Independence number and [a, b]-factors of graphs

Siping Tang*

School of Mathematics and Computing Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China

Abstract Let G be a graph. The cardinality of any largest independent set of vertices in G is called the independence number of G and is denoted by $\alpha(G)$. Let a and b be integers with $0 \le a \le b$. If a = b, it is assumed that G be a connected graph, furthermore, $a \ge \alpha(G)$, $a|V(G)| \equiv 0 \pmod 2$ if a is odd. We prove that every graph G has an [a,b]-factor if its minimum degree is at least $\left(\frac{b+\alpha(G)a-\alpha(G)}{b}\right)\left\lfloor\frac{b+\alpha(G)a}{2\alpha(G)}\right\rfloor-\frac{\alpha(G)}{b}\left(\left\lfloor\frac{b+\alpha(G)a}{2\alpha(G)}\right\rfloor\right)^2+\theta\frac{\alpha(G)^2}{b}+\frac{\alpha(G)^2}{b}$ and $\theta=1$ if a=b. This degree condition is sharp.

Keywords: Graph, Factor, [a, b]-Factor, Independence number.

1 Introduction

The graphs considered in this paper will be finite, undirected, without loops and multiple edges. Let G be a graph with vertex set V(G) and edge set E(G). Notation and definition not given in this note can found in [1].

For $S \subseteq V(G)$ the subgraph of G induced by S is denoted by G[S] and $G-S=G[V(G)\backslash S]$. For any vertex x of G, the degree of x in G is denoted by $d_G(x)$, and the set of vertices adjacent to x in G is denoted by $N_G(x)$. Furthermore, $\delta(G)=\min\{d_G(x):x\in V(G)\}$. A vertex set $S\subseteq V(G)$ is called independent if G[S] has no edges. The cardinality of any largest independent set of vertices in G is called the independence number of G and is denoted by $\alpha(G)$. Let G and G be integers with G and G and G is defined as a spanning subgraph G of G such that G and G for each G and is called G and G is called an G and G for each G is defined as a spanning subgraph G of G such that G is called an G for each G for ea

^{*}E-mail: tangsiping@163.com

The following results on factors are known.

Theorem A (Y.Li and M.Cai [2]) Let G be a graph of order |G|, and let a and b be integers such that $1 \le a < b$. Then G has an [a,b]-factor if $\delta(G) \ge a$, $m \ge 2a + b + (a^2 - a)/b$ and

$$\max\{d_G(x),d_G(y)\} \geq \frac{a|G|}{a+b}$$

for any two non-adjacent vertices x and y of G.

Theorem B (H.Matsuda [5]) Let G be a graph of order |G|, and let a and b be integers such that $1 \le a < b$. Then G has an [a, b]-factor if $\delta(G) \ge a$, $|G| \ge 2(a+b)(a+b-1)/b$ and

$$|N_G(x) \cup N_G(y)| \ge \frac{a|G|}{a+b}$$

for any two non-adjacent vertices x and y of G.

Theorem C (K.Ota and T.Tokuda [6]) Let t and r be positive integers and $t \geq 3$. If r is odd, we assume that $r \geq t - 1$. Let G be a connected graph with r|G| even. If G is a $K_{1,t}$ -free graph and the minimum degree of G is at least

$$\left(\frac{t(r+1)-1}{r}\right)\left\lceil\frac{rt}{2(t-1)}\right\rceil - \frac{t-1}{r}\left(\left\lceil\frac{rt}{2(t-1)}\right\rceil\right)^2 + t - 3,\tag{1}$$

then G has an r-factor.

Theorem D(J.Li [3]) Let G be a graph, and let t, a and b be integers such that $0 \le a < b$ and $t \ge 3$. If G is a $K_{1,t}$ -free graph and its minimum degree is at least

$$\left(\frac{(t-1)(a+1)+b}{b}\right)\left\lceil\frac{b+a(t-1)}{2(t-1)}\right\rceil - \frac{t-1}{b}\left(\left\lceil\frac{b+a(t-1)}{2(t-1)}\right\rceil\right)^2 - 1, (2)$$

then G has an [a, b]-factor.

In this paper we shall prove the following theorem, which is a new degree condition for graphs to have [a,b]-factors in term of independence number of G.

Theorem 1 Let G be a graph, a and b be integers with $0 \le a \le b$. If a = b, it is assumed that G be a connected graph, furthermore, $a \ge \alpha(G)$, $a|V(G)| \equiv 0 \pmod{2}$ if a is odd. We prove that every graph G has an [a,b]-factor if its minimum degree is at least

$$\left(\frac{b+\alpha(G)a-\alpha(G)}{b}\right) \left\lfloor \frac{b+\alpha(G)a}{2\alpha(G)} \right\rfloor - \frac{\alpha(G)}{b} \left(\left\lfloor \frac{b+\alpha(G)a}{2\alpha(G)} \right\rfloor \right)^2 + \theta \frac{\alpha(G)^2}{b} + \frac{a}{b}\alpha(G), \quad (3)$$
where $\theta = 0$ if $a < b$, and $\theta = 1$ if $a = b$.

In Section 3, we will show that the condition (3) in Theorem 1 is sharp.

2 Proof of Theorem 1

Let S and T be disjoint subsets of V(G). We write $e_G(S,T) = |\{xy \in E(G) : x \in S, y \in T\}|$ and $d_{G-S}(T) = \sum_{x \in T} d_{G-S}(x)$. In particular, $e_G(x,T)$ means $e_G(\{x\},T)$. Let

$$\delta_G(S,T) = b|S| + d_{G-S}(T) - a|T| - h_G(S,T),$$

where $h_G(S,T)$ is the number of components C of $G-(S\cup T)$ for a=b and $b|V(C)|+e_G(V(C),T)\equiv 1\pmod 2$. Such a component C is called an odd component. Clearly, if a< b, then $h_G(S,T)=0$ by the definition of odd component.

We use the following Lemma.

Lemma 1 (L.Lovász [4]) Let G be a graph. Let a and b be nonnegative integers with $a \leq b$. Then G contains an [a,b]-factor if and only if

$$\delta_G(S,T) = b|S| + d_{G-S}(T) - a|T| - h_G(S,T) \ge 0$$

for all disjoint subsets S and T of V(G).

We now prove Theorem 1.

By Lemma 1, to prove the theorem we need only to show that for all disjoint subsets S and T of V(G)

$$\delta_G(S,T) = b|S| + d_{G-S}(T) - a|T| - h_G(S,T) \ge 0,$$

where $0 \le a \le b$.

At first, we prove the following claim.

Claim 1 $\delta(G) \geq y + \frac{\alpha(G)}{b}(y - \theta x + 1)(a - y) + \theta \frac{\alpha(G)^2}{b}$ for any integer y if a < b or any integer $y \leq a$ and any integer $x \in [0, \alpha(G)]$ if a = b, where $\theta = 0$ if a < b, and $\theta = 1$ if a = b.

Proof. We fix $\alpha(G)$, a and b, and define f(x,y) to be the right-hand side of the above inequality. Note that

$$\frac{df}{dy} = -\frac{2\alpha(G)}{b}y + \frac{\alpha(G)}{b}(a + \theta x - 1) + 1, \quad \frac{df}{dx} = \frac{\theta\alpha(G)}{b}(y - a) \le 0.$$

If $\theta=0$, then f(x,y)=f(0,y). Hence, among all integers y, f(x,y)=f(0,y) is maximum when y is the nearest integer to $\frac{b+a\alpha(G)}{2\alpha(G)}-\frac{1}{2}($ this can be got by $\frac{df}{dy}=0)$, i.e., when $y=\left\lfloor\frac{b+a\alpha(G)}{2\alpha(G)}\right\rfloor$.

If $\theta=1$, we fix y. Note that $\frac{df}{dx}\leq 0$, among all integers $x\in[0,\alpha(G)]$

If $\theta = 1$, we fix y. Note that $\frac{df}{dx} \leq 0$, among all integers $x \in [0, \alpha(G)]$ and fixed $y \leq a$, f(x,y) = f(0,y) is maximum when x = 0. So, among all integers $y \leq a$ and all integers $x \in [0, \alpha(G)]$, f(x,y) = f(0,y) is maximum

when x = 0 and y is the nearest integer to $\frac{b+a\alpha(G)}{2\alpha(G)} - \frac{1}{2}$ (this can be got by x = 0 and $\frac{df}{dy} = 0$), i.e., when x = 0 and $y = \left|\frac{b+a\alpha(G)}{2\alpha(G)}\right|$ ($\leq a$).

It is easy to check that $f\left(0, \left\lfloor \frac{b+a\alpha(G)}{2\alpha(G)} \right\rfloor\right)$ is identical to the expression (3). Hence, $f(x,y) \leq f\left(0, \left\lfloor \frac{b+a\alpha(G)}{2\alpha(G)} \right\rfloor\right) \leq \delta(G)$ for any integer y if a < b or any integer $y \leq \alpha(G)$, and any integer $x \in [0, \alpha(G)]$ if a = b.

We define x_i and $N_i (i \ge 1)$ as follows: If $T \ne \emptyset$, let $x_1 \in T$ be a vertex such that $d_{G-S}(x_1) - a$ is minimum, and $N_1 = (N_G(x_1) \cup \{x_1\}) \cap T$. For $i \ge 2$, if $T - \bigcup_{j < i} N_j \ne \emptyset$, let $x_i \in T - \bigcup_{j < i} N_j$ be a vertex such that $d_{G-S}(x_i) - a$ is as small as possible, and $N_i = (N_G(x_i) \cup \{x_i\}) \cap (T - \bigcup_{j < i} N_j)$.

We suppose x_1, \ldots, x_m are defined and x_{m+1} cannot be defined. By definition, $\{x_1, \ldots, x_m\}$ is an independent set of G, and T is the disjoint union of N_1, \ldots, N_m .

For $A \subset T$, we define $\lambda(A)$ to be the number of odd components C such that e(C,A) > 0.

Claim 2
$$|S| \ge \frac{1}{\alpha(G)} \sum_{i=1}^{m} e(x_i, S) + \frac{1}{b} (h_G(S, T) - \lambda(T)).$$

Proof. Let $l = h_G(S,T) - \lambda(T)$. Then there exist l odd components C_1, C_2, \dots, C_l such that $e(C_i, T) = 0$ for $1 \le i \le l$. Case $1 S = \emptyset$.

If a < b, then l = 0 (by the definition of odd components).

If r=a=b, since G is connected, we can see that $l \leq 1$. Moreover, if l=1, then $T=\emptyset$, and hence $G=C_1$ is an odd component, $r|G|=r|C_1|$ is odd. A contradiction to the assumption that r|G| is even. Hence l=0.

In this case, the claim becomes $0 \ge 0$, which clearly holds. Case 2 $S \ne \emptyset$.

If a < b, then l = 0. Note that $\{x_1, \ldots, x_m\}$ is an independent set of G and $|\{x_1, \ldots, x_m\}| \le \alpha(G)$, every vertex $v \in S$ is adjacent to at most $\alpha(G)$ vertices of $\{x_1, \ldots, x_m\}$. Therefore

$$\alpha(G)|S| \ge e(\{x_1,\ldots,x_m\},S) = \sum_{i=1}^m e(x_i,S),$$

or

$$|S| \geq \frac{1}{\alpha(G)} \sum_{i=1}^m e(x_i, S) = \frac{1}{\alpha(G)} \sum_{i=1}^m e(x_i, S) + \frac{1}{b}l.$$

If r=a=b, since G is connected, $e(C_j,S)>0$ for $0\leq j\leq l$. Here we choose a vertex $z_j\in V(C_j)$ such that $e(z_j,S)>0$ for each j. Let $X=\{x_1,\ldots,x_m,z_1,\ldots,z_l\}$. Since X is an independent set of G and $|X|\leq \alpha(G)$, every vertex $v\in S$ is adjacent to at most $\alpha(G)$ vertices of X.

Therefore

$$\alpha(G)|S| \ge e(X,S) = \sum_{i=1}^{m} e(x_i,S) + \sum_{j=1}^{l} e(z_j,S) \ge \sum_{i=1}^{m} e(x_i,S) + l.$$

Here if r is even, then l=0 (by the definition of odd components); and if r is odd, then $l \geq \frac{\alpha(G)}{r}l = \frac{\alpha(G)}{b}l$ (by the assumption $r \geq \alpha(G)$). Hence the claim holds.

By claim 2,

$$\delta_{G}(S,T) = b|S| + d_{G-S}(T) - a|T| - h_{G}(S,T)
\geq \frac{b}{\alpha(G)} \sum_{i=1}^{m} e_{G}(x_{i},S) + d_{G-S}(T) - a|T| - \lambda(T)
\geq \sum_{i=1}^{m} \left(\frac{b}{\alpha(G)} e_{G}(x_{i},S) + (d_{G-S}(x_{i}) - a)|N_{i}| - \lambda(N_{i}) \right).$$

We show the following inequality that implies $\delta_G(S,T) \geq 0$:

$$\frac{b}{\alpha(G)}e_G(x_i, S) + (d_{G-S}(x_i) - a)|N_i| - \lambda(N_i) \ge 0$$
 (4)

for each i $(1 \le i \le m)$. Here we fix i $(1 \le i \le m)$ and define

$$d = d_{G-S}(x_i), \ \lambda = \lambda(N_i).$$

It is clearly that $0 \le \lambda \le \alpha(G)$, and

$$1 \le |N_i| \le d - e_G(x_i, V(G) - (S \cup T)) + 1 \le d - \lambda + 1,$$

and

$$e(x_i, S) = d_G(x_i) - d_{G-S}(x_i) \ge \delta(G) - d.$$

We divide the proof into two cases.

Case 1 a < b.

 $\lambda(N_i) = 0$ by the definition of odd components.

If $d-a\geq 0$, then

$$\frac{b}{\alpha(G)}e_G(x_i,S) + (d-a)|N_i| \ge 0$$

and thus (4) holds. Hence we may assume d-a < 0. Claim 1 with y = d yields $\delta(G) \ge d + \frac{\alpha(G)}{b}(a-d)(d+1)$. Hence,

$$\frac{\frac{b}{\alpha(G)}e_{G}(x_{i}, S) + (d-a)|N_{i}|}{\geq \frac{b}{\alpha(G)}(\delta(G) - d) + (d+1)(d-a)} \\
\geq \frac{\frac{b}{\alpha(G)}\left(d + \frac{\alpha(G)}{b}(d+1)(a-d) - d\right) + (d+1)(d-a)}{= 0.}$$

Thus, (4) holds.

Case 2 r=a=b.

Since $\lambda(N_i) \leq \alpha(G)$, we have

$$\frac{b}{\alpha(G)}e_G(x_i, S) + (d_{G-S}(x_i) - a)|N_i| - \lambda(N_i)$$

$$\geq \frac{r}{\alpha(G)}e_G(x_i, S) + (d - r)|N_i| - \alpha(G).$$

We divide the proof into two subcases.

Subcase 2.1 $d-r \ge 0$.

If $d-r-\alpha(G)\geq 0$, then

$$\frac{r}{\alpha(G)}e_G(x_i,S) + (d-r)|N_i| - \alpha(G) \ge \frac{r}{\alpha(G)}e_G(x_i,S) + d - r - \alpha(G) \ge 0.$$

therefore (4) holds. hence we may assume $d-r-\alpha(G)<0$.

Subcase 2.1.1 $\alpha(G) \geq r$.

Claim 1 with $y = r, x \in [0, \alpha(G)]$ yields $e_G(x_i, S) \geq \delta(G) - d \geq r + \frac{\alpha(G)^2}{r} - d$. Hence,

$$\frac{\frac{r}{\alpha(G)}e_G(x_i, S) + (d-r)|N_i| - \alpha(G)}{\frac{r}{\alpha(G)}(r + \frac{\alpha(G)^2}{r} - d) + d - r - \alpha(G)}$$

$$= (d-r)(1 - \frac{r}{\alpha(G)}) \ge 0.$$

Thus, (4) holds.

Subcase 2.1.2 $r > \alpha(G)$.

Claim 1 with $y = d - \alpha(G)(< r), x = 0$ yields

$$e_{G}(x_{i}, S) \geq \delta(G) - d$$

$$\geq d - \alpha(G) + \frac{\alpha(G)}{r}(r - d + \alpha(G))(d - \alpha(G) + 1) + \frac{\alpha(G)^{2}}{r} - d$$

$$= \frac{\alpha(G)}{r}(r - d + \alpha(G))(d - \alpha(G) + 1) + \frac{\alpha(G)^{2}}{r} - \alpha(G).$$

Note that $d-r-\alpha(G)<0$ implies $r+\alpha(G)-d\geq 1$, hence,

$$\frac{r}{\alpha(G)}e_{G}(x_{i}, S) + (d - r)|N_{i}| - \alpha(G)$$

$$\geq \frac{r}{\alpha(G)}\left(\frac{\alpha(G)}{r}(r - d + \alpha(G))(d - \alpha(G) + 1) + \frac{\alpha(G)^{2}}{r} - \alpha(G)\right)
+ d - r - \alpha(G)$$

$$= (d - \alpha(G))(r + \alpha(G) - d) - (r - \alpha(G))$$

$$\geq (r - \alpha(G))(r + \alpha(G) - d) - (r - \alpha(G))$$

$$= (r - \alpha(G))(r + \alpha(G) - d - 1) > 0.$$

Thus, (4) holds.

Case 2.2 d-r < 0.

From Claim 1 with $y = d(< r), x = \lambda$, we obtain

$$e_G(x_i, S) \ge \delta(G) - d \ge d + \frac{\alpha(G)}{r}(r - d)(d - \lambda + 1) + \frac{\alpha(G)^2}{r} - d$$
$$= \frac{\alpha(G)}{r}(r - d)(d - \lambda + 1) + \frac{\alpha(G)^2}{r}.$$

Note that $(d-r)|N_i| \geq (d-r)(d-\lambda+1)$, hence,

$$\frac{r}{\alpha(G)}e_G(x_i, S) + (d-r)|N_i| - \alpha(G)$$

$$\geq \frac{r}{\alpha(G)}\left(\frac{\alpha(G)}{r}(r-d)(d-\lambda+1) + \frac{\alpha(G)^2}{r}\right) + (d-r)(d-\lambda+1) - \alpha(G)$$

$$= 0.$$

Thus, (4) holds. The proof is complete.

3 Remarks

Remark 1 In Theorem 1, the degree condition is sharp if r = a = b.

To demonstrate this remark with an example, let n be an integer with $n \ge 1$, $\alpha(G) = 2n$, $r = 2\alpha(G)^2$,

$$y = \left\lfloor \frac{r(1 + \alpha(G))}{2\alpha(G)} \right\rfloor = \frac{r(1 + \alpha(G))}{2\alpha(G)},$$
$$x = \frac{\alpha(G)}{r}(r - y)(y + 1) + \frac{\alpha(G)^2}{r} - 1.$$

Let L be the complete graph K_x , and let M be $\alpha(G)$ disjoint copies of K_{y+1} . Let G = L + M, where L + M denotes the join of L and M. Then G is a connected graph with

$$\begin{split} \delta(G) &= d_G(v) = y + x \\ &= \left(1 + \alpha(G) - \frac{\alpha(G)}{r}\right) \left\lfloor \frac{r(1 + \alpha(G))}{2\alpha(G)} \right\rfloor \\ &- \frac{\alpha(G)}{r} \left(\left\lfloor \frac{r(1 + \alpha(G))}{2\alpha(G)} \right\rfloor \right)^2 + \frac{\alpha(G)^2}{r} + \alpha(G) - 1, \end{split}$$

where $v \in V(M)$. Application of Lemma 1 in Section 2 with S = V(L) and T = V(M) proves that G have not an [a, b]-factor.

Remark 2 In Theorem 1, the degree condition is sharp if a < b.

Let $\alpha(G) \equiv 0 \pmod{b}$, and

$$y = \left\lfloor \frac{b + \alpha(G)a}{2\alpha(G)} \right\rfloor,\,$$

$$x = \frac{\alpha(G)}{b}(a-y)(y+1) - 1.$$

Let L be the complete graph K_x , and let M be $\alpha(G)$ disjoint copies of K_{y+1} . Let G = L + M, where L + M denotes the join of L and M. Then G is a graph with

$$\begin{array}{ll} \delta(G) &= d_G(v) = y + x \\ &= \big\lceil \frac{b + \alpha(G)a - \alpha(G)}{b} \big\lfloor \frac{b + \alpha(G)a}{2\alpha(G)} \big\rfloor - \frac{\alpha(G)}{b} \big(\big\lfloor \frac{b + \alpha(G)a}{2\alpha(G)} \big\rfloor \big)^2 + \frac{a}{b} \alpha(G) - 1 \big\rceil, \end{array}$$

where $v \in V(M)$. Application of Lemma 1 in Section 2 with S = V(L) and T = V(M) proves that G have not an [a, b]-factor.

Remark 3 Expression (3) is identical to expression (2) for a < b and $\alpha(G) = t - 1$.

It is easy to prove that

$$\left(\frac{b+\alpha(G)a+\alpha(G)}{b}\right) \left\lceil \frac{b+\alpha(G)a}{2\alpha(G)} \right\rceil - \frac{\alpha(G)}{b} \left(\left\lceil \frac{b+\alpha(G)a}{2\alpha(G)} \right\rceil \right)^2 + \theta \frac{\alpha(G)^2}{b} - 1 \tag{5}$$

is identical to the expression (3).

Remark 4 Let t be an integer with $t \geq 4$, and

 $\Phi = \{G : G \text{ is a graph satisfying condictions of Theorem 1 with } \alpha(G) = t-1, a=b\},$

 $\Psi = \{G : G \text{ is a } K_{1,t} - \text{free graph satisfying condictions of Theorem } C\}.$

It is easy to see that $\Phi \subset \Psi$. So, Theorem C holds for Ψ , and Theorem 1 holds for Φ but not for Ψ .

In fact, expression (1)> expression (5) for $\alpha(G)=t-1$, and $r=a=b\geq \alpha(G)+7, \theta=1$.

References

- [1] J.A.Bondy, U.S.R.Murty, Graph Theory with Applications, Macmillan, New York, 1976.
- [2] Y.Li and M.Cai, A degree condition for a graph to have [a, b]-factors, J. Graph Theory 27 (1998) 1-6.
- [3] J.Li, A new degree condition for graphs to have [a, b]-factor graphs, Discrete Math., 290(2005):99-103.

- [4] L.Lovász, Subgraphs with prescribed valencies, J. Combin. Theory, 8(1970): 391-416.
- [5] H.Matsuda, A neighborhood condition for graphs to have [a, b]-factors, Discrete Mathematics 224(2000) 289-292.
- [6] K.Ota and T.Tokuda, A degree condition for the existence of regular factors in $K_{1,n}$ -free graphs, J. Graph Theory, 22(1996):59-64.