On the Constructions of New Families of Graceful Graphs

Shung-Liang Wu and Hui-Chuan Lu National United University Miaoli, Taiwan, R.O.C.

Abstract

Suppose that graphs H and G are graceful, and that at least one of H and G has an α -labeling. Four graph operations on H and G are provided. By utilizing repeatedly or in turn the four graph operations, we can construct a large number of graceful graphs. In particular, if both H and G have α -labelings, then each of the graphs obtained by the four graph operations on H and G has an α -labeling.

1. Introduction

All graphs considered here will be finite, undirected, and without loops and multiple edges. For any graph G with n edges, the symbols V(G) and E(G) will denote its vertex set and edge set, respectively. A graceful labeling of G is an injection f of V(G) into the set $\{0, 1, ..., n\}$ with the property: if, for each edge $e \in E(G)$ with the end vertices $u, v \in V(G)$, the value f'(e) of the edge e is defined by f'(e) = |f(u) - f(v)|, then f' is a bijection of E(G) onto the set $\{1, 2, ..., n\}$. A graceful labeling f is an α -labeling if there is an integer λ $(0 \le \lambda \le n - 1)$ such that for each edge (u, v),

$$min\{f(u), f(v)\} \le \lambda < max\{f(u), f(v)\}.$$

Clearly, a graph admitting an α -labeling is necessarily bipartite. For the sake of convenience, we shall call an α -labeling a λ -graceful labeling. A graph with a graceful labeling or a λ -graceful labeling is said to be *graceful* or λ -graceful, respectively.

Let G be a graceful graph with n edges and let f be a graceful labeling of G. The graceful labeling f^c of G given for each vertex u by

$$f^{c}(u) = n - f(u)$$

is called complementary labeling [6] of f.

Suppose that f is a λ -graceful labeling of G, and that (A, B) is a bipartition of G, that is, a partition of V(G) into two independent subsets A and B. Throughout this paper, we will assume A to be the part of the bipartition of the vertex set of G for which $f(u) \leq \lambda$, and B the part of the bipartition of the vertex set of G for

which $f(u) > \lambda$.

The inverse labeling f^{i} [6] of f is given by

$$f^{i}(u) = \begin{cases} \lambda - f(u) & \text{if } u \in A, \\ n + \lambda + 1 - f(u) & \text{if } u \in B. \end{cases}$$

Note that if f is a λ -graceful labeling of G then f^c and f^t are $(n - \lambda - 1)$ - and λ -graceful labelings of G, respectively. Let $f^{c,i}$ and $f^{i,c}$ be inverse and complementary labelings of f^c and f^i of G defined as

$$f^{c,i}(u) = \begin{cases} 2n - \lambda - f^c(u) & \text{if } u \in A, \\ n - \lambda - 1 - f^c(u) & \text{if } u \in B; \end{cases}$$

and

$$f^{i,c}(u) = n - f^i(u)$$
, for each vertex $u \in V(G)$.

It should be noted that both $f^{c,i}$ and $f^{i,c}$ are also $(n - \lambda - 1)$ -graceful labelings of G. In fact,

$$f^{c,i} = f^{i,c} = \begin{cases} n - \lambda + f(u) & \text{if } u \in A, \\ f(u) - \lambda - 1 & \text{if } u \in B. \end{cases}$$

If f(u) = i, then $f^c(u) = n - i$. Moreover, $f^i(u) = \lambda - i$, $f^{c,i}(u) = n - \lambda + i$, if $u \in A$ and $f^i(u) = n + \lambda + 1 - i$, $f^{c,i}(u) = i - \lambda - 1$, if $u \in B$. Consequently, if $f(u_1) = \lambda$, $f(u_2) = \lambda + 1$ and $f(u_3) = n$ then we have $f^i(u_1) = f^{c,i}(u_2) = f^c(u_3) = 0$.

Snevily [8] proved that if two graphs G_1 and G_2 have α -labelings then their weak tensor product $G_1 \otimes G_2$ has an α -labeling. Koh, Rogers, and Tan [4, 5] provided methods for combining graceful trees to yield larger graceful trees. Wu [11, 12] gave a number of methods for constructing larger graceful graphs from graceful graphs. Further results on graceful labelings can refer to a dynamic survey [2].

We also find graceful labelings and λ -graceful labelings attractive because of the following theorems.

Theorem 1.1. [7] Let G be a graph with n edges having an α -labeling. Then the complete graph K_{2pn+1} can be decomposed into the isomorphic copies of G, where p is any positive integer.

Theorem 1.2. [10] Suppose that G is a graph with n edges, and let $\Theta_k G$ be the class of graphs obtained from G by adding $k \ (\ge 1)$ distinct pendent edges to the vertices of G. If G is graceful, then the complete graph $K_{2(m+k)+1}$ can be decomposed into the isomorphic copies of H for each positive integer k and every $H \in \Theta_k G$.

2. A necessary condition

The necessary condition for an Eulerian graph to have a graceful labeling was presented by Rosa [7].

Theorem 2.1. [7] If an Eulerian graph G with n edges has a graceful labeling, then $n \equiv 0$ or $3 \pmod{4}$.

In [9] Sheppard proved that there are exactly n! graceful graphs with n edges. Thus, we first investigate the number of λ -graceful graphs with n edges. By $|G(n,\lambda)|$ we mean the number of λ -graceful graphs with n edges (including isomorphic graphs). Since for any graph G with n edges a λ -graceful labeling is also a $(n-\lambda-1)$ -graceful labeling, it suffices to consider the λ -graceful labeling with $0 \le \lambda \le \left\lfloor \frac{n-1}{2} \right\rfloor$.

Theorem 2.2.

(1) If n is even, then $|G(n,\lambda)| = 1^2 2^2 \cdots \lambda^2 (\lambda+1)^{n-2\lambda}, \ 0 \le \lambda \le \frac{n-2}{2}$.

(2) If n is odd, then
$$|G(n,\lambda)| = \begin{cases} 1^2 2^2 \cdots \lambda^2 (\lambda+1)^{n-2\lambda}, & 0 \le \lambda \le \frac{n-3}{2}, \\ 1^2 2^2 \cdots (\frac{n-1}{2})^2 \frac{n+1}{2}, & \lambda = \frac{n-1}{2}. \end{cases}$$

Proof.

(1) Suppose that G is a graph with n edges. For each j, where $1 \le j \le n$, let $S_{\lambda}(j)$ denote the set of edges (u, v) such that |f(u) - f(v)| = j for some λ -graceful labeling f, and let $|S_{\lambda}(j)|$ be the number of distinct edges in $S_{\lambda}(j)$. For brevity, if f is a λ -graceful labeling, we describe an edge (u, v) by its vertex-labels (f(u), f(v)). Observing the value of each edge in the λ -graceful graph G, we have

$$S_0(j) = \{(j,0)\}, \ 1 \le j \le n, \text{ and}$$

$$S_i(j) = \begin{cases} \{(i+1,i-j+1), (i+2,i-j+2), \cdots, (i+j,i)\}, & 1 \le j \le i, \\ \{(j,0), (j+1,1), \cdots, (j+i,i)\}, & i+1 \le j \le \frac{n}{2}. \end{cases}$$

$$(1 \le i \le \frac{n-2}{2})$$

It is easy to see that

$$|S_0(j)| = 1, 1 \le j \le n$$
, and

$$|S_i(j)| = \begin{cases} j, & 1 \le j \le i, \\ i+1, & i+1 \le j \le \frac{n}{2}. \end{cases} (1 \le i \le \frac{n-2}{2})$$

The proof then follows from the fact that

$$|G(n,\lambda)| = |S_{\lambda}(1)| \cdot |S_{\lambda}(2)| \cdots |S_{\lambda}(n)|$$

(2) The proof is similar to that of (1) and omitted.

Remark. The λ -graceful graph considered in Theorem 2.2 could be disconnected. As an example consider the λ -graceful graph G with $E(G) = \{(7, 0), (6, 0), (7, 2), (5, 1), (6, 3), (4, 2), (4, 3)\}.$

For the following Theorem the reader is referred to [3, ch.2, §6, Th.2].

Theorem 2.3. Equation $\sum_{i=1}^{p} d_i x_i \equiv \binom{n}{2}$ (mod n) has a solution $(x_1, x_2, ..., x_p)$

of integers if and only if g.c.d. $(d_1, d_2, ..., d_p, n) \mid \binom{n}{2}$.

Assume $V(G) = \{u_1, u_2, ..., u_p\}$ to be the vertex set of G, and $d(u_i) = d_i$ to be the degree of vertex u_i in G, $1 \le i \le p$. Consider, now, the necessary condition for G to have a λ -graceful labeling.

Theorem 2.4. Let $(d_1, d_2, ..., d_p)$ be the degree sequence of G. If a graph G with n edges is λ -graceful, then g.c.d. $(d_1, d_2, ..., d_p, n) \mid \binom{n}{2}$.

Proof. Suppose that f is any λ -graceful labeling of G, and let $f(u_i) = r_i$, where $u_i \in V(G)$ and $1 \le i \le p$. Let $(f(v_i), f(w_i))$ denote the edge of G satisfying $|f(v_i) - f(w_i)| = i$. If $r_i > \lambda$, then set $x_i = r_i$; if $r_i \le \lambda$, then set $x_i = -r_i$. Consider the following equation

$$\sum_{i=1}^{p} d_i x_i \equiv \sum_{i=1}^{n} |f(v_i) - f(w_i)|$$

$$\equiv 1 + 2 + \dots + n$$

$$\equiv \binom{n}{2} + n$$

$$\equiv \binom{n}{2} \pmod{n}.$$

Clearly, it has a solution of integers. By Theorem 2.3, we have therefore g.c.d.

$$(d_1, d_2, \ldots, d_p, n) \mid \binom{n}{2}.$$

As an immediate consequence of Theorem 2.4, we have the following.

Corollary 2.5. Let H be a k-regular bipartite graph with |V(H)| = v. If one of the following conditions holds, then H is not λ -graceful.

- (1) $v \equiv 1 \pmod{4}$ and $k \equiv 0 \pmod{4}$.
- (2) $v \equiv 2 \pmod{4}$ and $k \equiv 0 \pmod{2}$.
- (3) $v \equiv 3 \pmod{4}$ and $k \equiv 0 \pmod{4}$.

3. The constructions

We start with introducing the definitions of the following four graph operations on graphs H and G. Suppose that H and G are vertex-disjoint graphs with distinguished vertices v and u and distinguished edges (v_1, v_2) and (u_1, u_2) , respectively.

- (1) The vertex-amalgamated operation $H \odot G$ is the graph obtained from H and G by amalgamating H and G at vertices v and u, that is, by identifying v with u.
- (2) The edge-amalgamated operation $H \ominus G$ is the graph obtained from H and G by amalgamating H and G at edges (v_1, v_2) and (u_1, u_2) , that is, by identifying (v_1, v_2) with (u_1, u_2) .
- (3) The vertex-edge-attached operation $H \oplus G$ is the graph obtained by adjoining to the graphs H and G a new vertex w accompanied two edges (w, v) and (w, u).
- (4) The edge-attached operation $H \oplus G$ is the graph obtained from H and G by attaching one edge to vertices v and u of graphs H and G.

Although the vertices v and u and the edges (v_1, v_2) and (u_1, u_2) do no explicitly appear in each notation, it will be always clear from the context which vertices or edges are identified or adjoined.

In what follows we will assume that the graphs H and G with m and n edges have respectively λ_1 - and λ_2 -graceful labelings h and g, let (A, B) be the bipartition of G, and let E_1 and E_2 denote the sets of values of edges of graphs H and G, respectively.

Theorem 3.1. If h(v) = 0 and g(u) = 0, then the graph $H \odot G$ is $(\lambda_1 + \lambda_2)$ -graceful.

Proof. Let f be a labeling of $H \odot G$ defined as

$$f(x) = \begin{cases} g^{i}(x) & \text{if } x \in A, \\ \lambda_{2} + h(x) & \text{if } x \in V(H), \\ m + g^{i}(x) & \text{if } x \in B. \end{cases}$$

Clearly, the values of vertices of the graph $H \odot G$ are all distinct. Moreover, $E_1 = \{|f(x) - f(y)| : \text{ all edges } (x, y) \in E(H)\} = \{1, 2, ..., m\} \text{ and } E_2 = \{|f(x) - f(y)| : \text{ all edges } (x, y) \in E(G)\} = \{m + 1, m + 2, ..., m + n\}.$ Thus f is a graceful labeling of the graph $H \odot G$.

Let (C, D) be the bipartition of H satisfying that $h(v) \le \lambda_1$, if $v \in C$ and $h(v) > \lambda_1$, if $v \in D$. In order to prove that the labeling f is a λ -graceful labeling of $H \odot G$ with $\lambda = \lambda_1 + \lambda_2$, it is enough to show that for any edge (x, y) in $H \odot G$ with $x \in A \cup C$ and $y \in B \cup D$, $f(x) \le \lambda_1 + \lambda_2 < f(y)$.

Suppose that $x_1 \in A$, $x_2 \in C$ and $y_1 \in B$, $y_2 \in D$. It is obvious that $f(x_1) \le \lambda_2$, $f(x_2) \le \lambda_1 + \lambda_2$ and $f(y_1) \ge m + \lambda_2 + 1$, $f(y_2) \ge \lambda_1 + \lambda_2 + 1$. Consequently, for all vertices $x \in A \cup C$ and all vertices $y \in B \cup D$, we have $f(x) \le \lambda_1 + \lambda_2 < f(y)$ and the desired result follows.

Corollary 3.2. If h(v) = 0, λ_1 , $\lambda_1 + 1$, or m and g(u) = 0, λ_2 , $\lambda_2 + 1$, or n, then the graph $H \odot G$ is λ -graceful for some λ satisfying $0 \le \lambda \le m + n$.

Proof. We may assume that h(v) = 0, for it is not, we could redefine h as

$$\widetilde{h} = \begin{cases} h^i & \text{if } f(v) = \lambda_1, \\ h^{c,i} & \text{if } f(v) = \lambda_1 + 1, \\ h^c & \text{if } f(v) = m. \end{cases}$$

It is clear that \widetilde{h} is λ' -graceful for some λ' , where $0 \le \lambda' \le m-1$ and $\widetilde{h}(\nu) = 0$. Likewise, we may assume g(u) = 0. The result follows immediately from Theorem 3.1.

Theorem 3.3. Let $(h(v_1), h(v_2))$ and $(g(u_1), g(u_2))$ be the distinguished edges of H and G, respectively. If $(h(v_1), h(v_2)) = (0, m)$ or $(\lambda_1, \lambda_1 + 1)$ and $(g(u_1), g(u_2)) = (0, n)$ or $(\lambda_2, \lambda_2 + 1)$, then $H \ominus G$ is λ -graceful.

Proof. Since if $(h(v_1), h(v_2)) = (\lambda_1, \lambda_1 + 1)$ and $(g(u_1), g(u_2)) = (\lambda_2, \lambda_2 + 1)$, then $(h'(v_1), h'(v_2)) = (0, m)$ and $(g'(u_1), g'(u_2)) = (0, n)$. Thus we also assume that $(h(v_1), h(v_2)) = (0, m)$ and $(g(u_1), g(u_2)) = (0, n)$. Let f be a labeling of the graph $H \ominus G$ given as

$$f(x) = \begin{cases} g^{i}(x) & \text{if } x \in A, \\ \lambda_{2} + h(x) & \text{if } x \in V(H), \\ m - 1 + g^{i}(x) & \text{if } x \in B. \end{cases}$$

By easy calculation, it can be verified that f is a λ -graceful labeling of $H \ominus G$.

Theorem 3.4. If h(v) = 0, λ_1 , $\lambda_1 + 1$, or m and g(u) = 0, λ_2 , $\lambda_2 + 1$, or n, then the graph $H \oplus G$ is λ -graceful.

Proof. As in Theorem 3.1, we may assume that h(v) = g(u) = 0. Let us introduce a labeling f of $H \oplus G$ as

$$f(x) = \begin{cases} g^{i}(x) & \text{if } x \in A, \\ \lambda_{2} + 1 + h(x) & \text{if } x \in V(H), \\ m + \lambda_{2} + 2 & \text{if } x = w, \\ m + 2 + g^{i}(x) & \text{if } x \in B. \end{cases}$$

A routine verification shows that the labeling f is indeed a λ -graceful labeling of $H \oplus G$.

Theorem 3.5. If either g(u) = i and h(v) = i, or $\lambda_1 - i$ for $0 \le i \le min\{\lambda_1, \lambda_2\}$, or g(u) = i and $h(v) = \lambda_1 + 1 + i$, or m - i for $0 \le i \le min\{m - \lambda_1 - 1, \lambda_2\}$, then the graph $H \Theta G$ is λ -graceful.

Proof. Suppose that g(u) = i and h(v) = i, or $\lambda_1 - i$ for $0 \le i \le min\{\lambda_1, \lambda_2\}$, or g(u) = i and $h(v) = \lambda_1 + 1 + i$, or m - i for $0 \le i \le min\{m - \lambda_1 - 1, \lambda_2\}$.

Let f be a labeling of $H \Theta G$ given by

$$f(x) = \begin{cases} g^{i}(x) & \text{if } x \in A, \\ m+1+g^{i}(x) & \text{if } x \in B, \\ \lambda_{2}+1+h^{c}(x) & \text{if } x \in V(H), g(u)=i, \text{ and } h(v)=i, \\ \lambda_{2}+1+h^{c,i}(x) & \text{if } x \in V(H), g(u)=i, \text{ and } h(v)=\lambda_{1}-i, \\ \lambda_{2}+1+h^{i}(x) & \text{if } x \in V(H), g(u)=i, \text{ and } h(v)=\lambda_{1}+1+i, \\ \lambda_{2}+1+h(x) & \text{if } x \in V(H), g(u)=i, \text{ and } h(v)=m-i. \end{cases}$$

Evidently, the values of vertices of the graph $H \Theta G$ are all distinct. An easy computation shows that $E_1 = \{1, 2, \dots, m\}$ and $E_2 = \{m+2, m+3, \dots, m+n+1\}$ 1). To prove that f is a graceful labeling of $H \Theta G$, it suffices to show that |f(v)-f(u)|=m+1. This can be done by the following consequences.

If
$$g(u) = i$$
 and $h(v) = i$, $0 \le i \le min\{\lambda_1, \lambda_2\}$, then

$$|f(v) - f(u)| = |(\lambda_2 + 1 + h^c(v)) - g^i(u)| = m + 1.$$

If g(u) = i and $h(v) = \lambda_1 - i$, $0 \le i \le min\{\lambda_1, \lambda_2\}$, then

$$|f(v)-f(u)|=|(\lambda_2+1+h^{c,i}(v))-g^i(u)|=m+1.$$

If g(u) = i and $h(v) = \lambda_1 + 1 + i$, $0 \le i \le min\{m - \lambda_1 - 1, \lambda_2\}$, then

$$|f(v)-f(u)|=|(\lambda_2+1+h^i(v))-g^i(u)|=m+1.$$

If g(u) = i and h(v) = m - i, $0 \le i \le min\{m - \lambda_1 - 1, \lambda_2\}$, then

$$|f(v)-f(u)|=|(\lambda_2+1+h(v))-g'(u)|=m+1.$$

The remainder of the proof is similar to that in Theorem 3.1 and the details are omitted.

By analogous argument, it follows that if h is only a graceful labeling of H, then the graphs $H \odot G$, $H \ominus G$, $H \ominus G$, and $H \odot G$ are graceful.

Combining Theorems 3.1, 3.3, 3.4, and 3.5, we have

Theorem 3.6. Let G_i $(1 \le i \le k)$ be λ_i -graceful and let the symbol \otimes be one of the operations \odot , \ominus , \oplus , and \ominus with appropriately chosen distinguished vertices or edges. Then the graph

$$G_1 \otimes G_2 \otimes \ldots \otimes G_k \quad (k \ge 3)$$

is λ-graceful.

Remark. In Theorem 3.6, if G_i ($1 \le i \le k$) are trees, Chen, Lü, and Yeh [1] have obtained an analogous result.

It is natural to ask whether there exist graphs G and H such that for any vertex u in G and any vertex v in H, the operations on G and H mentioned above can be applied. A graph G is called a 0-moveable graceful (resp. 0-moveable λ -graceful) graph if for each vertex z in G there exists a graceful (resp. λ -graceful) labeling g satisfying g(z) = 0. By virtue of Theorems 3.1, 3.4, and 3.5, we have the following.

Theorem 3.7. If H and G are 0-moveable λ -graceful graphs, then the graphs $H \odot G$, $H \oplus G$, and $H \odot G$ are λ -graceful, where $0 \le h(v) \le m$ and $0 \le g(u) \le n$. In particular, if H is just a 0-moveable graceful graph, then the graphs $H \odot G$, $H \oplus G$, and $H \odot G$ are graceful.

Finally we shall extend the edge-attached operation on graphs G_1 and G_2 to that on graphs G_1 , G_2 , ..., G_k ($k \ge 3$). To avoid cumbersome notation, if $G_i \cong G$ for $1 \le i \le k$, then we simply write $\Theta(G_1, G_2, ..., G_k)$ as $\Theta(G_1, G_2, ..., G_k)$ as $\Theta(G_1, G_2, ..., G_k)$.

Theorem 3.8. Suppose that graphs G_i $(1 \le i \le k)$ with n_i edges are all λ^* -graceful having labeling f_i and that $f_1(u_1) = f_2(u_2) = \dots = f_k(u_k) = j$ where $0 \le j$

 $\leq \lambda^*$. Then the graph $\Theta(G_1, G_2, ..., G_k)$ is λ -graceful. Consequently, if G is λ -graceful then the graph $\Theta(G^k)$ is also λ -graceful.

Proof. Let (A_i, B_i) be the bipartition of G_i such that $f_i(x_i) < f_i(y_i)$ for $x_i \in A_i$ and $y_i \in B_i$ and let $a_i = \lambda^* + 1$ and $b_i = n_i - \lambda^*$, $1 \le i \le k$. Case 1: k is odd.

Set $S_i = a_i + b_{i-1} + a_{i+2} + b_{i+3} + \dots + a_k$, if i is odd and set $S_i = b_i + a_{i+1} + b_{i+2} + a_{i+3} + \dots + a_k$, if i is even. Let f be a labeling of the graph $\Theta(G_1, G_2, \dots, G_k)$ given as

$$f(u) = \begin{cases} S_{i+1} + f_i(u) & \text{if } u \in A_1 \cup B_1 \text{ or } u \in A_i, \\ \sum_{i=1}^{i-1} n_i + S_{i+1} + i - 1 + f_i(u) & \text{if } u \in B_i, \end{cases}$$
 (i = 3, 5, ..., k)

and

$$f(u) = \begin{cases} \sum_{t=1}^{i} n_t + S'_{i+1} + i - \lambda^* - 1 + f_i(u) & \text{if } u \in A_i, \\ S_{i+1} - \lambda^* - 1 + f_i(u) & \text{if } u \in B_i. \end{cases}$$
 (i = 2, 4, ..., k-1)

It can be checked that the labels of vertices of the graph $\Theta(G_1, G_2, ..., G_k)$ are all distinct.

Next we shall show that f is a graceful labeling of $\Theta(G_1, G_2, ..., G_k)$. Let W_i ($1 \le i \le k$) denote the set of values of edges (x_i, y_i) of subgraph G_i in the graph $\Theta(G_1, G_2, ..., G_k)$, where $x_i \in A_i$ and $y_i \in B_i$. Observing the construction of the graph $\Theta(G_1, G_2, ..., G_k)$, we have

$$W_1 = \{ |f_1(x_1) - f_1(y_1)| : \text{all edges } (x_1, y_1) \in E(G_1) \} = \{1, 2, ..., n_1\};$$

If $i (\geq 3)$ is odd, then

$$W_i = \{ \sum_{t=1}^{i-1} n_t + i - 1 + f_i(y_i) - f_i(x_i) : \text{all edges } (x_i, y_i) \in E(G_i) \}$$

$$= \{ \sum_{t=1}^{i-1} n_t + i, \sum_{t=1}^{i-1} n_t + i + 1, \dots, \sum_{t=1}^{i} n_t + i - 1 \}; \text{ and }$$

If i is even, then

$$W_i = \{ \sum_{t=1}^{i} n_t + i - f_i(y_i) + f_i(x_i) \}: \text{ all edges } (x_i, y_i) \in E(G_i) \}$$

$$= \{ \sum_{t=1}^{i-1} n_t + i, \sum_{t=1}^{i-1} n_t + i + 1, \dots, \sum_{t=1}^{i} n_t + i - 1 \}.$$

Let T_i $(1 \le i \le k-1)$ be the value of the edge $(f(u_i), f(u_{i+1}))$ in the graph $\Theta(G_1, G_2, ..., G_k)$. It is clear that $T_i = \sum_{t=1}^{i} n_t + i$. By routine computation, it follows that

$$\{T_1, T_2, ..., T_{k-1}\} \cup W_1 \cup ... \cup W_k = \{1, 2, ..., \sum_{t=1}^k n_t + k - 1\}$$
 and so f is a graceful labeling of $\Theta(G_1, G_2, ..., G_k)$.

It remains to show that f is also a λ -graceful labeling of $\Theta(G_1, G_2, ..., G_k)$ with

 $\lambda = S_2 + \lambda^*$. Let $A = A_1 \cup B_2 \cup A_3 \cup B_4 \cup ... \cup A_k$ and $B = B_1 \cup A_2 \cup B_3 \cup A_4 \cup ... \cup B_k$. It is sufficient to prove that for any edge (x, y) in $\Theta(G_1, G_2, ..., G_k)$ with $x \in A$ and $y \in B$, $f(x) \le S_2 + \lambda^* < f(y)$. This can be done as follows.

If $x \in A_1$ and $y \in B_1$, then $f(x) = S_2 + f_1(x)$, $f(y) = S_2 + f_1(y)$ and we have $S_2 + f_1(x) \le S_2 + \lambda^* \le S_2 + f_1(y)$.

If *i* is even and $x \in B_i$, $y \in A_i$, then $f(x) = S_{i+1} - \lambda^* - 1 + f_i(x)$ and $f(y) = \sum_{t=1}^{i} n_t + S_{i+1} + i - \lambda^* - 1 + f_i(y)$. Since $S_{i+1} - \lambda^* - 1 + f_i(x) < S_{i+1} < S_2 + \lambda^*$ and $S_2 + \lambda^* = b_2 + a_3 + \ldots + b_i + S_{i+1} + \lambda^* = \sum_{t=2}^{i} n_t + S_{i+1} < \sum_{t=1}^{i} n_t + S_{i+1} + i - \lambda^* - 1 + f_i(y)$, it follows that $f(x) \le S_2 + \lambda^* < f(y)$.

If i is odd (≥ 3) and $x \in A_i$, $y \in B_i$, then $f(x) = S_{i+1} + f_i(x)$ and $f(y) = \sum_{i=1}^{i-1} n_i + S_{i+1} + i - 1 + f_i(y)$. Similarly, we obtain $f(x) \leq S_2 + \lambda^{\bullet} \leq f(y)$.

Finally, we need to determine the labels on the edges between the subgraphs G_i and G_{i+1} $(1 \le i \le k-1)$ in $\Theta(G_1, G_2, ..., G_k)$.

If either $x \in A_i$, $y \in A_{i+1}$, or $x \in A_{i+1}$, $y \in A_{i+2}$ for i = 1, 3, ..., k-2, say the former, then $f(x) = S_{i+1} + f_i(x)$ and $f(y) = \sum_{t=1}^{i+1} n_t + S_{i+2} + i - \lambda^* + f_{i+1}(y)$, and so $f(x) \le S_2 + \lambda^* < f(y)$.

Case 2: k is even.

Similar to that of Case 1 and omitted.

Remark. Suppose that graphs G_i $(1 \le i \le k)$ are connected with n edges each. It is proved in [12] that if graphs G_i $(1 \le i \le k)$ are λ_i -graceful with $\lambda_i = \lambda_{k-i+1}$ for $1 \le i \le \lfloor k/2 \rfloor$, then the graph $\Theta(G_1, G_k, G_2, G_{k-1}, ..., G_{\lfloor (k+2)/2 \rfloor})$ is graceful.

We demonstrate the construction above with an example. Consider the 3-graceful graphs G_i with 3-graceful labeling f_i ($1 \le i \le 5$), depicted in Figures 5-(1)-(5). Choosing $f_1(u_1) = f_2(u_2) = \dots = f_5(u_5) = 0$ and utilizing Theorem 3.8, the graph $\Theta(G_1, G_2, G_3, G_4, G_5)$ of Figure 5-(6) then follows.

In [6] Rosa proved that the cycle C_{4k} $(k \ge 1)$ is λ -graceful with $\lambda = 2k - 1$. Combining the result and Theorem 3.8, we have

Corollary 3.9. Let $r_1, r_2, ..., r_s$ $(s \ge 2)$ be positive integers with $1 \le r_1 \le r_2 \le ...$ $\le r_s$. Then the graph $\Theta(C_{4n_1}, C_{4n_2}, ..., C_{4n_s})$ is λ -graceful.

Acknowledgments

The authors are grateful to the referee for the valuable suggestions improving the readability of the paper.

References

- [1] W. C. Chen, H. I. Lü, and Y. N. Yeh, Operations of interlaced trees and graceful trees, *Southeast Asian Bull. Math.* 21 (1997), 337-348.
- [2] J. A. Gallian, A dynamic survey of graph labeling, *Electronic J. Comb.*, *Dynamic Survey* DS6, www.combinatorics.org.
- [3] L. K. Hua, Introduction to Number Theory, Springer, Berlin, Heidelberg, New York, 1982.
- [4] K. M. Koh, D. G. Rogers, and T. Tan, Products of graceful trees, *Discrete Math.* 31 (1980), 279-292.
- [5] K. M. Koh, D. G. Rogers, and T. Tan, Two theorems on graceful trees, Discrete Math. 25 (1979), 141-148.
- [6] A. Rosa, Labeling snakes, Ars Combin. 3 (1977), 67-74.
- [7] A. Rosa, On certain valuations of the vertices of a graph, *Theory of Graphs* (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod, Pairs (1967), 349-355.
- [8] H. S. Snevily, New families of graphs that have α-labelings, *Discrete Math.* 170 (1997), 185–194.
- [9] D. A. Sheppard, The factorial representation of balanced labeled graphs, *Discrete Math.* 15 (1976), 379–388.
- [10] S. L. Wu, Cyclically decomposing the complete graph into cycles with pendent edges, *Ars Combin.*, to appear.

- [11] S. L. Wu, Graceful labelings of graphs associated with vertex-saturated
- graphs, Ars Combin. 62 (2002), 109-120.
 [12] S. L. Wu, New graceful families on bipartite graphs, Ars Combin. 69 (2003), 9-17.