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Abstract. Using the model of words, we give bijective proofs of Gould-Mohanty’s
and Raney-Mohanty’s identities, which are respectively multivariable generaliza-
tions of Gould’s identity

’go(x—kkz> (yn+_1;:) =§(z+ek—kz) (y;e_+kkz)

and Rothe’s identity
zn: T x—kz\[y+kz\ f[z+y
—ar—kz\ k n—k)] "\ n [

1. Introduction

A famous generalization of the binomial theorem is Abel’s identity [1]:

n

> (k)w(x —k2) "Ny + k2)"F = (z + )", (1)

k=0
which also has a company identity as follows:

n

> (Z)xy(x — k) Ny + k) = @ty )+t ()

k=0

It is not difficult to see that (1) and (2) are respectively limiting cases of
the following convolution formulas due to Rothe [17]:

2 =wm (7)) - () ®

k=0

Semmeramma (e ) ()

__=z+y (a:+y—nz). @)

T+y—nz n
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Gould [5,6] reproved (3) and (4) and also obtained the following identity

- n n
Z (:r kkz) (i-!-_kkz) _ Z (x + ek kz) (y ne_+kkz). 5)
k=0 k=0
Another proof of (3) and (4) was given by Sprugnoli [19]. It is not difficult
to see that (4) can be deduced from (3). Blackwell and Dubins [2] gave
a combinatorial proof of Rothe’s identity (4), which can also be proved in
the model of lattice paths (using [13, p. 9] or [10, (1.1)]). Recently, the
author [8] gives simple bijective proofs of Gould’s identity (5) and Rothe’s
identity (3) in the model of binary words.

Hurwitz [9] established a multivariable generalization of Abel’s identities
(1) and (2) (see also [20]). For a curious g-analogue of Rothe’s identity (3),
we refer the reader to [18] and references therein.

In order to state a multivariable generalization of Rothe’s identities
in the literature, we need first to introduce some notation. Let m be a
fixed natural number throughout the paper. For a = (aj,...,am) € N™
and b = (by,...,bm) € C™, set |a] = a1 + -+ + am, al = arl---aml,
a+b = (a1+b1,..-,am+bm), a-b = a1br+- - +ambm, and b® = b7' - - - b4
For any complex parameter r and n = (n1,...,nm) € Z™, we define the
maultinomial coefficient (T) by

(x) - {m(x—l).“(x—lnl.*.l)/n!’ ifn:(an")nm)eNm’

n 0, otherwise.

Using generating functions, Mohanty [12] proved the following multi-
variable generalization of Rothe’s identities (3) and (4):

= () - ()

i (x—k-Z)(yxg(n—k)-Z)(x_:z) (y—(:-_li().z)

k=0
Tty r+y—Nn-z
=;+—_—( ) (7)
Yy—n-z n

However, an important special case of (7) (where 2; = i) was already con-
tained in the earlier work of Raney [16] on a combinatorial approach to the
Lagrange inversion. Hence we would call both (6) and (7) Raney-Mohanty’s
identities. Unaware of Mohanty’s work, in 1988 Louck [11] proposed a
“conjecture” equivalent to (7), which caught the interests of three different
people independently and was solved by them by three different methods:
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Paule [15] proved (7) by the Lagrange inversion approach, Strehl [20] gave
a completely combinatorial approach, while Zeng [21] used mathematical

induction.
Moreover, Mohanty and Handa [14] established the following identity

S“: (:c +1:< . z) (y;_kkz> _ Z (:c -:ly_—k|k|) (Itl) 2. @

k=0 k=0

which is a multivariable generalization of Jensen’s identity [7]:

£ () -5 ()

k=0 k=0

It follows immediately from Mohanty-Handa’s identity (8) that

zn: (a:—l:(-z) (y:kl-(z) _ i (z+el:k~z) (y—ne+ll(<-z). 9)
k=0 k=0

Since (9) is obviously a multivariable generalization of Gould’s identity
(5) and it also follows from one of the generating functions established by
Mohanty in [12], we call (9) Gould-Mohanty’s identity.

To the knowledge of the author, there are no combinatorial proofs
of Mohanty-Handa’s identity (8) and Gould-Mohanty’s identity (9). In
this paper, continuing the work of (8], we shall give bijective proofs of
Gould-Mohanty’s identity and Raney-Mohanty’s identity (6) in the model
of words.

2. Proof of Gould-Mohanty’s identity

It suffices to prove Gould-Mohanty’s identity (9) for the special case:

i (p—k-z) (q+k-z) _ Zn: (p+1—k-z) (q—1+k'z) (10)
= k n-k = k n—k
where p,g € N and n,z € N™. Furthermore, we need only to prove that
(10) holds for all integers p > n -z and ¢ > 1. In this case, each multi-
nomial coefficient in (10) is nonnegative and therefore has a combinatorial
interpretation.

Let T = {a,b1,...,bn} denote an alphabet with a grading ||a|]| = 1 and
||b:)] = 2i+1 (1 <i < m). For aword w=w,---wp, €', its length n is
denoted by |w| and its weight by ||w|| = |jwi|| + - - - + [lwa]|, and we call
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the word wpwn—1 - - -w; the reverse of w. Let |w|y, be the number of b;’s
appearing in w, and let

Tpx :=f{weT": |wl|| =pand |wl, = ki, i=1,...,m},
where k = (k1,...,km). It is easy to see that T'px C r?~kz and

#pk = (p _lf 'z), (11)

where z = (21,...,2m).
Furthermore, let

P,(,,':l)( := {w € Tpx: w has a prefix of weight r}.
For p,q > n - z, an obvious bijection

1‘;’.’3.,,,. — H'er.k X Lgn-k
Kk

leads to
#T0n = CaH (e (12)
Thus, the identity (10) is equivalent to
#T ) snzn = #THnan (13)

We need the following simple fact.

Lemma 1. Let u,v € I'™* with ||u||,|lv|]| = n-2z+ 1, where n; = |u- vy,
(1 < i < m). Then there exist nonempty prefizes  of u and y of v such
that ||z|| = |lyll-

Proof. Since the proof is easy and very similar to the proof of (8, Lemma 1],
we omit it here. O
Now we can prove (13) by the following theorem.

Theorem 2. For all p > n -z and g > 1, there is a bijection between

+1
Fg-,zq+n-z.n and FJ(D’-’I-q-Bn-z,n‘

Proof. Suppose that w = u-v € I‘z(,,’,’zq_,_n_z,,,, where ||u|| = p and ||v]| =

g+n-z. Applying Lemma 1 to v and the reverse of u - a, one sees that
has a suffix = (perhaps empty), i.e., v = u’ - z, and v has a prefix y, i.e.,
v =y - v, such that ||z]| = ||y]| — 1. Choosing such z and y with minimal
length, then w’ =v'-§-T-v' € I‘z(,’_’,_";{,_n,z,n and w — w' is a bijection. Here
T and ¥ are respectively the reverses of z and y. a

In the same manner, we may also give a direct bijection from I‘;’fzq_,_n,z‘n

to Pi,’_’,_";:?n,z’n forallp>n-zandg>r>1.
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3. Proof of Raney-Mohanty’s identity

We again assume that p > n-z and ¢ > 1. Moreover, let z; > 1 for all 4.
For each w € I'p4g4n-z,n, let w = u-v denote the unique factorization with
[lu|| = p but as small as possible. Then we have the following possibilities:

e If |Ju|]| = p, then w € F;(ﬁwn-z,n and all these words have been
counted in Section 2.

o If |lu|| = p+ 3 for some 1 < j < max{z1,...,2m}, then the last
letter of v must a b; for some 1 < i < m. Namely, v = v’ - b;
for some v’ € Tpyj—sz,—1k—e;, Where e; = (0,...,1,...,0) € N™
with the 1 being in the i-th position. The corresponding v belongs
to Fgtn.z—jn—k. It is clear that the mapping w — (u,v) may be
inverted.

Hence there is a bijection

m 2 n

P
Tptqtnzn — F§3q+n.z,n H’J Lﬂ L'ﬂ Lptj-z—1,k—e, X Dg4nz~jn—k;
i=1j=1k=0

which, together with (11) and (12), gives the identity
i ((p—k~z) (q+k-z)
= k n—k
= p— kZ+J—l q+k-z-5\\ _(p+4q
SR (AT) ()
i=1 j=1
However, by (9), forall1 <i<mand 1< j < z, we have

5": p-k-z+j—-1\(qg+k-z—j =§“: p—-k-z—-1\/g+k 2
k—e; n-k k—e; n-k /°

k=0 k=0
(15)

Substituting (15) into (14), we obtain
p—k-z p—k-z-1 qg+k-z\ _(p+q
() St (0 (2 o0

Noticing that
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the identity (16) may be simplified as

i P (p—k'z) (q+k-z) _ (p-l-q)
- ]
b ® k-z k n-k n
which is Raney-Mohanty’s identity (6).
For the m = 1 case, the above bijection also leads to a double sum
extension of the g-Chu-Vandermonde formula (see [8]). It is also possible

to give a similar g-analogue of (14). However we omit it here and leave it
to the interested reader.

4. Some remarks

We point out that (7) is a consequence of (6), since the left-hand side of
the former may be written as

1 2": zy (z-k-z\[(y—(n-k) z
z+y—n-z k=0:c—k-z k n-k
n
zy z—-k-z\fy—-(n-k) -z
+Zy—(n—k).z( k )( n-k ‘
k=0
It is also worth mentioning that Mohanty-Handa’s identity (8) can be
deduced from Raney-Mohanty’s identity (6). Indeed, note that

Zn: z+k-z\(y-k-z _i T (:z:+k-z y—-k-z
= k n-k —k=0x+k-z k n—k

. kz (z+k-z\[(y—-k-z
()
k=ﬂ:t:+k-z k n-k
_(z+y . _:z:—1+k~z y—k-z
- (R Ee a5

i=1 k=0

Then (8) follows from (6) by induction on |n|. However, I am unable to
give a combinatorial proof of Mohanty-Handa’s identity.

Finally, we remark that a further generalization of (8) was given by
Chu [3] by using the following generating functions due to Mohanty [12]:

> (e
kzo:::+ -z

Z a:+k-z uk‘- -uk"‘— v*
k 1 L I—Zm u,—z,-vzi“l’

k>0 =1

where v satisfies the functional equation > ", uv* =v — 1.
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