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Abstract

We consider the problem of covering a unit cube with smaller
cubes. The size of a cube is given by its side length and the size of
a covering is the total size of the cubes used to cover the unit cube.
We denote by ga(n) the smallest size of a minimal covering using n
cubes. We present tight results for the upper and lower bounds of
g3(n).
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1 Introduction

In 1932, Erdés defined a function f(n) which denotes the maximum sum of
n squares that can be packed into a unit square S. In [1], Erdés and Soifer
gave some results of f(n). Inspired by (1], Fan and Zhang [4] discussed the
dual version, that is a square-covering problem. In this paper, we generalize
this kind of covering problem to the case of cubes. That is, using smaller
cubes to cover a unit cube, obtaining corresponding results.

First, we give the definition of a minimal cube-covering. The size of a
given cube c is the side length of ¢ and is denoted by s(c). A covering C
is given by a set of cubes S positioned inside a unit cube C in such a way
that 0 < s(c) < 1, for each ¢ € S, and any point of C is covered by at least
one of the cubes in S.
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Given a covering C of the unit cube C using a set of cubes § = {¢1,...,¢n}
of n smaller cubes, where 0 < s(¢;) < 1, we denote by s(C) the size of the
covering C, which is given by Y_1._, s(ci).

A covering is said to be minimal if there is no other covering of C
using a set of cubes S’ where §' = {e1,--+,€i=1,Ci41,...,cn} Or §' =
{c1y.--1€Cim1,CLy Cit1,- - -1 Cn}, Where s(c}) < s(c;). We denote by g3(n) the
smallest size of a minimal covering using a set of n cubes. That is,

ga(n) = min{s(C): C is a minimal covering of the unit cube with n cubes}.

Let C be a covering of a unit cube C using a set of cubes § = {cy,.. ., cn}
As each corner point of C has to be covered by a cube in S, and the size of
a cube ¢ € S is such that 0 < s(c) < 1, we have that different corners of C
must be covered by different cubes of S. Therefore, the following lemma is
valid.

Lemma 1. IfC is a covering of the unit cube, then C has at least 8 cubes.

For example of a covering, consider the case when n = 8. It is easy
to show that gs(8) < 4. To see this, we can use a set S with 8 cubes of
size 1/2, each one positioned in a different corner of the unit cube. This
covering is clearly minimal, as we cannot remove a cube from S or replace
by a smaller cube to obtain a smaller covering. The next theorem shows
that g3(n) must be at least 4.

Theorem 2. For any n > 8, we have that g3(n) > 4.

Proof. Let C be a covering of the unit cube C with cubes in S. If a top face
of C and a cube ¢ € S have a common point, then ¢ and the bottom face of
C have no common points, because 0 < s(c) < 1. Let aj,az,--- ,a, be the
set of cubes in S which have common points with the top face of C and let
by,ba,-- - ,b; be the set of cubes in § which have common points with the
bottom face of C, then s+t < n, and {ai,...,as} {b1,b2,..., b} = 0.

For i =1,2,...,s, the projection of a; in the top face of C, is a square
which has the same length with a;. That is, the projections of a1,...,a, in
the top face leads to a covering of the top face of C. By the known result
for the square covering problem, the side length of these projections is no
less than 2, so the total size of the cubes a;,...,a, is no less than 2. In the
same way, the sum of the sizes of the cubes by, b2, , b, is no less than 2.
So,

g3(n) =2 24+2=4.

a
Obviously, the following corollary is valid.
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Corollary 3. g3(8) = 4.

Having a covering C with n cubes does not means that g3(n) < s(C).
This may occur when we can still obtain a covering using smaller cubes or
removing cubes in C and therefore, using less than n cubes. For example,
consider a covering with n > 8 cubes having 8 cubes of size 1/2, each one
in a different corner of the unit cube, and the remaining n — 8 cubes of size
€, all in one of the corners. This leads to a covering C with size 4+ (n—8)e,
where € can be made as close to zero as desired. Clearly this covering is not
minimal, since the 8 cubes of size 1/2 already leads to a covering and we
can remove the n — 8 cubes of size . In this example, the smaller covering
was easy to detect, but for a general covering, obtaining a smaller covering
or proving that it is minimal may be a non-trivial task.

On the other hand, if we have a covering C that is minimal, each cube
in C is necessary to obtain the covering of the unit cube. So, the following
result is straightforward.

Lemma 4. IfC is a minimal covering of the unit cube and C has n cubes,
then g3(n) < s(C).

2 Main result

In this section, we present the upper and lower bounds for gs(n).
The next theorem shows that gs(n) cannot be greater than 4, for any
n>9.

Theorem 5. Forn > 9, we have g3(n) < 4+ 46, where § is a positive value
that can be made as close to 0 as desired.

Proof. We denote the unit cube by C. We present a minimal covering C
with n cubes divided in two sets: a set L of large cubes and a set .S of small
cubes. The set L has three cubes with size 1 — ¢ and one with size 1 — &/,
where €/ = (n — 7)e and ¢ is a positive value such that ¢ < o Theset S
has two cubes of size ¢’ and n — 6 cubes of size «.

In the following, we show that these cubes leads to a minimal covering.
The following facts are valid.

Fact 1. The total length of the edges of C that can be covered by the
cubes in S is smaller than 1.

Proof. The result follows, as we have 2 cubes of size &/ = (n—T)e and n—6
cubes of size €. Therefore, we have a total size of 2ne — 14¢ + ne — 6¢ =
(3n — 20)¢ < 3ne. If a cube is positioned in a corner point of C, it
partially cover 3 edges, and the total edge length covered by the cubes in
§ isless than 3-3ne = 9ne. The result follows, as we havee < 1/(9n). O
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Fact 2. If LU S can cover C, then each edge of C must be intercepted
by a cube in L.

Proof. From Fact 1, the cubes in S can cover only a total edge length
that is smaller than 1. As the length of an edge is 1, the edge must also
be intercepted by a cube of L. 0

Fact 3. If LUS can cover C, then each cube in L must cover a different
corner point of C and each face of C has exactly two cubes of L covering
opposite corners of the face.

Proof. Let c;,1 = 1,2, 3,4 be the four cubes in L, and n; is the number
of edges of C which is intercepted by ¢;. From Fact 1, Z:"=1 n; > 12,
But each cube cannot intercept more than 3 edges of C, which means
that n; < 3. So, n; = 3,i =1,2,3,4. This happens only when c; covers
a corner of C.

Let there are n;5 edges of C intercepted by ¢; and ¢, simultaneously.
Then there are at least 12 — (n; + na — n12) = 6 + n12 edges intercepted
by c3 or ¢4. So, na+mn4 > 6+n;2, and this cannot happen when n;2 >0
because nz = ng = 3. This means that each edge of C can by intercepted
by only one cubes in L. This leads to a configuration where in each face
of C, we have exactly two cubes of L covering opposite corners of the

face.
O

So, consider the non-covered space after placing the large cubes of L.
In Figure 1, we exemplify the placing of the large cubes: three cubes of size
(1-¢) in positions (0,0,1), (0,1,0), (1,0,0) and one cube of size (1 —¢’) in
position (1,1,1). The other possible coverings are symmetries of this one.
To help visualize the covering in Figure 1, we only present the covering of
the edges of C. The placing of the large cubes of L leads to 4 non-covered
cuboid regions: one with dimensions (g,¢,€) (at corner point (0,0,0) in
Figure 1) and three with dimensions (,¢,€’) (at corner points (0,1,1),
(1,1,0) and (1,0, 1), rotating if necessary).

We can consider these non-covered cuboid regions as one-dimensional
bins, considering the largest edge of the cuboid as the size of a one-dimensional
bin, that must be covered by one-dimensional items of size € or &’ (all re-
maining cubes are the cubes in S, which has n — 6 cubes of size € and 2
cubes of size £’). In Figure 2, we present these bins with the size of a largest
edge.

So, the total size of these bins is e+ (n—T7)e+2¢’' = e+¢€'+2¢' = e+3¢'.
On the other hand, the total size of cubes in S is equal to (n — 6)e + 2¢’
which is also € + 3¢’. So, to have a covering of these bins (non-covered
cuboids) with the cubes of S, we have to obtain a perfectly covering of the
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Figure 1: Edges of C covered after placing cubes in L.
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Figure 2: Non-covered cuboids after placing the large cubes of L.

bin size. In fact, the covering is easy to obtain, placing one cube of size
in the cuboid of size £ (Figure 2 (a)), two cubes of size ¢’ covering the two
cuboids with dimensions (e, ¢,€’) (Figures 2 (b) and (c)) and the remaining
n — 7 cubes of size ¢ covering perfectly the remaining cuboid of dimension
(¢,€,€') (Figure 2 (d)).

To see that the above covering is minimal, note that we cannot replace
one cube of S by a smaller cube, as the small cubes fit perfectly in the total
length of the bins (cuboid largest edge). And we also cannot replace one
large cube of L by a smaller cube, as there is no more small cubes to be
used to cover the new larger cuboid regions.

Now, consider the size of the obtained covering. The cubes in L have
total size 3(1 —€) +(1-¢€') =3-3e+1~(n—"7)e =4 — (n— 4)e. The
cubes in S have total size 2¢' + (n—6)e = 2(n—T7)e + (n—6)e = (3n— 20)e.
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So, the size of the covering is 4 — (n — 4)e + (3n — 20)e = 4 + (2n — 16)e.
As € can be made as close to 0 as desired, the size of the covering can also
be made as close to 4 as desired. O
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