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Abstract Let G be a graph. The cardinality of any largest independent
set of vertices in G is called the independence number of G and is denoted
by a(G). Let a and b be integers with 0 < a < b. If a = b, it is assumed
that G be a connected graph, furthermore, a > o(G), a|V(G)| =0 (mod 2)
if a is odd. We prove that every graph G has an [a, b]-factor if its minimum

2
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£a(G), where § =0 if e < b, and § = 1 if a = b. This degree condition is

sharp.
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1 Introduction

The graphs considered in this paper will be finite, undirected, without
loops and multiple edges. Let G be a graph with vertex set V(G) and edge
set F(G). Notation and definition not given in this note can found in [1).

For S C V(G) the subgraph of G induced by S is denoted by G[S] and
G -8 = G[V(G)\S]. For any vertex z of G, the degree of = in G is denoted
by dg(z), and the set of vertices adjacent to = in G is denoted by Ng(z).
Furthermore, §(G) = min{dg(z) : z € V(G)}. A vertex set S C V(G)
is called independent if G[S] has no edges. The cardinality of any largest
independent set of vertices in G is called the independence number of G
and is denoted by a(G). Let a and b be integers with a < b. An [a, b}-factor
of G is defined as a spanning subgraph F of G such that a < dp(z) < b for
each z € V(G). If r = a = b, then an [a, b]-factor of G is called an r-factor.
A graph is called K ;-free if it contains no K, as an induced subgraph.
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The following results on factors are known.
Theorem A (Y.Li and M.Cai [2]) Let G be a graph of order |G|, and let
a and b be integers such that 1 < a < b. Then G has an [a,b]-factor if
6(G) >a, m>2a+b+ (a®—a)/band

a|G|
> —
max{dg(2),do(v)} 2 7
for any two non-adjacent vertices = and y of G.
Theorem B (H.Matsuda [5]) Let G be a graph of order |G|, and let a and
b be integers such that 1 < a < b. Then G has an [a, bj-factor if §(G) > a,
|G| = 2(a + b)(a +b—1)/band

a|G|

INe(2) U Ne@)| 2 7

for any two non-adjacent vertices z and y of G.

Theorem C (K.Ota and T.Tokuda [6]) Let ¢ and r be positive integers
and t > 3. If r is odd, we assume that r >t — 1. Let G be a connected
graph with r|G| even. If G is a K ,-free graph and the minimum degree
of G is at least

(t(r+:)—1) [2(12 1)] _ t;l ([2(2 1)])2“_3’ o

then G has an r-factor.

Theorem D(J.Li [3]) Let G be a graph, and let ¢, @ and b be integers such
that 0 <a < band t > 3. If G is a K ¢-free graph and its minimum degree
is at least

(st o] ()

then G has an [a, b]-factor.

In this paper we shall prove the following theorem, which is 2 new degree

condition for graphs to have [a, b]-factors in term of independence number
of G.
Theorem 1 Let G be a graph, a and b be integers with 0 < a < b. If
a = b, it is assumed that G be a connected graph, furthermore, a > a(G),
a|V(G)| = 0 (mod 2) if a is odd. We prove that every graph G has an
[a, b}-factor if its minimum degree is at least

2
bta(Gla—a(G b Ga G b+a(Ga G)3
(+ (Glae )) l ta(0) J_a(b)(l () J) +02C 4 2n(@), (3)
where § =0ifa<b,andf=1ifa=0b.

In Section 3, we will show that the condition (3) in Theorem 1 is sharp.
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2 Proof of Theorem 1

Let S and T be disjoint subsets of V(G). We write eg(S,T) = |{zy €
E(G):z€ S, ye T} andde_s(T) = Y. de-s(z). In particular, ec(z, T)
z€T

means eg({z},T). Let
0c(8,T) = b|S| + dg-s(T) — a|T| — ha(S,T),

where hg(S,T) is the number of components C of G — (SUT) for a = b
and b|V(C)| +eq(V(C),T) =1 (mod 2). Such a component C is called an
odd component. Clearly, if a < b, then hg(S,T) = 0 by the definition of
odd component.

We use the following Lemma.
Lemma 1 (L.Lovész [4]) Let G be a graph. Let a and b be nonnegative
integers with a < b. Then G contains an [a, b]-factor if and only if

0c(S,T) = b|S| +dg-s(T) — a|T| — he(S,T) >0

for all disjoint subsets S and T of V(G).
‘We now prove Theorem 1.
By Lemma 1, to prove the theorem we need only to show that for all

disjoint subsets S and T of V(G)
06(5,T) = b|S| + dg-s(T) — a|T| — he(S,T) 2 0,

where 0 < a <b.

At first, we prove the following claim.
Claim 1 6(GQ)>y+ ﬂif—;z(y -0z +1)a—y)+ Gﬂf—)z for any integer y
if a < b or any integer y < a and any integer z € [0,2(G)) if a = b, where
0=0ifa<b andf=1ifa=0b
Proof. We fix a(G),a and b, and define f(z,y) to be the right-hand side
of the above inequality. Note that

& 2G) . aG) _ 4 _6a(G),
- ¥+ b (a+6zx—-1)+1, P (y—a)<0.
If 8 =0, then f(z,y) = f(0,y). Hence, among all integers y, f(z,y) =

£(0,y) is maximum when y is the nearest integer to %ﬁi‘é—? — 3( this can

be got by &L =0), i.e., when y = [%@J

If § = 1, we fix y. Note that % < 0, among all integers z € [0,a(G)]

and fixed y < a, f(z,y) = f(0,y) is maximum when z = 0. So, among all
integers y < a and all integers z € [0, a(G)), f(z,y) = f(0,y) is maximum
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when z = 0 and y is the nearest integer to %’—LGT l( this can be got by

z =0-and 5{7 =0),ie,whenz=0and y = l%@] (£a).
It is easy to check that f (O, I-b—';%‘(’—c(gl_l) is identical to the expression

(3). Hence, f(z,y) < f (0, I_b;—:(’églj) < §(G) for any integer y if a < b or
any integer y < a(G), and any integer z € [0,a(G)| if a = b. |

We define z; and N;(i > 1) as follows: If T # 0, let ; € T be a vertex
such that dg_s(z;) — a is minimum, and N} = (Ng(z1) U {z1}) N T. For
i>2,ifT— | N; #0,letz; €T— U Nj be a vertex such that dg_s(z:)—a

i<i

is as small as possible, and N; = (Nc(x,) U{z:}) (T - U N;j).

We suppose Zi,...,Tm are defined and Tm41 cannot be defined. By
definition, {zi,... ,xm} is an independent set of G, and T is the disjoint
union of Ny,..., Np.

For A C T, we define A(A) to be the number of odd components C such
that e(C, A) > 0.

Claim 2 |8] > 5 | z; e(z:,S) + 1(ha(S,T) — A(T)).

Proof. Letl = hG(S T) MT). Then there exist ! odd components
C;,Cs,++,Cy such that ¢(C;,T) =0for 1 <i <.
Casel S=0.

If @ < b, then ! = 0 (by the definition of odd components).

If r = a = b, since G is connected, we can see that [ < 1. Moreover, if
1 =1, then T = 0, and hence G = C) is an odd component, 7|G| = r|C1| is
odd. A contradiction to the assumption that r|G]| is even. Hence [ = 0.

In this case, the claim becomes 0 > 0, which clearly holds.
Case 2 S#0.

If a < b, then | = 0. Note that {zi,...,Zm} is an independent set of G
and |{z1,...,2Zm}| < a(G), every vertex v € S is adjacent to at most (G)
vertices of {z1,...,Zm}. Therefore

m

a(G)IS| 2 e({z1,...,Tm} S) = Y _ e(:, S),

i=1
or

1 i 1 m 1
|S| =2 pE) ;e(xi,s) = -&-(E)Z;e(:ci,S) + —bl,

If r = a = b, since G is connected, e(C;,S) > 0 for 0 < j < l. Here
we choose a vertex z; € V(C;) such that e(z;,S) > 0 for each j. Let
X = {z1,.--,Tm,21,...,21}. Since X is an independent set of G and
|X] < a(G), every vertex v € S is adjacent to at most a(G) vertices of X.
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Therefore

o(G)|S] > e(X, S) = Ze(z,, S) + Ze(zJ,S) > Ze(:z:,, S) +1.

i=1

Here if r is even, then ! = 0 (by the deﬁmtlon of odd components); and if
r is odd, then ! > ﬂrﬂl = ﬂgll (by the assumption r > a(G)). Hence the
|

claim holds.
By claim 2,

6c(5,T) = bISI+da s(T) — alT| - ha(S,T)

> Zec(x,,8)+do s(T) —a|T| — X(T)

a(G)

: b
> Z ( (G)ec(x,,S) + (dg-s(@:) — a)|Ni| — A(NV; ))
We show the following inequality that implies 6¢(S,T) > 0:
b
mec(mi, 8) + (de-s(z:) — a)|Ni| — A(N:) 20 (4)
for each 7 (1 £ i < m). Here we fix ¢ (1 £ i < m) and define
d=dg-s(z:), A=A(N).
It is clearly that 0 < A < a(G), and
1<|Ni| £d—eg(zi, V(G) - (SUT))+1<d-A+1,
and
e(z;, S) = dg(x;) — de-s(zi) 2 6(G) —
We divide the proof into two cases.
Casel a<b

A(N;) = 0 by the definition of odd components.
Ifd—a >0, then

b
meo‘(xi, S)+(d—a)[N;| 20
and thus (4) holds. Hence we may assume d —a < 0. Claim 1 with y = d
yields 6(G) > d + ﬂgl(a ~d)(d +1). Hence,
@ec(zn S) + (d - a)|Ni
a(G) (6(G)—d)+(d+1)(d-a)
ey (d+ 20 (g 4+ 1)(a - d) — d) +(d+1)(d— a)
0.

v v
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Thus, (4) holds.
Case2 r=a=b.
Since A(N;) £ o(G), we have

b e, 8) + (do—s(zi) — a)| Vil — A(N;)

o(G)
r
> , - | —
= a(G) eG(xti S) + (d r)lNil a(G)°
We divide the proof into two subcases.
Subcase 2.1 d—72>0.
Ifd—7r—a(G) >0, then
ETG_)BG(Q’ S) + (d — r)|Ni| — &(G) 2 —=rec(zi,S) +d—r —a(G) 2 0.
therefore (4) holds. hence we may assume d —r — a(G) < 0.
Subcase 2.1.1 «(G) > .
Claim 1 with y = r,z € [0,(G)] yields eg(z;,S) > §(G)—d =2 r +
2
ﬂ-fl —d. Hence,

(G)

a—(cT)eG(“’i’ S)2+ (d-7)|Ni| — a(G)
> Zyr+ 2L —d)+d-r-aG)
= (d-n)(1-35)20

Thus, (4) holds.
Subcase 2.1.2 r > (G).
Claim 1 with y = d — a(G)(< 7),z = 0 yields

ec(zi,S) 2 6(G)—d
> d—a(G)+2Q(r —d+ o(G))d - a(G)+l)+—(—L d
= 2O 41 o(G))(d-aG) +1) + ZCL — o(G).

Note that d — r — a(G) < 0 implies 7 + a(G) — d > 1, hence,

E(%)ea(x,-, S) + (d - 7)INi| - &(G)

v

r (G), _ 3 oy _,
] ( (r—d+a(@G)(d—-aG)+1) + —— (G))

+d -1 —aG)

(d~o(G)(r + «G) — d) — (r — a(G))
(r—a(@)(r +(G) — d) - (r — a(G))
(r—a(@)(r+a(G)—d-1)>0.

v
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Thus, (4) holds.
Case 2.2 d—r <0.
From Claim 1 with y = d(< 7),z = A, we obtain

a(G)2

ec(z:,S) > 6(G)—d > d+°‘( Yr—ayd—r+1)+ 2 _4

= if_)(r d)(d-A+1)+ 2L (G)

Note that (d — r)|N;| > (d — 7)(d — A + 1), hence,

a—(rGjea(:v,-,S) +(d=1)Ni| - (G)
) (a(G) rodd-2+n+ a(G)z)
+d—-7r)d—A+1)—a(G)

= 0.
Thus, (4) holds. The proof is complete.

3 Remarks

Remark 1 In Theorem 1, the degree condition is sharp if r =a = b.
To demonstrate this remark with an example, let n be an integer with
n>1, a(G) = 2n, r = 2a(G)?,

_ [r(l +a(G))J _r(1+a(Q))
L 2(G) T 2a(G)

a(G)

-1

=By + G

Let L be the complete graph K, and let M be a(G) disjoint copies of
Kyi1. Let G =L+ M, where L 4+ M denotes the join of L and M. Then

G is a connected graph with
5G) = do(v)=y+z
a(G)\ | r(1 + a(G))
= (1+e@-2) M55
aG) (|t +a() [\* | aG)?
2 ([Mamr]) + 2 re@-1

where v € V(M). Application of Lemma 1 in Section 2 with S = V(L)
and T = V(M) proves that G have not an [a, b]-factor.
Remark 2 In Theorem 1, the degree condition is sharp if a < b.
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Let a(G) =0 (mod b), and

oG
T = (b )(a——y)(y+1) -1
Let L be the complete graph K, and let M be a(G) disjoint copies of
Ky41. Let G = L+ M, where L + M denotes the join of L and M. Then
G is a graph with

§(G) =de(v)=y+z
— I.b+a(G‘!;z—a!G) I.'b.;—:ég)raj - 9@([%%2])2 + %Q(G) - 1]’

where v € V(M). Application of Lemma 1 in Section 2 with S =V()
and T = V(M) proves that G have not an [a, b]-factor.
Remark 3 Expression (3) is identical to expression (2) for a < b and
a(G)=t—-1.

It is easy to prove that

(b + a(@): + a(c)) [b ;:((GC,;)a] _ a(;;') ([b -;;(GG))a] ) 2+6a(f)2 (_5;

is identical to the expression (3).

Remark 4 Let ¢ be an integer with ¢ > 4, and

® = {G : G is a graph satisfying condictions of Theorem 1 with a(G) =
t—1,a =0},

¥ ={G:Gis a K —free graph satisfying condictions of Theorem C}.
It is easy to see that & C ¥. So, Theorem C holds for ¥, and Theorem 1
holds for ® but not for ¥.

In fact, expression (1)> expression (5) for ®(G) =t —1,andr =a =
b>a(G)+7,0=1.
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