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Abstract
For a graph G with vertices labeled 1,2,---,n and a permuta-
tion & in Sy, the symmetric group on {1,2,---,n}, the a-generalized

prismover G, aG), consists of two copies of G, say G and G, along
with the edges (zi,yq(;)), for 1 < i < n. In [10], the importance of
building large graphs by using generalized prisms is indicated. A
graph G is supereulerian if it has a spanning eulerian subgraph. In
this note, we consider results of the form that if G has property P,
then for any & € Sjv(c)|, @(G) is supereulerian. As a result, we
obtain a few properties of G which implies that for any « € Sy
a(G) is supereulerian. Also, while the permutations are restricted,
the related result is discussed.
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1 Introduction

We use [1] for terminology and notation not defined here, and consider
loopless finite graphs only. For a graph G, let O(G) denote the set of all
vertices in G with odd degrees. An eulerian graph is a connected graph
G with O(G) = 0. An eulerian subgraph H of a graph G is spanning if
V(H) = V(G), and a graph is called supereulerian if it has a spanning
eulerian subgraph. Then K is both an eulerian and supereulerian graph.
The collection of all supereulerian graphs will be denoted by 2.

Let S, denote the permutation group of degree n. For a labeled graph G
with V(G)={1,2,--,n} and a permutation « in Sy, the symmetric group
on {1,2,--,n}, the a-generalized prism over G, a(G)(a(G) also called
a permutation graph), consists of two copies of G, say G. and Gy with
vertex sets V(Gz) = {z1,22,-*,Z} and V(Gy) = {y1,92,- - ,yn}, along
with the permutation edges (i, ¥a(s)), for 1 < ¢ < n. Generalized prisms
were introduced by Chartrand and Harary[5] who were interested in finding
those which are planar. Other properties of generalized prisms which have
been examined include crossing number(13], chromatic number(2], 7}, (8],
edge-chromatic number[6], [14], and cut frequency vectors[11]. In [10}, the
importance of building large graphs by using generalized prisms is indicated.

In (9], Klee studied the Hamiltonian properties of generalized prisms. In
this note we investigate sufficient conditions for the supereulerian properties
of generalized prisms and consider results of the form that if G has property
P, then for any a € Sjy(g)|, @(G) is supereulerian.

Determining whether a graph is a supereulerian graph has been shown
to be a NP-Completely problem in [12]. In 1988, Catlin P. A. presented a
contraction method to determine whether a graph is a supereulerian graph,
which interested many researchers. In the next section, we will review
Catlin’s contraction method first.

2 Collapsible graphs and reduced graphs

A graph G is collapsible if for every set R C V(G) with |R| even, there
is a spanning connected subgraph Hg of G, such that O(Hg) = R. Thus
K, is both supereulerian and collapsible. Denote the family of collapsible
graphs by €.%. Let G be a collapsible graph and let R = . Then by the
definition, G has a spanning connected subgraph H with O(H) = @, and
so G is supereulerian. Therefore, we have ¥.¢ C 2.

For a graph G with a connected subgraph H, the contraction G/H is
the graph obtained from G by replacing H by a vertex vy, such that the
number of edges in G/H joining any v € V(G)—V (H) to vy in G/H equals
the number of edges joining v in G to H. The subgraph H is called the
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preimage of vy. vy is nontrivial if E(H) # {, otherwise vy is trivial.

In (3], Catlin showed that every graph G has a unique collection of pair-
wise disjoint maximal collapsible subgraphs H;, Hs, ..., H.. The contraction
of G obtained from G by contracting each H; into a vertex(1 < ¢ < ¢), is
called the reduction of G. A graph is reduced if it is the reduction of some
other graph.

Theorem 1 (Catlin, Theorem 8 of [3]) Let H be a collapsible subgraph of
a graph G, then G € % if and only if G/H € #&£.

Corollary 1 Graph G is collapsible if and only if the reduction of G is K.

Let F(G) denote the minimum number of extra edges that must be
added to G so that the resulting graph has two edge-disjoint spanning trees.

Theorem 2 (Catlin, Han and Lai, Theorem 1.3 of [4]) Let G be a connected
graph. If F(G) < 2, then either G is collapsible, or the reduction of G is a
K, or a K3, for some integer ¢ > 1.

3 Main results

Definition 1 Let & > 0 be an integer. G € & if and only if for any
S C V(G) with |S| = 2k, G has a connected spanning subgraph H such
that O(H) = S. Let & =, F.

Observation 1 €% = ;5o Fk, SZ = Fo.

Theorem 3 Let G be a connected graph and [V(G)| =n. If G € & then
for any a € S, a(G) € L Z.

Proof: for any a € S, let G; and G,, denote the two copies of G in a(G).
By the assumption, G, € &, then there exists a integer & > 0, such that
for any S; C V(G;) with | S| = 2k, G has a connected spanning subgraph
H; with O(H;) = S;. Let S; = O(H;) = {vi,,viy," ", iy }- In a(G), let
Sy = {Va(i1)r Va(iz)r " ** s Valize) }- Since Gy = G € &£, Gy has a connected
spanning subgraph H, such that O(H,) = §,. Let Ex = {v;va¢;)l7 =
1,2,---,2k}. Hence a(G)[E(H.) U E(Hy) U Ey]| is the spanning eulerian
subgraph in a(G). Thus a(G) € ¥ &. O

Conversely, that for any a € S,,, a(G) € &£, does not imply G € £.

The following is a counterexample. In the figure 1, the graph G is K4
adding a vertex of degree one. Since K4 € ¥.%, then the reduction of G is
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K». Let G* denote the graph obtained by contracting the two copies of G
in a(G). Then 4-cycle is the spanning eulerian subgraph of G*. Hence by
Theorem 1, for any o € Sjy(c)|» @(G) is supereulerian. But G ¢ & since
for any even subset S C V(G), whenever S does not contain the vertex of
degree one, G cannot have a spanning connected subgraph with O(H) = S.

3!
U3
U2
Figure 1: Graph G Figure 2: Graph K33

Lemma 1 K, € &), where t > 3 is an odd integer.

Proof: Let (X,Y) be a bipartition of Ka;, where X = {u1,u2} and
Y = {v1,v2, - -,v:}(As an example, K3 is shown in Fig. 2). To show
K, € £, we only need to show for arbitrary distinct two vertices u,v €
V(Ka,), K2, has a spanning eulerian subgraph H with O(H) = {u,v}.
Caselu,ve X

Let © = u; and v = up. Since t is an odd integer, K3, is a spanning
eulerian subgraph which odd vertex set is {u, v}.

Case 2 u,veEY

Let u = v; and v = vj, 1 €4 <2, 1< j <t Since i # j,
Ka .+ — u1v; — ugvj is a spanning eulerian subgraph which odd vertex set is
{u,v}.
Case3ue X,veY

Let v = u; and v = v;, then K3 —u;v; is a spanning eulerian subgraph
which odd vertex set is {u,v},1<4<2,1<j <t

Casedve X,ueY
The result is obtained similarly.0
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Graph G, Graph G
Figure 3: One case of a(G’)*

Theorem 4 Let G be a graph with |[V(G)] > 2 and F(G) < 2. If G
has at most one cut edge, then for any « € Sjv(¢)|, @(G) is supereulerian.

Proof: Let a € Sjy(c)) be a permutation. Let G’ be the reduction of
G. a(G)* denotes the graph obtained by contracting the two copies of G
in a(G). By Theorem 1, a(G) € &2 if and only if o(G)* € S&. By
Theorem 2, G’ must be K 1 or K3 or Ko, for some integer t > 1. G has at
most one cut edge implies ¢ > 2.

Let G; and G, be two copies of G, G'z and G; the reductions of G

and Gy, respectively. For every v € V(G'), let H, denote the preimage of v.
Case 1 G is K;.

Since 2-cycle is collapsible, then for any a € Sy (g), a(G) € €Z by
corollary 1. Thus a(G) is supereulerian.

Case 2 G’ is K.

Thus 4-cycle is the spanning eulerian subgraph of a(G)*. Hence by
Theorem 1, for any a € Sjy(g)), (G) is supereulerian.

Case 3G is K, for some odd integer ¢ > 3.

We choose vertex u € V(Gx) such that for every v € V(G.), |V (H.)| >
|V(H,)|. Select vertex v € V(G ) such that v # u. Thus we can pick two
distinct vertices u € V(G ) and v' € V(G ). There exist four vertices
z1 € V(H,), z2 € V(H,), v € V(H Y2 € V(H ), such that a(z;) =y
and a(zs) = Y2 By Lemma 1, G’ € %, then there exists an open eulerlap
trail Lz in G, whose origin is u and whose terminus is v. Similarly in G,

- . . 3 53 . ’ 3
there exists an open eulerian trail L, whose origin is « and whose termi-
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nus is v'. Note that edges e; = (z1,1) and ez = (z2,y2) are also edges
of a(G)*. Thus a(G)*[E(Lz) U E(Ly) + e + eg] is a spanning eulerian
subgraph of a(G)*. Hence by Theorem 1, for any a € Sjy(g), @(G) is
supereulerian.

Case 4 G is K5 for some even integer ¢t > 2.

Note that in this case, G’ is supereulerian. Let E' denotes the set of
permutation edges of a(G), D, and D, the set of all vertices with degree

2 of G; and G;, respectively.

Subcase 4.1 As shown in figure 3, there exists some vertex y € D,, such
that one of 4 and v(say, u) is adjacent to y, e.g., e = uy € E.

Since |V(Hu)|+|V(H N=IV(H, )|+|V(H IR there exists some vertex
z € D, which is adjacent to one of u and v,say v, eg., e = ' € E.
Thus a(G)*[(E(G,) —uz)U (E(G ) —yv') + €1 + 2] is a spanning eulerian
subgraph of a(G‘) Hence by Theorem 1, for any a € Sjy(g), «(G) is
supereulerian.

Subcase 4.2 In oG)*, for any w € D, and any w’' € Dy, uw’ ¢ E,
vw' ¢ E, vw¢E andvwéE .

As shown in figure 4, one of uu’ and uv’ must be in E', say, uu' E'. For
every T € Dm, there is y € D, such that zy € E'. Thus a(G) [(B(G) -

uz)U (E(G ) —u'y) + uu’ + zy] is a spanning eulerian subgraph of a(G)*.
Hence by Theorem 1, for any a € Sjy(g)|, @(G) is supereulerian. O

<—P

Graph G, Graph G
Figure 4: Another case of a(G)‘

In general, a supereulerian graph G does not imply that for any o €
SIV(G", a(G) is supereulerian. The Peterson graph is a counterexample
since it can be regarded as a a(G) when G is a 5-cycle. But if the permu-
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tations are restricted, we can get the following result.

Theorem 5 Let G € &% and a € Siv(c)|- If there exist two ver-
tices u,v € V(G), wv € E(G), such that (a(u),a(v)) € E(a(G)), then
o(G) e S &.

Proof: Let G, and G, denote the two copies of G in a(G). By the as-
sumption, let e; = uwv € E(G;) and ey = (a(u),a(v)) € E(G,). Since
G is supereulerian, then there exist spanning eulerian subgraph H, and
Hy in G, and G, respectively. If e, € E(H,) and e, € E(H,), then
o(G)[(E(Hz) —ez) U(E(Hy) — ey) + (u, a(u)) + (v, a(v))] is a spanning eule-
rian subgraph in &(G). If e, ¢ E(H;) and e, ¢ E(H,), then o(G)[(E(H)U
(E(Hy)) + (u,®(u)) + (v, a(v))] is a spanning eulerian subgraph in a(G). If
one of e; and ey, is in E(H;)U E(Hy) and the other is not, say, e, € E(H;)
and e, ¢ E(H,), then a(G)|(E(Hx) — e) U(E(H,)) + (x, a(u)) + (v, a(v))]
is a spanning eulerian subgraph in a(G). This completes the proof. O
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