The edge-closure of a claw-free graph is the line graph of a multigraph

Přemysl Holub 1,2

Abstract.

Ryjáček introduced a closure concept in claw-free graphs based on local completion at a locally connected vertex. He showed that the closure of a graph is the line graph of a triangle-free graph. Brousek and Holub gave an analogous closure concept of claw-free graphs, called the edge-closure, based on local completion at a locally connected edge. In this paper, it is shown that the edge-closure is the line graph of a multigraph.

Keywords: Claw-free, Closure concept, Edge-closure concept, Hamiltonicity, Stable property

AMS Subject Classification (2000): 05C45, 05C35

1 Introduction

In this paper, by a graph we mean a simple undirected graph (without loops and multiple edges). By a multigraph we mean a graph in which multiple edges and loops are allowed. We use [3] for terminology and notations not defined here. The circumference, i.e., the length of a longest cycle in G, is denoted by c(G). For a nonempty set $A \subseteq V(G)$, the induced subgraph on A in G is denoted by $\langle A \rangle_G$. For any $A \subset V(G)$, G-A stands for the graph $\langle V(G) \setminus A \rangle_G$. An edge xy is pendant if $d_G(x) = 1$ or $d_G(y) = 1$.

For a connected graph H, a graph G is said to be H-free, if G does not contain a copy of H as an induced subgraph; the graph H will be also

¹Department of Mathematics, University of West Bohemia, and Institute for Theoretical Computer Science (ITI), Charles University, Universitini 22, 306 14 Pilsen, Czech Republic, e-mail: {holubpre}@kma.zcu.cz

²Research Supported by Grant No. 1M0545 of the Czech Ministry of Education.

referred to in this context as a forbidden subgraph. The graph $K_{1,3}$ will be called the claw and in the special case $H=K_{1,3}$ we say that G is claw-free. Let $x\in V(G)$. The neighbourhood of x, denoted by $N_G(x)$, is the set of all vertices adjacent to x. For a nonempty set $A\subset V(G)$, $N_G(A)$ denotes the set of all vertices of G-A adjacent to at least one vertex of A, and $N_G[A]=N_G(A)\cup A$. For an edge $xy\in E(G)$ we set $N_G(xy)=N_G(\{x,y\})$ and $N_G[xy]=N_G[\{x,y\}]$. A vertex $x\in V(G)$ is said to be locally connected if $\langle N_G(x)\rangle$ is connected. A graph G is locally connected if every vertex of G is locally connected. Analogously, an edge $xy\in E(G)$ is locally connected if $\langle N_G(xy)\rangle$ is connected and a graph G is edge-locally connected if every edge of G is locally connected.

For an arbitrary vertex $x \in V(G)$, let $B_x = \{uv | u, v \in N_G(x), uv \notin E(G)\}$ and $G_x = (V(G), E(G) \cup B_x)$. The graph G_x is called the *local completion* of G at x. A locally connected vertex x with $B_x \neq \emptyset$ is called *eligible* (in G). We say that a graph F is the *closure* of G, denoted by F = cl(G), if there is no eligible vertex in F and there is a sequence of graphs G_1, \ldots, G_t and vertices x_1, \ldots, x_{t-1} such that $G_1 = G$, $G_t = F$, x_i is an eligible vertex of G_i and $G_{i+1} = (G_i)_{x_i}$, $i = 1, \ldots t-1$ (equivalently, cl(G)) is obtained from G by a series of local completions at eligible vertices, as long as this is possible). The following basic result was proved by Ryjáček.

Theorem A [5]. Let G be a claw-free graph. Then

- (i) cl(G) is well-defined (i.e., uniquelly determined),
- (ii) there is a triangle-free graph H such that cl(G) = L(H),
- (iii) $c(G)=c(\operatorname{cl}(G))$.

Consequently, if G is claw-free, then so is cl(G). A claw-free graph G, for which G = cl(G), will be called *closed*.

For an edge $xy \in E(G)$, let $B_{xy} = \{u, v | u, v \in N_G[xy], uv \notin E(G)\}$ and let $G_{xy} = (V(G), E(G) \cup B_{xy})$. The graph G_{xy} is called the *local completion* of G at xy. A locally connected edge xy is called *eligible* (in G), if $B_{xy} \neq \emptyset$ and xy is not a pendant edge in G. We say that a graph F is the *edge-closure* of G, denoted by F = cl'(G), if there is no eligible edge in F and there is a sequence of graphs G_1, \ldots, G_t and edges e_1, \ldots, e_{t-1} such that $G_1 = G$,

 $G_t = F$, e_i is an eligible edge of G_i and $G_{i+1} = (G_i)_{e_i}$, i = 1, ..., t-1. A claw-free graph G, for which $G = \operatorname{cl}'(G)$, will be called *edge-closed*. In [4], there are examples showing the independence between the closure introduced by Ryjáček in [5] and the edge-closure (i.e., none of the closures can be obtained by using the other one).

The following theorem shows the basic properties of the edge-closure of a graph.

Theorem B [4]. Let G be a claw-free graph. Then

- (i) the closure cl'(G) is well defined,
- (ii) the graph cl'(G) is claw-free,
- (iii) c(G) = c(cl'(G)).

Beineke in [1] characterized line graphs of graphs in terms of forbidden induced sugraphs. He showed that a graph G is the line graph of a graph H if and only if G does not contain any of nine forbidden subgraphs. One of them, given in Fig. 1, is edge-closed, implying that the edge-closure of a graph is not a line graph of a graph. In this paper we show that the edge-closure of a claw-free graph is the line graph of a multigraph.

Fig. 1

Bermond and Meyer [2] characterized line graphs of multigraphs:

Theorem C [2]. Let G be a multigraph. A graph H is the line graph of a multigraph G if and only if H contains none of the seven graphs given in Fig. 2.

Fig. 2

Note that we will always keep the labeling of the vertices of the graphs G_2, G_3, \ldots, G_7 as shown in Fig. 2.

2 Main result

Theorem 1. Let G be a claw-free graph. Then cl'(G) is the line graph of a multigraph.

Proof. We will show that every edge-closed graph contains none of the seven forbidden subgraphs depicted in Fig. 2. Let G be a claw-free graph, let H be the edge-closure of G. By Theorem B, H is claw-free.

Now, to the contrary, we suppose that H contains an induced subgraph F isomorphic to one of the graphs G_2, G_3, \ldots, G_7 . Since H is edge-closed, none of the edges of F is eligible in H.

Consider a pair of vertices x, y of the graph F as shown in Fig. 2. Since xy is not eligible in H and $\langle N_H(xy) \rangle$ is not complete, there is at least one neighbouring vertex z of xy in $\langle N_H(xy) \rangle$ such that z belongs to a different component of $\langle N_H(xy) \rangle$ than the vertices t, u, v, w. Choose an arbitrary vertex z with this property and note that H is claw-free by Theorem B.

Case 1: $F \simeq G_2$ or $F \simeq G_4$ or $F \simeq G_5$. Suppose that $xz \in E(H)$. Since H is claw-free, the subgraph $\langle x,t,y,z \rangle$ is not an induced claw in H. Clearly $ty \notin E(H)$, since otherwise F is not induced in H, a contradiction. If $zt \in E(G)$, then z belongs to the same component of $\langle N_H(xy) \rangle$ as the vertices t, u, v, w implying that the edge xy is eligible in H, a contradiction again.

Hence $yz \in E(H)$. Consider the subgraph induced by the vertices y, u, v, z. Since H is claw-free, there is at least one of the edges uv, uz, vz. For the edge uv the subgraph F is not induced in H, a contradiction. Thus at least one of the edges zu, zv belongs to H implying that z belongs to the same component of $\langle N_H(xy) \rangle$ as t, u, v, w. This yields that the edge xy is eligible in H, a contradiction. Hence H is G_2, G_4, G_5 -free.

Case 2: $F \simeq G_3$ or $F \simeq G_6$ or $F \simeq G_7$. Suppose that $yz \in E(H)$. Since H is claw-free, at least one of the edges wu, wz, uz belongs to H. For the edge uw the subgraph F is not induced in H, a contradiction. If $uz \in E(H)$ or $wz \in E(H)$, then z belongs to the same component of $\langle N_H(xy) \rangle$ as t, u, v, w. This yields that the edge xy eligible in H, a contradiction.

Now suppose that $xz \in E(H)$. Since H is claw-free, at least one of the edges wu, wz, uz belongs to H. For the edge uw the subgraph F is not induced in H, a contradiction. If $uz \in E(H)$ or $wz \in E(H)$, then the vertex z belongs to the same component of $\langle N_H(xy) \rangle$ as the vertices t, u, v, w. This implies that xy is eligible in H, a contradiction again. Hence we have shown that H is G_3, G_6, G_7 -free.

Thus we have shown that cl'(G) contains none of the forbidden subgraphs given in Theorem C. Hence the edge-closure of a claw-free graph G is the line graph of a multigraph.

We have shown that the edge-closure of a claw-free graph G is not necessarily a line graph of a graph. The following example shows that there is an edge-closed graph H such that H has no triangle-free line graph original.

Fig. 3

References

- [1] L.W. Beineke: Characterizations of derived graphs.
 - J. Combin. Theory Ser. B 9 (1970), 129-135.
- [2] J.C. Bermond, J.C. Meyer: Graphe representatif des arretes d'un multigraphe.
 - J. Math. Pures et Appl. 52 (1973), 299-308
- [3] J.A. Bondy, U.S.R. Murty.: Graph Theory with Applications. Macmillan, London and Elsevier (1976).
- [4] J. Brousek, P. Holub: Edge-closure concept in claw-free graphs and stability of forbidden subgraphs.
 Journal of Graph Theory, submitted
- [5] Z. Ryjáček: On a Closure Concept in Claw-Free Graphs. Journal of Combinatorial Theory Ser. B. 70 (1997), 217-224.