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Abstract

Let P be an n x n array of symbols. P is called avoidable if for every
set of n symbols, there is an n x n Latin square L on these symbols so that
corrwpondmg cells in L and P differ. Due to recent work of Cavenagh and
Ohman, we now know that all n x n partial Latin squares are avoidable
for n > 4. Cavenagh and Ohman have shown that partial Latin squares
of order 4m + 1 for m > 1 (1] and 4m — 1 for m > 2 [2] are avoidable.
We give a short argument that includes all partial Latin squares of these
orders of at least 9. We then ask the following question: given an n x n
partial Latin square P with some specified structure, is there an n x n
Latin square L of the same structure for which L avoids P? We answer
this question in the context of generalized sudoku squares.

1 Introduction

A Latin square of order n is an n x n array of n symbols so that each symbol
appears exactly once in each row and column. For a partial Latin square of order
n we require that each symbol appear at most once in each row and column.
We will always assume that the symbol set of a Latin square and a partial Latin
square of order n is [n] = {1,2,...,n}, unless otherwise stated.

Let P be a partial Latin square of order n. For 1 < j,k,I < n, symbol
J appearing in cell (k,I) of P is denoted by (j,k,1) € P. We say that P is
avoidable if there is a Latin square L of order n so that corresponding cells in L
and P differ. More formally, P is avoidable if there is a Latin square L of order
n so that for each (7, k,!) € P we have (¢,k,1) € L for j # i.

We begin our discussion by mentioning two trivial though useful properties.
The first concerns partial Latin squares of order n that can be completed to
Latin squares of order n and the second concerns isotopic partial Latin squares.
An isotopism of P (or a Latin square) is any reordering of the rows or columns or
any relabeling of the symbol set, or any combination of these. First we mention
that if a partial Latin square P can be completed, then P can be avoided. That
is, if we complete P and then permute the symbols so that no symbol remains
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fixed, then we have found a Latin square of order n avoiding P. Secondly, P is
avoidable if and only if any isotopism of P is avoidable. Both properties will be
used in the next section.

The question of which n x n arrays are avoidable was first asked by Héggkvist
[4]. Chetwynd and Rhodes [3] conjectured that all partial Latin squares of order
n > 4 are avoidable and proved the following.

Theorem 1 For m > 2, all partial Latin squares of order 2m and 3m are
avoidable.

Additionally, Cavenagh [1] shows that all partial Latin squares of order 4m+
1 for m > 1 are avoidable. He does so separately for m =1 and for m > 3 while
leaving m = 2 to Theorem 1. Cavenagh and Ohman [2] confirm Chetwynd and
Rhodes’ conjecture by avoiding all partial Latin squares of order 4m — 1 for
m > 2 and they do so separately for m =2, m = 3, and m > 4. Thus we have
the following result.

Theorem 2 Any partial Latin square P of order n > 4 is avoidable.

The condition n > 4 is necessary since one can find unavoidable partial
Latin squares of orders two and three. However, as Chetwynd and Rhodes have
shown [3}, there is only one unavoidable partial Latin square for each order up
to isotopisms. The following partial Latin squares are unavoidable.

17273
123 1
511

The purpose of this paper is to give a more concise proof for avoiding odd or-
dered partial Latin squares of at least nine. This proof, which mimics Chetwynd
and Rhodes’s proof, does fail for orders of five and seven but avoiding these small
orders are shown independently in [1] and [2]. Thus we have reduced Theorem 2
to two cases, namely the even and odd ordered partial Latin squares. In sec-
tion 3 we ask the following less general question. Given a partial Latin square
P with some kind of specified structure, can we avoid P with a Latin square
containing the same kind of structure? We consider this question in the context
of generalized sudoku squares.

2 Avoiding odd partial Latin squares

We will employ the following results for the proof of the main theorem. A proof
of the first lemma can be found in [3], and a constructive proof can be found in

(2]

Lemma 1 For any n # 3 there exists a Latin square of order n which has
symbol n on the leading diagonal and has the symbols of the last row appearing
in the same order as the symbols in the last column.
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For the following lemma, we will assume that A is a partial Latin square of
order 3 on the symbol set {a,b,c} with cell (3,3) empty. We will also assume
that a does not appear in both the last row and last column of A and similarly
b does not appear in both the last row and last column of A.

Lemma 2 If ¢ does not appear in the upper left 2 x 2 subsquare of A, then there
is a Latin square of order 3 avoiding A so that (c,3,3) € L unless A contains
the following partial Latin square.

PROOF: Suppose the last column of A contains a. Relabeling the first two
rows if need be, we consider (a,2,3) € A. Then for a Latin square L of order
3 avoiding A with (c,3,3) € L, we have (b,2,3) € L and (a,1,3) € L. Clearly
we are permitted either (a,2,1) € L or (a,2,2) € L. If (b,3,4) € A for i € [2],
then we take (a,3,1), (,2,7), (b,1,4), (b,3,5) € L for j € [2] and j # ¢ and
certainly L, filling in the empty cells with ¢, avoids A. Otherwise the last row
of A does not contain a or b. We assume there is a diagonal of the upper left
2 x 2 subsquare of A that contains b, otherwise A does not contain b, except
possibly in the last column, and one can easily find L. In this case, we consider
c on the corresponding diagonal in L. There is only one Latin square with this
arrangement of symbols and certainly L avoids A.

If the last column of A does not contain a but b, then we relabel the symbols
and repeat the argument above. If the last column of A4 is empty but the last
row nonempty, then we interchange columns with rows and repeat the argument
above. Therefore we suppose that both the last row and the last column of A
are empty. If this is the case, then finding L is trivial unless A contains the
partial Latin square given in the statement of the Lemma for which L does not
exist. O

Let P be a partial Latin square of order 2k + 1 for & > 2. In addition to
this, we will view P as a (k + 1) x (k + 1) array denoted P’ with cells denoted
(,j) where

2 x 2 subsquare ifi<k+landj<k+1
2x 1subrectangle ifi<k+landj=k+1
1x2subrectangle ifi=k+1landj<k+1
1 x 1 subsquare ifisk+landj=k+1

(t.3) =

We use the following terminology for the proof of our main theorem. If a
partial Latin square A of order 2 contains a diagonal with distinct symbols, then
we say that these symbols form a bad diagonal. If a partial Latin square A of
order 3 contains the partial Latin square given in Lemma 2, then we say that the
pair of symbols {a, b} form a bad subsquare in A. The reason for denoting these
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as 'bad’ is because if A contains a diagonal with symbols a and b, then there
is no Latin square of order 2 on the symbol set {e,b} avoiding A. Similarly, if
A contains the partial Latin square given in Lemma 2 then there is no Latin
square L of order 3 on the symbol set {a,b,c} with (c,3,3) € L avoiding A.

Theorem 3 Let P be a partial Latin square of order 2k +1 for k > 4. Then P
is avoidable.

PROOF: We begin by reordering the rows of P so that in the last column
symbol i appears in row i, if at all, and cell (2k + 1,2k + 1) is empty. Since
there must be a column containing an empty cell, we take this column to be the
last. If symbol i does not appear in the last column of P, then either we take
cell (3,2k + 1) to be empty or to contain symbol 2k + 1. Similarly, we reorder
the first 2k columns of P so that symbol i appears in column 2k + 1 — i of the
last row using empty cells and the symbol 2k + 1 as before. If possible, we allow
symbol 2k + 1 toappear both in row i of the last column and column 2k +1—i
of the last row for some i. Since k > 4, this arrangement guarantees that cells
(i,k+ 1) and (k + 1,4) do not share symbols provided k is even. If k is odd,
it could be that cells (5,k+ 1) and (k+1, %i) share symbols. Therefore
we interchange columns £} and k of P’ guaranteeing that cells (i,k+1) and
(k + 1,i) do not share symbols for all 7.

Let Q be a Latin square of order k + 1 described by Lemma 1 with symbols
X1,Xa,..., Xks1. Fori € [k+1), we identify X; with the set of 2 x 2 subsquares
appearing in the corresponding cells of P’. For X; in cells (i, k+1) and (k+1,17)
of Q, we identify it with the 3 x 3 subsquare consisting of cells (4,4), (i,k + 1),
(k+1,3), and (k+1,k+1) of P'. Since there are 4k + 1 cells in the subsquares
identified by Xy41 and since cell {k + 1,k + 1) is empty, there is a symbol
appearing at most once in these cells which, without loss of generality, we will
assume to be 2k+1. We wish to arrange the first 2k columns of P so that symbol
2k + 1 does not appear in these cells while still guaranteeing that (i, k + 1) and
(k +1,4) do not share symbols. Let column j of P be the column intersecting
the cells identified by Xy41 containing symbol 2k + 1. Due to the arrangement
of P, there are at most seven columns of P for which we can not interchange
with column j in order that (i, k+1) and (k+1,%) share no symbols and symbol
2k + 1 does not appear in the cells identified by X;,,. Note that these seven
columns include the final column of P and the column in the same pair as j.
We will always have a column to choose outside these seven provided k 2> 4.

Let S be the set of symbols [2k + 1]. Furthermore, let Sy,Sz,...,Sk+1 be
an ordered partition of S so that S; consists of a pair of symbols for i € [k], and
Si+1 consists of symbol 2k + 1. There are

(2k)!
@

such ordered partitions of S.
For each appearance of symbol X; not in the last row and column of @, S;
is suitable for X; if we can form a Latin square of order 2 on S; avoiding the
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2 x 2 subsquares identified by X;. For X; appearing in the last row and column
of Q, we say that S; is suitable for X; if we can form a Latin square of order 3
on S; U {2k + 1} avoiding the 3 x 3 subsquare identified by X; so that 2k +1
appears in cell (3,3). If S; is suitable for X; for all ¢, then we can construct a
partial (2k + 1) x (2k + 1) Latin square from Q avoiding P. Our goal then is to
find an ordered partition of S\ {2k + 1} into k pairs of symbols such that S; is
suitable for X; for all 4.

Consider a 2 x 2 subsquare X of P’ identified by X; for i € [k] and X;
appearing outside the last row or column. If X contains a bad diagonal, then
the two symbols giving the bad diagonal is an unsuitable pair of symbols for
Xi. For X; appearing in the last row and column of Q, if the 3 x 3 subsquare
identified by X; contains a bad subsquare, then by Lemma 2 this too gives an
unsuitable pair of symbols for X;. Let B denote the set that consists of all the
unsuitable pairs of symbols for X; for each i. There are

(2k - 2)!

partitions for which S; has been fixed for some i. Therefore there are at most

% — 2)!
IBI((m)Tl)

partitions for which we must exclude. Then

(2k)! (2k — 2)!
(@NF (211

if |B] < 2k? — k. Excluding the cells of the 3 x 3 subsquares identified by
X; in the last row and column of Q, |B| < ‘"‘2.; 4k since two cells make up a
bad diagonal. Furthermore, of these excluded cells, we have at most k bad sub
squares by Lemma 2. Therefore |B| < 2k? — k and finally |B| < 2k? — k since
we can choose the empty cell (k + 1,k + 1) so that there is another empty cell
outside the last row and column of P, otherwise P can be completed. o

- |B| >0

Note that for this argument to hold we must have & > 4. For k = 1, we have
already mentioned that there are unavoidable partial Latin squares of order 3.
For k = 2, we can not use Lemma 1 in the proof above. And for k = 3, we can
not exclude symbol 7 from the cells of P identified by X, while guaranteeing
that (i,4) and (4,%) do not share symbols for 1 < ¢ < 3. It would seem then,
as for Cavenagh and Ohman, we would need a separate argument for these two
small orders. However, there is potentially a brief argument for these.

Also note that if P had order 2k, then X; would identify a 2 x 2 subsquare
for all i and so we would need only to guarantee that P does not have too
many bad diagonals. This can easily be accomplished by examining the number
of empty cells and by arranging P so that the diagonals of some of the 2 x 2
subsquares contain the same symbol.
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3 Avoiding partial sudoku squares with sudoku
squares

A Latin square of order n? is a generalized sudoku square if the nxn square given
by the rows {in+1,...(i+1)n} and the columns {jn+1,...(j+1)n} fori,j €
[n—1] contains [n?]. Theorem 2 clearly asserts that all partial generalized sudoku
squares are avoidable. However, we wish to consider the following problem: if
given a partial generalized sudoku square P of order n?, is there a generalized
sudoku square of order n2 avoiding P? If P can be completed as a generalized
sudoku square, then the answer to this question is clearly yes. Therefore we will
assume that P can not be completed.

In answering this, we consider the following object which generalizes the
Latin square. Define A(ns,nr) to be an ns x nr array of n symbols so that each
symbol appears r times in each row and each symbol appears s times in each
column. Immediately one sees that for s = r = 1, A(ns,nr) is a Latin square
of order n.

Theorem 4 Let P be a partial generalized sudoku square of order n®. Then P

can be avoided by a generalized sudoku square of order n?.

PROOF: Let T be an A(n?, n) array onsymbols {t3,...,t,}. We may assume
that T is filled so that for each column of T', {ti,...,t,} appears in rows {in +
1,...(i + 1)n} of T for 0 < i < n. Partition [n?] so that ¢; is assigned to n
symbols for each i and without loss of generality we may suppose that t; is
assigned to symbols {(i — 1)n +1,...,in}.

In column j of T, suppose that ¢; appears in rows {p;,,...,pi,}. In columns
{sn+1,...(j+1)n} of P, consider the rows {p;,,...,pi .} of P and let D; be the
symbols appearing in these rows. These rows, in columns {jn+1,...(j +1)n},
joined together form an n x n array of symbols. We form a partial Latin square
P: of order n by removing all symbols s € D; for which s g {(i—1)n+1,...,in}.
Then, by Theorem 2, there is a Latin square of order n on the symbols {(i —
1)n+1,...,in} avoiding P; when n > 4. We then replace the kth appearance
of t; in column j of T with the kth row of this Latin square for 1 < k < n. We
do this for each ¢ and then for each j, yielding a sudoku square which avoids P.

For n = 2,3 we use the same argument, however, we need to be more careful
on which symbols t; receives since there are unavoidable partial Latin squares
of order 2 and 3. There are

(n)!

nin
partitions in which ¢;,...,t, receive their symbols. Also, there can be at most n
unavoidable partial Latin squares for which the symbols given to t; must avoid.
Since there can be at most
n(n? - n)!
nin-1
unsuitable partitions with regard to ¢; and since
n?(n? —n)! _ n?
nin-1 nin
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for n = 2,3, there is a partition of [n?] for which the symbols given to ¢; can
avoid the corresponding partial Latin square in P. a
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