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Abstract

For a graph G = (V, E), a function f : V — {0,1,2} is called
Roman dominating function (RDF) if for any vertex v with f(v) =0,
there is at least one vertex w in its neighborhood with f(w) = 2.
The weight of an RDF f of G is the value f(V) = 2vev f(v). The
minimum weight of an RDF of G is its Roman domination number
and denoted by yr(G). In this paper, we show that yr(G) + 1 <
Yr(1(G)) < 1r(G) + 2, where u(G) is the Mycielekian graph of G,
and then characterize the graphs achieving equality in these bounds.
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1 Introduction and primary results

The notation we use is as follows. Let G be a simple graph with vertex
set V = V(G) and edge set E = E(G). The order | V | and size | E |
of G are respectively denoted by n = n(G) and m = m(G). If E = §,
then G is called empty graph. The open and closed neighborhoods of a
vertex v € V are Ng(v) = {u € V | uv € E} and Ng[v] = Ng(v) U {v},
respectively. Also the open and closed neighborhoods of a subset X C V(G)
are Ng(X) = UyexNe(v) and Ng[X] = Ng(X) U X, respectively. The
degree of a vertex v € V is deg(v) =| N(v) |. The minimum and mazimum
degree of a graph G are denoted by § = §(G) and A = A(G), respectively. If
every vertex of G has degree k, then G is said to be k-regular. We write K,,

ARS COMBINATORIA 106(2012), pp. 277-287



C, and P, for the complete graph, cycle and path of order n, respectively,
while Ky, ... n, denotes a complete p-partite graph. For a subset S C V,
the induced subgraph G[S] is a subgraph of G with the vertex set S and for
every vertices u,v € S, uv € E(G[S]) if and only if uv € E(G).

The research on domination in graphs has been an evergreen in the field of
graph theory. Its basic concept is the dominating set and the domination
number. The recent book Fundamentals of Domination in Graphs [4] lists,
in an appendix, many varieties of dominating sets that have been studied.
It appears that none of those listed are the same as Roman dominating sets.
Thus, Roman domination appears to be a new variety of both historical and
mathematical interest.

A subset S C V(G) is a dominating set, briefly DS, in G, if every vertex in
V(G) — S has a neighbor in S. The minimum number of vertices of a DS
in a graph G is called the domination number of G and denoted by v(G).

Let f: V — {0,1,2} be a function and let (Vo, V1, V2) be the ordered par-
tition of V induced by f, where V; = {v € V | f(v) =i} and | V; |= n;,
for i = 0,1,2. We notice that there is an obvious one-to-one correspon-
dence between f and the ordered partition (Vo, V1, V2) of V. Therefore,
one can write f = (Vo, V1, V2). Function f = (Vo, V1, V) is a Roman dom-
inating function, abbreviated RDF, for G if Vo C Ne(Va). If W C Vs
and W; C V;, then we say W, U W, defends Wy U Ng(Ws]. For simplicity
in notation, instead of saying that {v} defends {w}, we say v defends w.
The weight of f is the value f(V) = X,y f(¥) = 2n2 + n1. The Roman
domination number vg(G) is the minimum weight of an RDF of G, and we
say a function f = (Vo,V1,V2) is a yr- or Yr(G)-function if it is an RDF
for G and f(V) = yr(G). More details about Roman domination number
have given in many papers. For example reader can see [2,3,5,6,8,9].

Let G = (VO E°) be a graph. The Mycieleskian pu(G) of G is the graph
with vertex set V0 U VU {u}, where V! = {4} | v} € V°}, and edge set
E°U{v}? | v9v? € E® and v} € V'} U {vju | vj € V'}. Interested readers
may refer to [1, 7] to know more about the Mycieleskian graphs.

As stated in many references, for example in [4], the Cartesian product
G x H of two graphs G and H is the graph with vertex set V(G) x V(H)
where two vertices (u;,v1) and (uz,v2) are adjacent if and only if either
uy = ug and v1vs € E(H) or v; = vz and u uz € E(G).

Let v € S C V. A vertex u is called a private neighbor of v with respect
to S, or simply an S-pn of v, if u € N[v] — N[S — {v}]. The set pn(v;S) =
N[v] — N[S — {v}] of all S-pn’s of v is called the private neighborhood set
of v with respect to S. Also an S-pn of v is an external private neighbor or
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external (denoted by S-epn of v) if it is a vertex of V — §. We also call the
set epn(v; S) = N(v) — N[S — {v}] of all S-epn’s of v, the external private
neighborhood set of v with respect to S. To see this definitions refer to
[1, 4]. Obviously if f = (Vp, V4, V2) is a yg-function, then for each v € Vs,
epn(v; V2) # @ (we notice that for each vertex v € V5, epn(v; V2) C V; and
so epn(v; Vo) # B if and only if epn(v; Vo) N Vg # 0).

Cockayne et al. in [2] have shown that for any graph G of order n and
maximum degree A, 2n/(A + 1) < yr(G), and for the classes of paths P,
and cycles Cy,, Yr(P,) = Yr(Cn) = [2n/3]. Furthermore, they have shown
that for any graph G, Y(G) < vr(G) < 2¥(G), where the lower bound is
achieved only by G = K,,, the empty graph with n vertices. A graph G
is called a Roman graph if 7r(G) = 27(G) [2]. For example, the complete
multipartite graph Km,,...,m, is Roman if and only if 2 ¢ {m,,...,m,}.
As shown in [2], an equivalent condition for G to be a Roman graph is that
G has a yg-function f = (V, V3, Vo) with V; = .

We now introduce two new concepts. A Roman graph G with yg-function
= (Vo,0, V2) we call a special Roman graph if the induced subgraph G[V,]
has no isolated vertex, and its yg-function f we call a special yg-function.

In this paper, we first show that yz(G) + 1 < yr(u(G)) < Yr(G) + 2 and
then characterize the graphs achieving equality in these bounds.

In this entire paper, we assume that the induced subgraph by V; is an
empty subgraph if f = (Vy, V4, V3) is an RDF and V; # 0.

We first present the Roman domination number of some known graphs.

Proposition 1.1. (Cockayne et al. [2] 2004) If m; <my < --- < m,
are positive integers and G is the complete n-partite graph Kp, ... m,, then

Cfm+l Fl1<m <2,
1r(G) = { 4 otherwise.

Proposition 1.2. Lett > 1 and n > 3 be integers. If G is the cartesian
product graph P, x K, then

6[t/4)+1 if n=3, t=0 (mod4),
_ ) 6[t/4]+2r if n=3, t=1,2 (mod 4),
YRC)=19 §l1/a]+5 if n=3, t=3 (mod4),
2t otherwise.

Proof. Let V(P, x K,,) = {1,2,...,t} x {1,2,..,n}. First let n = 3. Let
A={(4¢+1,1),(4¢+3,2) |0 < ¢ < |t/4] —1} and B = {(4€ +2,3), (42 +
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4,3) |0 < £ < |t/4) —1}. One can easily verify that the following Roman
dominating functions have minimum weight.

Case i. t =0 (mod 4).
Let fo = (Wo, W1, Ws), where Wy = A, W) = BU {(t,1)} and W =
V- (W uWy).

Caseii. t=1 (mod 4).
Let fi = (W, W;,W,), where W, = AU{(t,1)}, W; = B and W, =
V — (W UW,).

Case iii. t-2(mod 4)
Let fz—(Wo,Wl,W?) where W, = AU {(t -1,1),(t,1)}, W, = B and
Wy =V — (W] UWy).
Case iv. t = 3 (mod 4).

Let fs = (Wy ,W, ,Wy"), where E,Vz = AU{(t-21),t2)}, W =
Bu{(t-1,3)}and W, =V — (W, uw,).

Now let n > 4. Easily it can be seen that the weight of every RDF for
P, x K, on the every copy of K, is at least 2. Thus yr(P; x Kp) > 2t.
Now since f = (Wp,, Wy) is an RDF with weight 2t, when W, = {(¢,1) |
1<£<t}and Wy =V — Wa, we get Yr(P: x Kn) =2t. (]

Proposition 1.3. Let t > 1 and n > 3 be integers. If G is the cartesian
product graph C; x K,,, then

6(t/4] + 2r if n=3,t=r(mod4) and0<r <1,
Yr(G) 6|t/4]| +2r—1 if n=3,t=r (mod4)and2<r <3,
2t otherwise.

Proof. Let V(C; x K,) = {1,2,...,t} x {1,2,...,n}. First let n = 3. Let
A={(40+1,1),(4£+3,2)|0< £< [t/4] —1} a,ndB {(4€+2,3), (42 +
4,3) ] 0 < £ < |t/4] — 1}. One can easily verify that the following Roman
dominating functions have minimum weight.

Case i. t =0 (mod 4).
Let fo = (Wo, W, Wg), where Wy = A, W) = Band Wy = V—(Wl UW2).

Case ii. t =1 (mod 4).
Let fi = (WQ,Wl,Wz) where W, = AU {(t,1)}, W; = B and Wy =
V — (W, UW,).

Case iii. t =2 (mod 4).
Let fo = (W , W, ,W, ), where Wz =AU{(t—1 3} W, =(B-{(t-
2,3)Hu{(t—2,1),(t,2)} and W, =V — (W, UW,).
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Case iv. t =3 (mod 4).

Let f = (Wo',W,",W,"), where W," = AU {(t - 2,1),(t,2)}, W, =
Bu{(t-1,3)}and Wy =V — (W,  UW,").

Similar to the proof of Proposition 1.2, we can prove vr(C; x K,) = 2t,

when n > 4. O

The following two propositions can be similarly proved and one can easily
verify that these graphs are special Roman graphs.

Proposition 1.4. Ift > 2 and 4 < ny < np < ... < n, are integers, then
YR(P: X Kq,,...n,) = 4L.

Proposition 1.5. Ift > 1 andn > 2 are integers, then yr(P.x K1,,) = 2t.

2 Main Results

First we state our main theorem.

Theorem 2.1. For each graph G, 7r(G) +1 < yr(u(G)) < vr(G) + 2.

Proof. Let V(G) = V°, and V(u(G)) = VOUVIU{u}. Let f = (Wo, Wy, Wa)
be a yr(G)-function. Since g = (WoUV?, Wy, WoU{u}) is an RDF for u(G),
we have Yr(1(G)) < Yr(G) +2. We now show that yr(u(G)) = vr(G) +1.
Let g = (Wy, W1, W,) be an ygr(u(G))-function. We continue our discussion
in the following two cases.

Case 1. u € Wy U W,, Let

W; = (Wa—({u}u(WanV1)u{ef | v}l e Wa},
Wi = Wi —{v]|v; e W},
W, = V(G)—(W][uWj).

Then the function ¢’ = (W{§, W{, W}) is an RDF for G, and

1r(G) < ¢'(V(G)) = 2|W| + [Wi| < 2|Wo| + |Wi| — 1 < vr(u(G)) — 1.
Hence vr(1(G)) = vr(G) + 1, as desired.
Case 2. u € W,.

Then Won V! # 0. If W, NV! # @, then it can be easily verify that
the inequality is true. Now let W; C V°. Consider A = {vflv; € Wa}. If
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(WaUW;)NA # 0, then similar to Case 1, we can find an RDF ¢’ for G such
that 7(G) < ¢'(V(G)) < 1R(4(G)) 1, and hence 1=(u(G)) = 1r(C) +1.
Therefore, we assume that (W UW1)N A = @ and Wp = {021 <i <
t}U{v},|1 < £ < m} such that (W1U{vg |1 <i < thn{f |1 <e<m} =0.

Suppose that epn(v}k; Wo)NV? =@, for some 1 < k < m. Then k is unique
and epn(v},; W) = {u}. Let
s {011 <i<t}U{pd]1 €< m, and £ #k},
W = W,
5 = V(G) - (W{uwj).

Then the function g’ = (Wg, W{, W}) is an RDF for G such that yr(G) <
vr(14(G)) — 2, which implies Yr(1(G)) = Yr(G) + 1, as desired. Hence we
may assume that for each 1 < £ < m, epn(v},;Wa) NV #0.

Let a?t € epn(v},; W2) N VO, for each 1 < £ < m. Clearly {a},|1 £ £ <
m} N (Wo UW;) = 8. Hence {a},|1 < ¢ < m} C W. Furthermore m > 2
and {0},|]1 < £ < m} = {v},|1 <€ < m}. Alsoforeachl< £ < m,
| epn(vl,; W2)NV?® |= 1. Let o}, = vj,. We now add 19, and v}, to W and
W, respectively, and delete v}l and v}z of W,. If necessary, we also add u to
W,. Then we obtain g’ = (W{, W{, W}) as a new RDF for u(G). lf m > 3,
then ¢/(u) = 0. Hence ¢'(V(u(G)) < g(V(#(G))) -1 = 7r(i(G)) — 1, &
contradiction. Finally let m = 2 and choose W} = W3, W}’ = W] —{u,v},}
and WY = V(G) — (W}’ UWY). Since the function g” = (Wg', W1, W7') is
an RDF for G with weight yr(1£(G)) — 2, we have 7r(G) < ¢"(V(G)) <
vr(u(G)) — 2, as desired. ]

Our next aim is to characterize for which graphs G the Roman domination
number of u(G) is vr(G) + 1 or vr(G) +2.

Theorem 2.2. For every special Roman graph G, Yyr(#(G)) = 1r(G) + 1.

Proof. Theorem 2.1 implies Yyr(1(G)) = Yr(G) + 1. Let f = Vo, 9, V2)
be a special yr-function for G. By choosing Wz = Vo, W, = {u}, and
Wo = Vo U V1, the function g = (Wo, W1, W) is an RDF for u(G) with
weight vr(G) + 1, which implies yr(u(G)) = 7r(G) + 1. O

In the next theorem we show that the converse of Theorem 2.2 is also true.

Theorem 2.3. If G is not a Roman graph, then Yr(u(G)) = 7r(G) + 2.
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Proof. In the contrary, let g = (Wo, Wy, W,) be a vp(u(G))-function with
weight yr(G)+1, by Theorem 1. We also assume that if | W, |> 1, then the
induced subgraph p(G)[W)] is isomorphic to the empty graph K, where
b =| Wi |. In the next three cases, we show that u ¢ Wy U W, U W,, and
this completes our proof.

Case 1. u € W,
Then W, C VO, Let

2 = (W2 = {u}) U{vjlvj € W2},
‘/l = {?)OI’U EWQ}
%o = VO-(KuM).

Then the function f = (Vp, Vi, V2) is an RDF for G with at most weight
vr(G) — 1, a contradiction.

Case 2. ue W;.

Then W, C V. Since the induced subgraph w(G)[W] is an empty graph,
we have W) — {u} C V°. Also since v € W) implies v € Wy, we have
Wi = {u}. Let Vo = W, V; = § and Vo =V0 -V, Then the function
f = (V,0,V,) is a yg-function for G. Hence G is a Roman graph, a
contradiction.

Case 3. u e W,.

Then | WonV?! |> 1. Let v] € Won V1. We may also assume that
v) € Wo U W,. Because if vQ € W, then with considering

Va = (WzﬂV")U{v"Iv € W},
w = (W V°)—{v°lv € We},
Vo = V°—(Vlqu)

the function f = (Vu, 1}, V2) is an RDF for G with at most weight yr(u(G))—
2 = yp(G) — 1, a contradiction. We now continue our discussion on the

following two subcases.
Subcase 3.i. v € W;.

Let A = {v}|v? € W1}. Since {i|v? € W, and v} € Wy} =0, and g is a

Yr(#(G))-function, we have | AnW, |< 1. More exactly AN W, = {vl}
Easxly we see that if v} € W, then v €Wy UW,. Lett =| {i | 2,0} €
Wi} |andlet € =) {i | v? € W, and v} € W} |. Ift+£ > 1, then we canget
an RDF with weight 'yR(G) —1 for G’ a contradiction. Now let £ =t = 0.
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Thus W; = {9} and epn(v}; W2) = {u}. Hence with considering

Vo = (Wg N VO) U {'U?IU;' € Wz} - {’U?},
‘/1 = Wl = {'U(I)}’
Vo = VO—(KiUVa)

the function f = (Vo,Wi,V2) is an RDF for G such that f(V(G)) <
1r(1(G)) — 2 = 7r(G) — 1, a contradiction.

Subcase 3.ii. v} € Wq.

We recall v] € W» and u € Wy. By Subcase 3.i and the above discussion
we may assume that if v} € Wa, then v) € W,. We also know that if
v0 € Wy, then v} ¢ Wa . The assumption v} € Wo concludes that o)
is defended by a vertex a of W,. Suppose o € VO and let a = v3. If
epn(v}; W2) N V° = B, then with deleting at least v} from Wa, we can find
a function f = (Vo, Vi, V2) with weight at most Yr(1(G)) — 2 =7r(G) —1
such that V; U V; defends all vertices of G. Thus let epn(vi; W2) N VO #
0 and let epn(v}; W2) N VO = {103 < i < t}, for some ¢ > 3. Hence
{v}]3 < i <t} € Wy U W, If g(Ukgwi) = 2, then with improving g
we can makes an RDF ¢ for u(G) with at most weight yr(u(G)) — 1, a
contradiction. Now let epn(v}; Wo)NV® = {13} and g(v3) = 1. In this case,
we may find an RDF ¢ for (G) such that ¢'(V(u(G))) < 1r(#(G)) -1 (a
contradiction) or ¢’'(V (1(G))) = 7r(1(G)) and ¢’(u) = 1, that is impossible
by Case 2. Finally we assume that Wy N V® does not defend v9 and let
o = v}. Then epn(vl; Wa) N VO # 0. Also we have epn(vj; W2) N VO £0.
If epn(v}; Wa) N VO = {09}, then with choosing

V; = (Wan VO U {(o9v} € Wa} — {v8},
V; = (WinV0) — (1§ € W1 | v} € Wa},
Vo =V(G) - (V; UV,),

the function ¢ = (V,,V;,V) is an RDF for G such that g (V(G))
9(V(G)) -2 = 7r(G) — 1, a contradiction. Now let | epn(vd; Wo)NVO |>
Hence v} € Wi U W if v} € epn(v}; W2) N V0. Now with choosing

<
2.

Wé = (Wy — {v},v3}) U {0},08},
Wy = Wi = {v] | of € epn(v}; Wa)},
Wg = V(i(G)) - (W UWp),

the function g’ = (Wy, Wy, W,) is an RDF for u(G) such that
g VG =2 Wy |+ | W [S2|Wa |+ ]| W] -1=g(V(x(G))-1
=r(1(G))-1,

a contradiction. (]
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Theorem 2.4. Let G be a graph. If for every yp(G)-function f = (Vo, V1, Va)
the induced subgraph G[V3] has an isolated vertez, then yp(u(G)) = Yr(G)+
2.

Proof. In the contrary, let g = (Wo, W1, Ws) be a yg-function for u(G) with
weight Yr(G) + 1, by Theorem 1. We assume that if | W} |> 1, then the
induced subgraph u(G)[W}] is isomorphic to the empty graph Kj,, where
b =| W} |. In the next three cases, we show that u ¢ W U W) UW,, and
this completes our proof.

Case 1. u € Ws.

Then W, C VO. Let
Vo = (Wa—{u})U{v]|v} € W},
‘,l ] Wl - {'U_,?"U; € Wz},
o = VO—(uls).

Then the function f = (V,, V4, V2) is an RDF for G with at most weight
vr(G) — 1, a contradiction.

Case 2. ue W;.

Then W, C V. Since the induced subgraph u(G)[W)] is an empty graph,
we have W) — {u} C V°. Since 9 € W) implies v} € W, and the induced
subgraph p(G)[W;] is an empty graph, we have W), = {u}. Then the
function f = (V(G)~W,, 0, W) is a yr-function for G. Then §(G[W;]) = 0.
Hence there is a vertex v? € W» such that it is adjacent to no vertex of
Ws — {1?}. Therefore v} is adjacent to no vertex of W,. Hence v} € W;, a
contradiction.

Case 3. ue W,.

The proof of this case is exactly the proof of Case 3 of Theorem 2.3.

The next two theorems are immediate results of Theorems 2.2 and 2.4.

Theorem 2.5. Let G be any graph. Then vr(i(G)) = vr(G) + 1 if and
only if G is a special Roman graph.

Theorem 2.6. Let G be any graph. Then yr(u(G)) = yr(G) + 2 if and
only if G is not a special Roman graph.
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There are many graphs that are not special Roman graph. For example, the
complete graphs K, paths P,, stars K n, all for n > 1, cycles C,, forn > 3,
and complete multipartite graphs K m,,....m, for 2 < mp < --- < m, are
not special Roman graphs and their Roman domination number are 2,
[2n/3], 2, [2n/3], and 3, respectively. The next proposition gives another
non special Roman graph.

Proposition 2.7. The Petersen graph G(5) is not a special Roman graph,
and yr(G(5)) = 6.

Proof. Let V(G(5)) = {i|]1 <% <10} and
E(G(5)) = {(i,i+1)[1 <3 < 9}U{(6,10),(1,5),(1,9),(2,7), (3,10), (4, 8)}.

Since G(5) is 3-r'egular and G(5) has 10 vertices, we have yr(G(5)) = 6. Let
Vo = {1,8,10}, V; =0, and Vp = V — V5. Since the function f = (Vo, 0, V2)
is an RDF with weight 6, we get Yr(G(5)) = 6.

Finally we prove G(5) is not a special Roman graph. By the given RDF in
the previous paragraph, G(5) is a Roman graph. Now let f = (6,9, V2)
be an arbitrary yg-function for G(5). We know G(5) is a non-complete
3-partite graph with three parts X = {1,4,7,10}, Y = {3,6, 8}, and Z =
{2,5,9}. Assume that a and b are two adjacent vertices of V5. Since
| N(a)UN(b) |= 6, and there is no other vertex ¢ that dominates all of the
four remained vertices, we get f(V) > 7, a contradiction. Hence G(5) is
not a special Roman graph. a

Corollary 2.8. IfG € {Kam,,....m, |[2<m2<mg <--- < ma JU{G(5)}U
(Ca | 7> 3} U {Kn, Pas K | 7.2 1}, then 1a(u(G)) = 1R(C) + 2
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