1,6),(1,8), (3,5), (4,8), (5, 6)}-
c(9,P,1) =5:(1,4,5,2,3,6),(6,8,2,4,7,1),(0,3,8,5,7, 2),
(0,1,2,4,6,5),(8,6,1,4,3,5),
R=1{(1,2),(2,4),(6,4),(6,8),(4,8),(3,8),(1,4), (3,4),(3,6)}.m

Lemma 2.2 (1). p(6,Q,1) = 1 and ¢(6,Q,1) = 2;

). p(7,Q,1) =1 and c(7,Q,1) = 3;

(3). p(8,Q,1) =2 and ¢(8,Q,1) = 4;

(4). p(9,Q,1) = 3 and ¢(9,Q,1) = 5;

(5). p(11,Q,1) =5 and ¢(11,Q,1) =T,

(6). p(14,Q,1) = 9 and c(14,Q,1) = 11.
Proof. (1). A Q-OPD(6) : (0,1,2,3,4,5). Its leave is a subgraph of @,
so Q-OCD(6) can be obtained.
(2). Suppose that p(7,Q,1) = U(7,@,1) = 2. The graph K7\ Q is as
follows.

T

Yy

Clearly, the graph @ has a 5°-vertex A, which is adjacent to a 4-cycle.
However, in the graph K7\ Q, A can only be z or y. And, after deleting z or
y, the subgraph of K7\ Q has no 4-cycle. So, there is no subgraph Q in K7\
Q. Therefore, p(7,Q,1) = 1 and the block is (0,1,2,3,4,5). Furthermore,
we have ¢(7,Q,1) = 3 : (0,1,2,3,4, 5),(6,5,1,3,4,0),(2,5,3,0,4,6). Its
excess is R = {(0,2),(0,3),(0,4),(2,3),(3,4), (4, 5)}.

(3). Suppose that p(8,Q,1) = U(8,Q,1) = 3, then |R| = 1. From the
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degree-type 1'345! of graph Q, we have the corresponding degree-cquations
and the degree-type distribution equation:

a b c d
(2110 3 )
7|1 3 5 6/]1 3 5 020 2: 12
al2 0 1 c 0 1 101 0 3
b1 2 0
2.0 d 1100 6
\0 0 1 1 2)

But the sum of the third and the forth equations contradict with the first
equation, which shows that no solutions exist. So, p(8,Q,1) £ 2. And,
p(8,Q,1)=2: (0,1,2,3,4,5), (7,1,3,5,6, 0),
L={(2,4),(1,5),(2,5),(4,5),(0,6),(2,6),(3,6), (4,6), (2, 7), (4, 7)};
c(8,Q,1)=4: (0,1,2,3,4,5), (7,1,3,5,6, 0),
(2,4,6,1,5,7), (0,3,4,7,6,1),
R ={(o, 1), (0,3), (0,4), (o, 7),(1,2), (1,6), (3, 4), (6, 7}
(4). By Lemma 1.1, there exists no Q-GD(9). So, p(9,Q,1) < 3 and
c(9,Q,1) > 5.
p(9,@,1)=3: (0,1,2,3,4,5), (5,1,3,6,7,2), (8,6,2,7,4,5),
L={(o, 6),(0,7),(1,6), (1, 8),(2,4), (3,7),(3,8),(4,5), 0,8)}
c(9,Q,1)=5: (0,1,2,3,4,5),(5,1,3,6,7, 2),(8,6,2,7,4,5),
(7,6,1,8,0,3),(8,5,0,2,4,3),
R ={(0,2),(0,5),(0,8),(5,8),(1,7),(2,8), (4,8), (6,7), (7,8)}.
(5). Suppose that p(11,Q,1) = U(11,Q, 1) = 6, which contains six blocks
and [R| = 1. The degree-type of the graph Q is 1!345!. There are nine
10°-vertices and two 9°-vertices in the packing design. The corresponding
degree-equations are expressed by the tables:

3
ol1ss
" R

Fl1 1 1
bl2 1 1
c|5 0 1 g 4 01
hlo 3 o
dl1 3 o i
el4 2 0 ’

The degree-type distribution equation is expressed by the following matrix:
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a b cdef g hi

(025141403 6 )
010321032 : 24
211001100°: 6
111110000 9
\oo0o0001111:2)

It has only one solution: a =3, d =6, h =2, b=c=e=f=g=i=0.
Denote the vertices with degree-types 52 (for a = 3) by z,9, 2, then the 5-
degree positions in all six blocks must be z,z,y,y,2, 2. Each vertex beside
z,y,z appears in at most three blocks, since the unique 5-degree vertex
joins to others in Q. However, there are d = 12 vertices with degree-type
1133, each of which must appear in four blocks. This contradiction shows
to exist no Q-OPD(11), so p(11,Q,1) < 5. Below, give a maximum Q-
PD(11) and a2 Q-OCD(11):
p(11,Q,1) =5 (5,0,2,1,3,7),(6,10,9,8,7,5),(9,0,4,2,7,1),
(1,0,6,4,8,7),(10,3,4,5,8,0),
L= {(1’ 10), (2:3)1 (2s 6): (21 8): (21 10)’ (37 6)’ (3! 7)’ (3’9)1 (437)) (5a9)};
c(11,Q,1)=7: (5,3,1,8,6,10),(9,0,1,5,8,2),(2,3,8,10,9,0),
4,0,2,1,3,5),(10,1,6,3,7,0),(7,0,5,2,6,1),(4,6,8,7,9,10),
R={(0,2),(1,3),(1,5),(1,7),(2,9), (3,6), (5,8), (6, 8)}-
(6). Suppose that p(14,Q,1) =U (14, Q,1) = 10, which contains ten blocks
and |R| = 1. The degree-type of the graph Q is 113451, There are twelve
13°-vertices and two 12°-vertices in the packing design. The corresponding
degree-equations are:

[y
(3]
—
w

- o WA O =N O|Ww
N R = 00D WO
DWW O =N O W
OO O = = = N No

> w0 A0 oR
© O WO N R N
-
LR A
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The degree-type distribution equation is:

abcde fghijiklmnopoyg

(2147036903258147310\
02104321102 10432°: 40
211100002 2111000°: 10
1111111100000000°: 2
\0 00000001 1111111;:12)

It’s solutions are:
b=-2a~c—d+k+i+m+2n+2p+2¢- 14
e=a-f—-g—h—k-l-m-2n-2p—2¢+16

=c+2d+f+29+3h+1+2m+p+2¢+4

J=-c—-2d—f~29-3h—k-20-3m—-n-2p-3¢+8

™.

It is easy to know i < 5 (degree-type 3'52) by the structure of the graph.
But, the third equation implies i > 4. Below, it will be proved that i #4,5.
Therefore, there exists no Q-OPD(14).

1. If ¢ = 5, then this five vertices with degree-types 352 will occupy
all 5°-positions and five 3°-positions of ten blocks. It is easy to see that at
most nine edges between this five vertices appear, which is a contradiction
since there are ten edges between five vertices.

2. If i = 4, then this four vertices z,y, z, u of degree-type 3152 will
occupy eight 5°-positions and four 3-degree positions of ten blocks. Since
(;) = 6, we need to generate six edges between the 12 positions. There are
only two possible forms: C3 U C3 and (K4 \ P2) U P}, where P; and P, are
different edges. However, both can not form a K, which is a contradiction.

Thus, there exists no Q-OPD(14), i.c., p(14,Q,1) < 9. Below, give a
maximum @Q-PD(14) and a Q-OCD(14):

p(14,Q,1) =9: (4,6,10,7,12,9),(7,0,5,2,6,1), (12,0, 8,3, 10, 1),

(6,5,8,11,13,3),(1,0,9,5,11,6), (8,1, 10,2, 13,4),
(3,2,9,7,11,5),(4,0,2,1,3,5), (9, 13,12,11,110, 8),

L = {(0,13),(2,12),(3,13),(4,11), (4, 13),
(5,10),(5,12),(6,9),(7,8),(7,13)};
c(14,Q,1) =11: (1,0,2,4,3,7),(9,4,7,12,8,0),(13,2,3,7, 10, 12),
(10,0,8,3,9,1),(0,4,5,6,1,2), (10,4, 5,11, 6, 12),
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(11,0,13,4, 12,7),(12,1,5,3, 6, 2), (7,0,5,2, 6,8),
(13,5,8,6, 9,1),(11,1,8,2,9, 3),
R= {(01 1)’ (0, 2)3 (0) 5): (0’ 6): (0’ 9)1 (1v4)1 (1)6): (4, 5)} =

Lemma 2.3 (1). p(6,T,1) =1 and c(6,7,1) =3;

(2). p(7,T,1) =1 and c(7,T,1) = 3;

(3). p(7,T,1) =1 and ¢(7,T,1) = 3;

(4). p(7,T,1) =1 and (7,T,1) = 3.
Proof. (1). AT-OPD(6):(0,1,2,3,4,5). Its leave is a subgraph of T, so
T-OCD(6) can be obtained.
(2). Note that T is a hexagon with two diameters and one chord. However,
there is no such hexagon in the following graph K7\ T:

=

Thus, we can not arrange other block in K:\T,sop(7,T,1) = 1. Further-
more, c(7,T,1) =3: (0,1,2,3,4,5),(1,3,6,4,0,5),(2,4,5,3,0,6),

R= {(0: 5), (5, 4), (0, 3), (2,5), (5, 6), (0»4)}'
(3). Suppose p(8,T,1) = U(8,T, 1) = 3, then L = 1. The degree type of
graph T is 2134!. The corresponding degree-equations and the degree-type
distribution equation are:

a b c de

(0210 3 3\
712 3 4 1102 0: 12
a0 11 10100: 3
b1z 1 0 11000: 6

Koo111 2 )

From the second and fourth equations we get d = 3, which contradicts with
¢+ d+ e = 2. Thus, the equation system has no solution, p(8,T,1) < 3.
We have p(8,7,1) =2:(0,1,2,3,4, 5),(0,3,6,5,1,7),

L = {(0,4),(2,4), (3,5), (1,6),(2,6),(4,6),(2,7), (3,7, (4,7, (5, )}-
Adding two new blocks (2, 6,4, 5,3, 7),(0,4,7,5,6,1), we can get T-OCD(8)
and R = {(0,1),(0,7),(1,7),(4,7),(4,5), (4,6),(5,6),(3,6)}.

(4). By Lemma 1.1, T-GD(9) not exists, so p(9,T,1) < 3, c(9,T,1) > 5.
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However, p(9,T,1) = 3:(0,1,2,3,4,5),(0,3,6,5,1,8), (2, 6,4,0,7,8),

L ={(3,5),(1,6),(1,7),(2,7),(3,7),(4,7), (5, 7),(3,8),(5,8)}.
Adding two blocks (5, 3,7,4,0,2) and (1,6, 3,8, 5, 7), we can get T-OCD(9)
and R = {(0,2),(0,3),(0,4),(1,3),(2,5),(3,6),(3,7), (5,6), (5,7)}. |

Lemma 2.4 (1). p(6,H,1) = 1 and ¢(6, H,1) = 3;

(2). p(7,H,1) =1 and (7, H,1) = 3;

(3). »(8,H,1) =2 and c(8,H,1) = 3;

(4). p(9,H,1) =3 and c(9,H,1) = 5;

(5). p(11,H,1) =5 and c(11,H,1) = 7.
Proof. (1). A H-OPD(6) can be taken as (0,1,2, 3,4, 5). However, its
leave is not a subgraph of H. Thus ¢(6, H,1) > 3. We have

c(6,H,1) =3:(0,1,2,3,4,5),(2,1,0,4,5,3),(1,0,3,2, 5,4).
R ={(0,4),(0,4),(0,1), (0,1),(1,5),(1,5),
(4,5),(4,5),(0,3),(0,3), (0,2), (3, 5)}.

(2). Obviously, H is not a subgraph of the following graph K- \ H, which

implies p(7, H,1) = 1.

p(7,H,1)=1: (0,1,2,3,4,5),
L={(o, 2),(0,3), (0, 6), (1,4), (1,6), (2,3),
(2,5),(2,6),(8,5),(3,6),(4,6), (5,6)}.
o(7,H,1)=3: (0,1,2,3,4,5),(0,6,1,5,3,2), (3,4,2,1,5,6),
R= {(1: 3),(1,5),(3,4), (8,5), (4,5), (2, 4)}
(3). H-OPD(8) on the set Zg contains three block (0,1, 2, 3, 4, 5),(1,6,0,5,7,4)
and (6,2,0,5,3,7). Obviously, its leave is a subgraph of H, so H-OCD(8)
can be obtained.
(4). By Lemma 1.1, there exists no H-GD(9), so p(9, H, 1)<3,¢(9,H,1) >
5. And, p(9,H,1) =3:(0,1,2,3,4,5),(1,6,0,5,7,4), (6,2, 0,5,3,8).
L= {(2! 3),(2,7),(3,7), (8, 7), (0, 8),(1,8), (4,8),(5,8), (7, 8)}.
Adding two blocks (1, 4,2,6,7,8) and (2,8,0,5,7, 3), we can obtain c(9, H,1) =
5, and R = {(1,4),(1,7), (4,6),(2,4),(2,8), (3,8), (2, 7), (0,7),(5,7)}
(5)- A detailed proof is listed in Appendix A, which is presented on our
website: http://qdkang.hebtu.edu.cn (as electronic results, in Online). By
that appendix, p(11, H,1) < 6. And,
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p(11,H,1) =5:(0,2,4,5,3, 1),(0,5,1,7,6,4),(0,8,1,2,9, 7,
1,7,2,3,10,4),(3,8,4,5,9,6),
L= {(0? 10)! (2! 3)’ (2! 6)1 (5’6)1 (5’ 10):
(6,10),(7,10),(8,9),(8,10),(9,10)}.
Adding two blocks (8,10,0,7,1,9) and (10, 5,0,3, 2, 6), we can obtain ¢(11,
H,1) =17, and R = {(0,1),(0,2),(0,5),(1,7),(1,8),(1,9),(2,10), 3,5)}. m

3 Holey designs of particular orders

Lemma 3.1 P-HD(9%), P-HD(92**) and P-HD(182) eist for ¢ > 1.

Proof. A P-HD(9%) on the set Zg x 2, is listed as follows, module (9, —).
(0o, 01, 22,11, 02, 40), (0o, 21, 62, 31,82, 40), (Co, 32, 33, 51, 43, 20),
(01,72, 13, 20,03, 71), (o, 53, 12, 63, 72, 43), (0, 03, 41, 13, 61, 70).

For the other designs see [13]. [

Lemma 3.2 There exist Q-HD(9*) and Q-HD(18t) fort > 3.

Proof. By [13], for t > 3, there exist Q-HD(9") (t # 6,8) and Q-H D(18).

We only need to construct:

Q-HD(9®) on Zg x Zg. Take the following base blocks module (9, —).
(0o, 75,02, 85, 22, 31), (0o, 12,03, 32, 13,4;), (03, 54, 1o, 74, 11, 0s),
(8s, 14, 80, 84,01, 42), (0o, 35,01, 15, 11, 51), (52, 41, 60, 03, 44, 81),
(09,42, 63, 52,84, 34), (0o, 14, 25, 54, 4s, 74), (04,42, 45,22, 55, 82),
(0o, 21, 62,81, 72, 61), (0o, 43, 55, 73, 65, 23), (13, 01, 75, 11, 55, 50),
(01,02, 53, 22, 24, 32), (04, 83, 21, 63, 25, 32), (01, 23, 54, 33, 34, 73).

Q-HD(9®) on Zg x Zs. Take the following base blocks module (9, -).
(0o, 11, 22, 21,42, 04), (01, 62, 43, T2, 36, 24), (02, 43, 44, 23, 54, 13),
(03,44, 75,54, 55, 50), (04,45, 76, 55, 56, 61), (0s, 46, 07, 56, 77, 0,),
(0g, 67, 23, 77, 10, 64), (17, 25,41, 0o, 31, 83), (0o, 51, 83, 61, 63, 24),
(01,42, 74, 52, 54,44), (02, 03, 65, 53, 85, 55), (83, 64, 56, 01, 76, 10),
(04, 10, 07, 85, 57, 20), (05’ 66, 50, 86, 60, 31), (26, 27, 01, 37, 21, 54),
(37,00, 12, 30, 32, 50), (0o, 52, 56, 62, 76, 34), (01, 73, 57, 53, 47, 84),
(84,81, 36,02, 77, 63), (01, 63, 66, 64, 86, 16), (0o, 13, 15,44, 27, 54),
(0o, 33, 75, 53, 66, 65), (00, 01, 82, 23, 14, 55), (02, 64, 17, 74,87, 83),
(05,22, 76, 02, 57, 4,), (87,42, 65, 22, 55, 45), (53,06, 87, 24, 50, 16),
(0o, 71, 05,81, 25,85)- |
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Lemma 3.313| T-H D(94%), T-HD(9%*') and T-H D(18'*2) ezist fort > 1.
Lemma 3.4 There exist H-HD(9") and H-HD(18%) for t > 3.
Proof. By [13], for t > 3, there exist H-HD(9*) (¢t # 6,8) and H-HD(18?).
We only need to construct:
H-HD(9%) on Zg x Zg. Take the following base blocks module (9, —).
(04, 0p, 15, 25,02, 0s5), (44,01,13,45,1;, 25), (02,4s5,12, 71, 44,81),
(00,22, 19,04, 24, 33), (02, 03, 21,45, 14, 55), (40, 02, 24, 65, 83, 7s),
(0o, 63,41, 05,44, 31), (0o, 83, 30, 54, 62, 55), (30, 01, 42, 63, 14, 75),
(00, 21, 10, 20, 23, 02), (0o, 51, 22, 82, 73, 34), (0s, 1g, 51, 52,03, 74),
(74,85, 10,01, 02, 73), (83, 4, 05, 20,01, 52), (02, 63, 74, 8, 20, 11).
H-HD(9%) on Zg x Zg:
(01, 22, 46, 64, 33, 15), (61, 32, 73, 54, 16, 07), (02, 81, 25, 66, 27, 46) mod(9, 8);
(02,04,13,17,0s5, 06) mod(9, 4) |

4 Incomplete designs of particular orders

Among the following eight lemmas, the proofs of four Lemmas are given in
this section, but the others (i.e., Lemmas 4.2, 4.4, 4.6 and 4.8) will be listed
in Appendix B on our website: http://qdkang.hebtu.edu.cn (as electronic
results, in Online).
Lemma 4.1 There erist P-ID(9 + w,w) for2 < w < 8 and w = 12.
Proof. A P-1D(9 + w,w) consists of w + 4 blocks.
w_=2: (Z3 X Za) U{a, b},

(01, 10, 20, a, 12, 11), (00, 22, 12, b,01, 11) mod(3, —).

w=3: ZgU{a,b,c}, 0,a,1,b,2,6),(0,¢,3,6,4,1),(6,a,7,b,8,3),
(3,a,4,,5,0),(1,¢,2,3,7,4),(2,5,4,8,7,0), (5,¢,6,1,8,0).
w=4: Zg|J{a,b,c,d}, (2,a,1,b,0,4),(3,qa,4,b,5,6),(6,a,7,b,8,4),

(0,6,1,8,3,7),(3,¢,1,d,2,6),(7,c¢,8,d,0, 5),(4,¢,6,d,5,8),(7,5,1,4,2,8).
w=5: (Z3 x Z3)|J{a,b,c,d,e},

(01, a,Oo, b, 22, 12), (00, c, lg,d, 11, 22), (22, 00, 20, e, 21, 11) mod(3, —).

w=6: Zg|J{a,b,c,d e, f}, (6,4,3,b,4,8),(5,a,7,b,0,8),(1,a,8,b,2,5),

(5,¢,6,d,8,2),(0,¢,1, f,2,4),(2,¢,7,4d, 3, 4),

(4,¢,0,d,1,5),(8,e,7, f,6,2),(5,¢,3, f,4, 7),(7,0,6,1,3,8).

w="7 Zg|{a,b,c,d,e,f,g}, (0,0,6,b,1,5),(4,0a,5,b,7,86),(8,a,3,b,2,86),

(9,1,4,0,3,6),(2,¢,8,d,6,9),(2,¢,3,d,1,6),(5,¢,8, f,0,8),
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(4,e,2, f,8,5),(7,¢,5,d,0,2),(1,e,7, £,8,6),(9,2,5,8,7, 3).
w=8: (Z3 x Z3)|U{a,b,c,d,e, f,g,h}, (0o, a, 02, 5,04, 10),
(11,0, Oo, d, 12, 22), (12,6, 01, f, 00, 10), (22,9,00, h, 01, 11) mod(3, —).
w =12 Zs|J{a,b,¢c,d,e, f,9,h,m,n,p,q},
(0,p,1,4,2,8),(0,a,4,b,3,p),(7,¢,0, f,4,9), (4,9, 2, 1,8, q),
1,e,2,b,5,p),(7,m,1,n,5,4), (7, a,8,b,6,p),(1,¢,6,d,4,p),
2,¢,3,d,7,p),(5,¢,0,d,8,p),(3,9,1,,7,9), (8 m, 0,n,3,6),
(6,9,0,h,5,9),(8,¢,1, f,6,9),(5,¢2, f,3,9),(6,m, 2,n,4, 3). m

Lemma 4.2 There ezist P-1D(18 + w,w) for w =2,4,5,6,7 and 8.

Lemma 4.3 There ezists ¢ Q-ID(9 + w,w) for w = 4,6,7,8,11 and 14.
Proof. A Q-ID(9 + w,w) consists of w + 4 blocks.
w=4: Zg U{xla z2,Z3, 1:4}1 (0,z1,1, 22,2, 8), (1,%3,6,74,7, 3),
(8, 3,2, 74,5,1), (3,21,4,%2,5,6),(7,2,3,8,4,0),
(0, z3,3,z4,4,5), (6,21,7,22,8,0),(5,1,2,6,4, 7).
w=6: Zg{z1, -, x6}, (1,z3,2,24,6,3),(4,7,5,2,8,6),
(0, i, 1, T2, 2, 6), (3, I, 4, o, 5, 6), (0, T3, 3, x4, 4, 5), (6, I, 7, T2, 8, 5),
(7,3, 5,%4,8,0), (2, 5,3, 76,6, 7), (7, %5, 1, %6, 4,3), (8, %5, 0, %6, 5,3).
w="7 ZoU{z1, - 27}, (0,21,1,22,2,27), (27,2,6,4,7,5),(8,27,1,7,3,2),
(3, $1,4, T2, 5, 6), (6, I, 7,:82, 8, 5), (0, Is, 6, T, 7, 8), (0, I3, 3, T4, 4, 5),
(1,z3,2, 24,6, 3),(5,23,7, 24,8, 1), (2, x5, 3, x6, 5,4), (4,zs,1,7s,8,5).
w=8 ZoJ{z1,72,---, 28}
(7, s, 1, 6, 8, 2), (8, x7, ]., Isg, 2, 4), (0, i, 1, g, 2, 8), (3, I, 4, Iy, 5, 8),
(6, I, 7, Ta, 8, 3), (0, z3, 3, T4, 4, 5), (4, 7, 5, g, 6, 1), (1, 3, 2, T4, 6, 3),
(5, 3,7, 24,8, 1), (2,25, 3, 76,4, 5), (6, 5,0, 26, 5, 2), (7, 27,0, 73, 3, 4).
w=11: ZgU{z1,22,- T},
(6, I, 7,x2, 8, xu), (5, x3, 7,24, 8, :Eu), (2, 7, 7,28, 8, 3),
(4,z3,0,z4,6, zn), (0, z7,3, 2,6, 5), (2, zs, 5, T6, 6, 211),
(8,1:5, 1, e, 4,:811), (1, z3, 2, T4, 3, :L‘u), (1, :t7,4, Isg, 5, 7),
(4, z9,2,%10,5,7), 0,21,1, 22,2, z11), (6, T9, 1, Z10, 3, 5),
(8, Zg, 0, 10, 7, 3), (7, Ts5, 0, Z6, 3, :2!11), (3, T, 4, o, 5,:1}11).
w=14: Zg|J{z1,z2, - ,Z14 ),
(2, Iz, 7, zg, 8, 2!14), (4, Zg, 2, Z10, 5, 1:14), (0,1‘7, 3, Zsg, 6, 214),
(3, 1:1,4, Za, 5, x13), (2, s, 5,1‘6, 6, :513), (5, I, 0, :L’12,6, :c14),
(8, Tg, 0, T10y 9, 1214), (7,.’!:11, 1,2:12, 4, .'1:14), (5,::3, 7, 4, 8, :B13),
(4, I3, 0, T4, 6, .'1213), (1,1:7, 4,128, 5, :L‘14), (6, T9, 1, 10, 3, :l:14),
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(3s I, 8, Z12, 21 xl‘l)) (7’ x5,0)z6) 3axl3)) (lr 3, 2) 34,3) xlS)a
(6$ Z1, 771'2’ 8: $13), (Ov z, 1) $2,2,.'B13), (8) s, 1, Ts, 4; x13)- |

Lemma 4.4 There exists a Q-ID(18 + w,w) for w = 3,11,12 and 14.
Lemma 4.5 T-ID(9 + w,w) ezists for 2 < w < 8 and w = 12,13, 15, 16.
Proof. A T-1D(9 + w,w) consists of w + 4 blocks.
w=2: (Z3 x Z3) | J{z1,z2},
(00, z1, 12,09, 11, 10), (22, 21,00, 11, 12, 22) mod(3,-).
w=3: Zg|H{z1,22,23}, (6,23,1,2,4,8),(1,5,4,0,3,7),(8,23,7,2,5,0),
(0,73,2,8,3,6),(0,z1,1,3,2,2), (3,21, 4,6,5,22), (6, 71,7, 5,8, 22).
w=4: ZgU{z1,22,73,24},
(0, Iy, 1, 7, 2, .’L‘2), (3, zi, 4, 0, 5, 1'2), (7, 5, 3, 0, 6, 8), (3, Zx3, 6, 1, 5, $4),
(7,73,4,2,8,14),(0,23,2,3,1,24), (6,21,7,0,8,z2), (8,1,4,6,2,5).
w = 9 (Za X Z3) U{:z:l,a:g,---,:c5}, ‘
(10,.’):1, 01, 22, 12, :1:2), (21,.’1:3, 10, 00, 12,:1:4),
(02, Zs5, 00, 22, 1, 01) mod(3, -—).
WLGZ Zg U{:L'l, Io,---, xe}, (5, 7, 2, 6, 1, 4), (3, s, 4, 7, 8, xe),
(0, I, 1, 8, 4, :1:2), (8, x3, 6, 0, 5, 14), (1, T3, 2, 0, 3, x4), (5, Ty, 1, 3, 6, 276),
(0, 3, 4, 6, 7, 3:4), (2, .’L‘],3, 5, 6, 222), (5, rp, 8, 3, 7, 1122), (7, Ts, 0, 8, 2, .’L‘s).
w="T7 ZgU{z1,22, -, 27},
(0,1‘1, 1, 7, 2, 1272), (3, z, 4, 2, 5, ﬂ.‘g), (6, I, 7, 5, 8, 12), (1, Ts5, 2, 7, 6, xs),
(3,23,5,1,4,14),(7,23,8,2,6,24), (0, z5,4, 27, 5, 76), (0, 73, 2, 3,1, 74),
(3, Zs, 7, 7, 8, .'1:5), (6, 5, 4, 7, 0, 8), (O, Zz7, 3, 8, 1, 6)
w=8 (Z3 x Z3) U{z1,22, -, 8},
(0o, z1, 11, 01, 12, 22), (21, 3, 0o, 12, 02, 24),
(02, Zz7, 01, 22, 00, .’L‘B), (02, Zs, 00, 10, 11, :l:e) mod(3, —).
w =12 Zg J{z1,z2,- -, Z12},
(0,27, 4, 212, 2, 28), (3, 3, 1, 10, 5, Z4), (1,211, 5,6, 0, 712),
(0, Ts, 3, I, 6, :l:s), (1, Z7, 8, )2, 3, .’l:s), (6, Zg, 3, 8, 0, :1:10),
(5, Iq, 7, 12, 6, :L's), (6, 3, 4, Z10y 7, :L‘4), (0, T3, 2, Tio, 8, x4),
(5, 25,4, 711, 8, zg), (1, 25,2, 211, 7, z6), (6, 71, 7, Ts, 8, T2).
(2,3,5,0,7,8),(0,z,1, z9,2,22),(7, 1,4,8,6, 2),(3,%1,4, 29,5, z2).
w=13: Zg(Hz1,z2, -+, 713}, (4,27,5,2,1, zg), (3,27,0,8,2, z3),
(4, Tg, 0, 7, 8, :L‘lo), (6, I, 8, T, 7, :l:g), (3, xi, 5, I, 4, 2:2),
(0, Iy, 6, 4, 3, :L‘lg), (0, I, 1, I, 2, 1,'2), (2, 13, 4, 1, 5, 7),
(0,1:3, 2, T2, 8, 314), (6, z3, 5, T2, 4, :E4), (7, Zz7, 6, 3, 8, .’L‘s),
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(2, Ts, 6, 13, l, :1:6), (2, Ig, 3, 1, 7, 2:10), (5, Ts, 0,2:13, 7, xs),
(3, 73,7, %12, 1, 24), (6, 79, 1,8, 5,210), (4, %5, 8, 713, 3, T6)-
w=15: Zg|J{z1,72, -, T15}, (5,1,7,4,8,3),
(6, I3, 4, I12, 8, 2!4), (4, Ts, 1, T3, 6, :Bs), (0, T3, 2, 12, 5, 1‘4),
(4, T13, 5, 8, 7, :BM), (3, i, 4, T11, 8, .'L‘g), (6,.’121, 5, i1, 7, 3:2),
(0, r, 1, i1, 2, 332), (5, :L‘5,0, Z13, 3, .’Bs), (3, I3, 1, 12, 7, 164),
(6,29, 3, 215, 5, Z10), (0, 215, 6, 1, 2,8), (2, T9, 4, 15, 1, Z10),
(7, Ty, 6, T4, 8, :L's), (7, Ts, 2,3313, 8, xﬁ), (5, Z7, 2, Z14, 1, 1'8),
(4,z7,0, 214, 3, 78), (0, 29, 7, 215, 8, Z10), (0, 211, 3, 2,6, Z12).
w=16: Zg U{.’Bl,mg, s ,:l:ls}, (6,.’1:1, 7,$13,8,$2), (5, Ts, 0,:015, 3, 126),
(0, T, 1, 13, 2, :!:2), (3, x1,4, 13, 5, 232), (6, Zg, 8, 1, 7, 11:10),
(3, I3, 1, T14, 7,:1!4), (6, I3, 4, T14, 8,1!4), (0, Tg, 3, 2, 1, .'1:10),
(2, :L‘g,4, 7, 5, .’L’lo), (5, 7, 1, T16, 2, :Ds), (4, T7, 0, T16, 6, .'123),
(4, T11, 8, 2, 5, .‘Blz), (7, x11, 0, 6, 2, .’1:12), (7, 7, 3, T16, 8, .’L's),
(7, Ts, 2, T15, 8, $s), (6, I3, 3, 8, 0, .’.D]q), (4,.’815, 5, 8, 7, xls),
(1,211,6,5,3,712), (0, 23,2, T14, 5, Z4), (4, Z5, 1, 715, 6, 75). W

Lemma 4.6 There erists ¢ T-ID(18 + w,w) for w =2,5 and 8.

Lemma 4.7 There erists a H-ID(9 + w,w) for w =3,5 and 7.

Proof. There are w + 4 blocks on the set Zg | J{z1,2,--*, 2w}

w=3:(0,1,2,3,4,7),(0,2,3,21,6,22),(2,5,0,22,7, 6),(1,8,2,6,z3,4),
(0, 3, Z1,Z2, 8, .'173), (5, 1, 6, T, 4, 7), (8, 5, T1,Z3, 7, 3).

: (:c3,0,:z:4,:c5,1,2),(x4,7,:c3,0,8,2),(7,5,0,2,6,8),
(2:2, 7, ZT1,Ts, 8, 4), (5, 1, 7, 8, 3, 6), (3, z3, 5, 6,1:4, 4),
(0,:1:1,2,3,322, 1), (:1:1, 5,:!:2,:1:5, 6,4), (25, 3,0, 1, 4,2).

: (ze,1,75,8,3,6,), (3,73,5,6,z4,4), (zs,0,zs,5,2,6),(6,5,1,3,7, 8),
(0,21,2,3,22,1), (24,7, 23,0,8,2), (5,zs,4,8,76,7),(7,3,0,1,4,2),
(x1,5, T2, T7,6,4), (x2, 7,71, %7,8,4), (z3,0,24,27,1,2). [ ]
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Lemma 4.8 H-I1D(18 + w,w) exzists for w = 2,4,6,8,11, 13,15 and 17.

5 Constructions for OPD and OCD

Among the following ten lemmas, the proofs of four Lemmas are given in
this section, but the others (i.e., Lemmas 5.2, 5.4, 5.5, 5.7, 5.9 and 5.10)
will be listed in Appendix C on http://qdkang.hebtu.edu.cn (as electronic
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results, in Online).

Lemma 5.1 There exist P-OPD(9+w) and P-OCD(9+w) for 2 <w < 8.
Proof. The leave of the given P-OPD(9+w), consisting of w+4+ [51‘;}5;'1]
blocks, are all subgraphs of P. Thus, the corresponding P-OCD(9 + w)
can be obtained.

w=2: (Z3x Z3) U{:L‘l,.'l:g}, L= {(xlafm)},
(011 107 20y$17 121 ll)a (001 22, 12’$2$ 01) 11) mod (37 _)'
w=3: Zg U{xl,xg,xs}, L= {(xhx2)’ (3321 33)1 (373’1"1)}7

(0,z1,1,29,2,6),(0,z3,3,6,4,1),(6,z;,7, z3,8,3),(2,5,4,8,7,0),
(3,z1,4,22,5,0), (1, x3,2,3,7,4), (5,23,6, 1, 8,0).
w=4: 213, L= {(61 8)’ (101 3): (3’6)’ (Sa l)’ (1, 10)’ (17 11)})
(4,5,9,6,12,3),(11,3,7,4,8,9), (2,5, 10,6,11, 9),(0,1,2,3,4,10),
(0,9,10,11,12,1),(12,8,10,7,2, 4),(1,3,5,7,9,2), (0,5,6,7,8,1).
w=05: Zun, L={(24)}, (2,5,12,7,13,0),(1,6,10,13, 11,2),
(0,1,4,3,2,9),(0,9,10,11,12, 1),(8,2,10,12,86, 9),(1,3,5,7,9,13),
(7,3,11,4,10,5),(9,4,5,11,8,13), (0, 5,6, 7,8, 1),(13,6,4,12,3,8).
w=6: Zg|{z1,22,- -, 76},
(6,71,3,22,4,8),(5,21,7,22,0,8), (1, z1,8,22,2,5), (5, 23, 6, 24, 8, 2),
(0,zs,1,76,2,4), (2, 73,7, 74,3,4), (4,23,0,24,1,5), (8, z5, 7, 75, 6, 2),
(z1,%2, T3, 74, Z5, T6), (5, T5, 3, 26,4, 7), (7,0,6, 1, 3, 8),
L = {(zs, 1), (6, T2), (26, z3), (z6, T4), (T2, Z4), (3,5)}.
w=17: ZisJ{z1, 22,23},
(z2,5,11,6,12,1), (10, z3, 4, 12, 8, 5), (0, 2,4, 5,9, 7),(3,21,4,6,5,1),
(2,2s,5,10,6,1),(9,z3,1,11, 3, 12), (8, z9,8,7,10,0), (6,2,7,0,8,1),
(0,3,2,24,1,10), (z1,9,10,11,12, 2),(8,2,11,4,9,6),(1,z9,2,4,7, 5),
(3,11,0,12,7,2), L = {(z1,z2), (22, z3), (x3, 21)}.
w;—s: (Z5 X Z3) U{xl,xg}, L= {(:L‘l,zz)}, (42,01,21, 11, 12, 10),
(00,:81, 1, 29,1,, 10), (00, 10,4, 20, 42,02) mod (5, —). ]

Lemma 5.2 P-OPD(18 + w) and P-OCD(18 + w) ezist for 2 <w < 8.

Lemma 5.3 Q-OPD(9 + w) and Q-OCD(9 + w) ezist for w = 3,4, 6,7, 8.

Proof. The leave of the given Q-OPD(9+w), consisting of w+4+ li(‘fT_Q 1

blocks, are all subgraphs of Q. Thus, the corresponding Q-OCD(9 + w)

can be obtained.

w=3: Zy2, L= {(4’6)!(41 7),(9, 10)},
(1,3,5,6,8,7),(3,6,10,7,11,9),(2,4,5,7,9,6), (11, 1,9,5, 10, 0),
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0,1,2,3,4, 5),(8,2,10,4,11, 5),(0,6,7,8,9, 10).
w=4: Z3, L ={(0,2), (0,4), (4, 6),(4,7),(0, 12),(7, 12)},
(2,4,5,7,9, 6), (5,8,10,9,11, 0),(0,11,2,3,4, 1),(12,1,9,3,11, 5),
(1,3,5,6,8,7),(0,6,7,8, 9,10),(10,3,6,11,7, 1),(12,2,8,4,10, 6).
w=6: Zi5, L=1{(0,10),(0,14),(2,14), (6,8),(6,14),(8,14)},
(0,2,3,4,5,7), (9,0,6,7,8, 14),(11,0,13,10,12, 1),(2,8,10,9,11, 12),
(1,4,8,5,9, 0),(1,2,6,3,7, 10), (5,10, 14,11, 3, 12),(3,8,12,9,13, 14),
(4,6,10,9,11, 2),(13,6,12,7,5, 2),(14,13,1,12,4, 7).
w=17: Z1s, L={(1, 13),(2,13),(7, 14)}, (0,10,11,12,13, 15),
(1,5,8,10,12, 6), (3,5,6,10,14, 11),(2,7,10,15,12, 11),(1,2,4,7,9, 3),
(12,8,14,9,3, 4),(6,8,11,14,2, 12),(15,1,11,13, 14, 9),(0,2,3,4,5, 1),
(9,5,10,4,11, 13),(0,6,7,8,9, 14),(7,3,13,5,15, 11),(4,6,13,8,15, 14).
w=8: (25 x Zs) U{z1,22}, L= {(z1,22)},
(0o, %1, 12, Z2, 14,02),(42,12,11,21, 0,,02),
(00,10,41,20,42,01) mod (5,-). [

Lemma 5.4 There exist Q-OPD(18+w) and Q-OCD(184w) for2 <w <8
and w = 11,12, 14.

Lemma 5.5 Q-OPD(36 +w) and Q-OCD(36 +w) ezist forw =3 and 12.

Lemma 5.6 There ezist T-OPD(9 +w) and T-OCD(9+w) for2<w < 8.

Proof. The leave of the given T-OPD(9+w), consisting of w+4+ L‘i(“l’T_Qj

blocks, are all subgraphs of T'. Thus, the corresponding T-OCD(9+w) can

be obtained.

w=2:T-OPD(9+2) is just T-ID(9 + 2,2) in Lemma 4.5.

w=3: 73, L= {1, 11), (10, 11), (476)}a
(0,1,2,3,4,5),(0,3,6,1,5,7),(0,4,8,1,7,9),(1,3,10,0,11,9),
(2,10,4,9,5,11), (6,8,2,7,3,9),(7,10,8,5,6, 11).

w=4: Zia, L={(9,10),(10,11),(11,12),(12,9),(10,12), (5,9},
(0,3,6,1,5,7),(4,10,2,6,5,12),(0,4,11,5,8, 9),(8,7,2,9,3,11),
(0,1,2,3,4,5),(8,0,10,1,12,6), (4,6,9,1,11,7),(8,1,3,10,7,12).

w=5: Zu, L=1{(0,13)}, (0,1,2,3,4,5), (1,12,8,3,10,13),
0,7,9,1,3,12), (3,9,5,12,11,13),(0,8,10,1,5,11),(5,6,7,8,9,10),
(1,6,11,2,12,7), (6,10,2,8,4,13),(2,7,4,12,13,9),(0,3,6,8,11,4).

w=6: ZgU{z1, - T6},
(0, I, 1, 8, 4, .’L‘Q), (2, r, 3, 5, 6, 2:2), (5, I, 8, 3, 7, xz), (1, 3, 2, 0, 3, 24),
(0,z3,4,6,7, z4), (8,73,6,0,5, z4), (3,25,4,7,8, zg), (7,%s,0,8,2, ),
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(5, x5, 1, 3, 6,:86), (5, 7, 2, 6, l, 4), (3:1,3:2, r3,T4,Zs5, .‘L’s),
L = {(z1,z4), (z1,25), (T2, Z4), (z2, Z6), (x4, T6), (23, Z5) }.
w=17: Zis, L={(1,3),(5,9),(7,9)}, (2,4,6,10,14,11),
(5,6,7,8,9,10),(0,3,6,1,5,8),(0,10,11,13, 12, 15),(10, 3,8,11,7,15),
(3,11,9,14,1,15),(0,4,7,1,8,12),(13,2,10, 1,9, 4),(0,9,13,1,12, 14),
(2,7,14,5,13,8),(0,1,2,3,4,5),(11,4,12,2, 15, 5),(15,13,6,12,3, 14).
w_=_§ : (Z5 X Z3) U{:z:l,a:g}, L= {(xl,.‘l!g)}, (30,00,01, 11,42,02),
(01,71, Lo, 12, 32, z2), (31, 20, 01, 22, 19,42) mod (5,—). m

Lemma 5.7 T-OPD(18 + w) and T-OCD(18 + w) ezist for 2 < w < 8.

Lemma 5.8 There exist H-OPD(9+w) and H-OCD(9+w) for3 < w < 8.

Proof. The leave of the given H-OPD(9+w), consisting of w+4+ [ﬂﬁ'g—l)]

blocks, are all subgraphs of H. Thus, the corresponding H-OCD(9 + w)

can be obtained.

w=3: Z, L= {(577)" (7: 9), (3’ 8)},
(5,11,0,7,10,9),(0,3,5,7,8,9),(1,8,2,6,9,4), (11,1,6,7,4, 10),
0,1,2,3,4,5),(2,10,8,3,11,6),(0,2,3,5,6,7).

w=4: Zy3, L= {(la 6),(6,9), (1, 12),(2,12),(2,9), (5, 12)},
(0,1,2,3,4,5),(0,10,1,5,11,12),(11, 2,10, 6, 4,8), (0,2, 3,5,6, 7),
(10,3,12,11,6,8),(9,1,8,4,12,7),(11,7,5,4,9,10), (0, 3,5, 7, 8,9).

w=5: Zus, L=1{(3,12)}, (6,1,9,11,4,12),(11,0,10,12,7,13),
(5,7,1,4,13,9),(5,10,6,9,11,12),(0,3,5,7,8,9), (1,8,2,3,10,4),
(2,12,13,8,6,9),(0,2,3,5,6,7),(10,13,2,3,11,8), (0, 1,2, 3,4, 5).

w=6: Zs, L = {(0,11),(0,12),(8,11),(8,12),(7,12), (5,12)},
(0,13,1,2,14,10),(0,5,1,7,6,4), (8,3,2,12,6,13),(0,8,1,2,9,7),
(0,2,4,5,3,1),(3,10,1,2,11,6),(1,7,2,11,12, 4), (5,9, 4, 8, 14, 6),
(8,4,11,183,5,10), (14,12, 10,9, 11,13), (3, 7,10, 13,9, 14).

w=17: Zis, L={(2,15),(5,15),(9,11)}, (11,2,10,6,4,8),
(6,1,4,7,15,9),(14,8,10,12,9,13),(0,13,1,2,14, 15), 0,3, 5,7, 8,9),
(5,13,12,3,14,7),(0,1,2,3,4,5),(1,8,3,6,12, 15), (3, 10,6, 7, 11, 15),
(0,2,3,5,6,7),(4,12,2,5,9,7),(10,13,4,6,14,11),(0,10,1, 5, 11,12).

w=8: (25 x Z3) H{z1,22}, L={(z1,22)}, (21,21, 10,41,32,00),

(z2,0,,14, 22,42,00), (02, 09, 19, 29, 01, 12), mod (5,-). m

Lemma 5.9 H-OPD(18 + w) and H-OCD(18 + w) erist for 2 < w < 8
and w=11,13,15,17.
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Lemma 5.10 There exist H-OPD(36 + w) and H-OCD(36 + w) for w =
2,4,6,8,11,13,15 and 17.

6 Conclusion

Theorem 6.1 There ezist G-OPD(v) and G-OCD(v) forG € {P,Q, T, H}
and v > 6 except

(1). p(7,P,1) = 1,p(8, P,1) = 2,p(9, P,1) = 3,¢(9, P, 1) = 5;

(2)' P(7, Q, 1) = 1,p(8, Q, 1) = 211’(9, Q, 1) =3, c(Q,Q, 1) =35,

p(11,Q,1) =5,p(14,Q,1) = 9;
3). p(7,T,1) = 1,p(8,T,1) =2,p(9,T,1) = 3,¢(9,T, 1) = 5
(4). c(6,H,1) =3,p(7,H,1) =1,p(9,H,1) = 3,
¢(9,H,1) =5,p(11,H,1) = 5.
Proof. Let v =9+ w. Fort =0 and 6 < w < 9, see Section 2. For
1<t<2and 2 < w< 8, see Sections 2 and 5. Below, by the existence
spectrum of G-GD(v) in Lemma 1.1, consider only the cases ¢ > 3 and
2 < w < 8. By Lemma 1.2, we will use four recursive constructions as
follows.

W1: HD(9%), ID(9 + w,w), OPD(9 + w) => OPD(9 + w);

W2: HD(9*~1), ID(18 + w,9 + w), OPD(18 + w) => OPD(9t + w);

W3: HD(18%), ID(18 + w,w), OPD(18 + w) = OPD(8t + w);

W4: HD(18°7"), ID(27 +w,9 +w), OPD(27+w) => OPD(9t + w).
Noting that the difference of the known G-HD(m!) for the graph G, the
discussion is separated into two cases as follows.

Case G € {P,T}: There exist HD(9%), HD(9%*!) and HD(18'*2) for t >
1 by Lemmas 3.1 and 3.3.

method t P-OPD(9t + w) T-OPD(9t + w)
w1 t=4or 2<w<8 2<w<8
oddt >3 (Lemmas 4.1, 5.1) (Lemmas 4.5, 5.6)
w2 event> 6 w=3 w=3,4,6,7
(Lemmas 4.1, 5.2) (Lemmas 4.5, 5.7)
W3 even t > 6 w=24,5,6,7,8 w=2,5,8
(Lemmas 4.2, 5.2) (Lemmas 4.6, 5.7)

Case G € {Q, H}: There exist HD(9') and HD(18¢) for ¢t > 3 by Lemmas
3.2 and 3.4.
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method t Q-OPD(9t + w) H-OPD(9t + w)
w=4,6,7,8 w=23,5,7
Wl t > 3 L Bt B | r <
= (L4.3, 5.3) (L4.7, 5.8)
w=25
w2 t>4 '
- (L4.3, 5.4)
w=3 w=24,6,8
w3 t>6 o
event = (L4.4, 5.4) (L 4.8, 5.9)
Wi | oddt>7 w=3 w=24,68
(L4.4, 5.4) (L4.8, 5.9)
direct t=3 w=2,5(L54)
t=3,45 | w=3(L54,55) | w=24,6,8(L5.9,5.10)
This completes the proof. ]
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