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Abstract

A labeling of a graph is any map that carries some set of graph
elements to numbers (usually to the positive integers). An (a,d)-
cdge-untimnagic tolal labeling on a graph with p vertices and g edges
is defined as a one-to-one map taking the vertices and edges onto the
integers 1,2,...,p + ¢ with the property that the sums of the labels
on the edges and the labels of their endpoints form an arithmetic
sequence starting from a and having a common difference d. Such a
labeling is called super if the smallest possible labels appear on the
vertices.

We use the connection between a-labelings and edge-antimagic
labelings for determining a super (e, d)-edge-antimagic total label-
ings of disconnected graphs.
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1 Introduction

For a (p,q) graph G, a bijective function f : V(G) — {1,2,...,p} is a
vertex labeling of G and the associated edge-weight ws(uv) of an edge uv €
E(Q) is ws(uwv) = f(u) + f(v). A bijective function g : V(G)UE(G) —
{1,2,...,p + g} is a total labeling of G and the associated edge-weight
wg(uv) = g(u) + g(uv) + g(v) for uv € E(G).

A vertex labeling f of G is (a, d)-edge-antimagic vertex if the set of all the
edge-weights is {a.a+d,a+2d,...,a+(g—1)d}, for two integers a > 0 and
d > 0. We use the notation (a,d)-EAV to refer to these labelings. An (a, d)-
edge-antimagic total labeling of G is the total labeling with the property
that the edge-weights form an arithmetic sequence starting from a and
having common difference d, where a > 0 and d > 0 are two fixed integers.
For this labeling we use the notation (a,d)-EAT. Definition of (a,d)-EAT
laheling was introduced by Simanjuntak et al. in [14] as a natural extension
of a notion of "magic valuation” ((a,0)-EAT labeling) defined by Kotzig
and Rosa in [10]. Kotzig and Rosa [10] showed that all caterpillars have
"magic valuations” and conjectured that all trees have ”magic valuations”.

An (a,d)-EAT labeling is called super if the smallest possible labels appear
on the vertices. A super (a,d)-EAT labeling is a natural extension of a
notion of ”super edge-magic labeling” defined by Enomoto et al. in [5].
For more information about "magic valuations” and "super edge-magic
labelings” the reader is referred to [8] and [18].

A graph that admits an (a,d)-EAV labeling or a super (a,d)-EAT labeling
is called an (@, d)-EAV graph or super (a,d)-EAT graph, respectively.

A graceful labeling of a (p, q) graph G is an injection h : V(G) - {1,2,...,
¢ + 1} such that, when each edge uv is assigned the label |h(u) — h(v)],
the resulting edge labels (or weights) are distinct. A graph that admits
a graceful labeling is said to be graceful. When the graceful labeling A
has the property that there exists an integer A such that for each edge uv
either h(u) < A < h(v) or h(¢) < A < h(u), h is called an a-labeling. The
number X is called the boundary value of h. A graph with an o-labeling is
necessarily bipartite and the boundary value must be the smaller of the two
vertex labels that yield the edge label 1. A graph that admits an o-labeling
is called an a-graph. Graceful labelings and a-labelings are probably the
most popular kind among the several classes of the graph labelings. They
were introduced by Rosa in {12]. The Ringel-Kotzig conjecture that all trees
are graceful is a very popular open problem. Some methods for constructing
the graceful labelings and a-labelings for certain families of trees can be
found in (1, 4. 13, 15].
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We will use the connection hetween a-labelings and (a, d)-EAV labelings
for determining super (a, d)-EAT labelings of disconnected graphs.

There are known certain results for the super edge-antimagicness of forests.
Namely, Ivanéo and LuékaniZova [9] described some constructions of super
edge-magic (super (a,0)-edge-antimagic total) labelings for K ,, U K1 ,.
The super (a, d)-EAT labelings for P,, U P41, nP,U P, and nPo U P, 40
have heen described by Sudarsana et al. in [16], and (a,0)-EAT labelings
for n Py can be found in [3].

2 Arithmetic sequences

This section contains the tools that allow us to determine the type of a
sequence after combining two different sequences. It will be useful later.

Lemma 1. Let M be an arithmetic sequence M = {a+d(i —1): 1 <
i € k+ 1}, for the positive integers a, d and k, k even. Then there erists
a permutation P(M) of the elements of M such that M + P(M) is an
arithmetic sequence with first term 2a + % and a common difference d.
Proof. Suppose that M = {p; : pi =a+d(i—1),1 <i < k+ 1} for k even
and a,d > 0. Consider the following permutation P(M) = {g; : 1 < i <
k + 1} of the elements of M where

Y a+E=HL s odd, 1<i<k+1
li u+@"f’-,§*3‘i' ifiiseven, 2<i<k.

We claim that M + P(M) is an arithmetic sequence. In fact,

0+ q; = 2a+&+';—”d ifiisodd,1<t<k+1
b 2a+ B4 if s even, 2<i < k.

Thus, M + P(M) is the arithmetic sequence with first term 2a + % and
common difference d. O

Lemma 2. Let N be a sequence N' = {c+d(i—1) : 1 <4 < E1}u{c+di:
-’-‘%’ < i < k+1}. for positive integers ¢, d and k. k odd. Then there exists
a permutation of the elements of an arithmetic sequence S = {r+d(i—1) :
1 < i < k+ 1} such that N + P(S) is an arithmetic sequence with first
termc+r+ —("""{,11‘! and common difference d.
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Proof Let N = {n; : n; = ¢+d(i—1),1 £i < k—}l}u{ni Ty =
c+ di,""%“ < i < k + 1} be a sequence for k odd and ¢,d > 0. Let
S ={r+d@i—-1):1<i<k+1} be an arithmetic sequence. There are
three cases to describe a requested permutation P(S) = {h; : 1 <i < k+1}.

Case 1. For k =5 (mod 6), where k£ > 11, we define

( r4(k—1)d ifi=1
r+ (k—3)d ifi=2
r+ (k—2i)d if i =0 (mod 3) :amt:lBS'i<L‘§l
r+ (k —2i)d if i =1 (mod 3) ancl4§i<’°—'2-'—l-
r+(k+3—-2i)d ifi=2 (mod3) and 5 <i< &1
o] THK ifi =5
VEY v+ (k—4)d if i = &42
r+(k—2)d if i = &48
r+ (k—5)d if i = &7
r+ (2k — 2i)d ifi=1 (mod 3) and 2 <i<k—-1
r+ (2k — 2i)d ifi=2 (mod 3) and S <i<k
| 4+ (2k+3-2i)d ifi=0 (mod3) and EH2 <i<k+1.

For k = 5 the permutation is

(r+4d ifi=1
r+2d ifi=2
r+5d ifi=3
r+d ifi=4
r+3d ifi=5
k 7 if'i'—'G.

Cuse 2. For k =1 (mod G6), where k > 7. we construct

(7 + (k- 2i)d ifi=1 (mod3) and1<i< &2
r + (k — 2i)d ifi=2 (mod 3) and 2 <i< &3t
r+(k+3-2i)d ifi=0 (mod 3) and3<i< &L
hood THEd ifi=51
T r+(k=1)d if i = &3
r 4+ (2k — 2i)d ifi=0 (mod 3) and &2 <i<k-1
r+ (2k — 24)d ifi=1 (mod3) and &L <i<k
{1‘+(2k+3—2i)d ifi =2 (mod 3) and'i'z"—gszsk+1,
and for k=1
h:{ r+d ifi=1
¢ 7 ift=2.
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Cuse 3. For k = 3 (mod 6). where k > 9, we define

(7 + (k- 1)d ifi=1
r+ (k- 2i)d if i =2 (mod 3) and25i<-’1;—l
r+ (k—2i)d ifi=0 (mod3) and 3<i< 1
B = 1 r+(k+3-2i)d ifi=1 (mod3) and4<ix< k3L
' 7+ kd ifi =&
r+ (2k — 2i)d ifi=0 (mod 3) and &2 < i<k
r4(2k+3-2i)d ifi=1 (mod3) and &2 <i<k+1
L 7+ (2k — 2i)d ifi=2 (mod 3) and &L <i<k-1.

For k = 3 we define the permutation in the following way

(r+2d ifi=1
r+3d ifi=2
r "ifi=3
r+d ifi =4.

h,'=ﬁ

\
There is no problem in seeing that, in all the consider cases, each integer
hi.1<i<k+41, belongstoSand {n;+h;:1<i<k+1}={c+r+
(L.zl)d_(,+,"+ U3 oy ('”;5)"....,C+r+ (3k;1)d7c+r+ g3k;~l)d}.
This produces the desired result. O

3 Disjoint union of graphs

Let G be a graph of order n and size n — 1. We denote by mG a disjoint
union of m copies of G. Our main goal in this section is to show that if G
admits an a-labeling then mG admits a super (e, d)-EAT labeling.

We start by basic counting to determine an upper bound of difference d
for a super (a,d)-EAT labeling. Let (p,q) graph be a super (a,d)-EAT.
It is easy to see that the minimum possible edge-weight is at least p + 4
and the maximum possible edge-weight is no more than 3p + ¢ — 1. Thus
a+(g—1d<3p+g—landd< g’%}l——q For p=mn, g=m(n—1) and
m > 1, n >3, we have that d < 4.

Next lenmna presents a connection hetween o-labeling and (a,1)-EAV la-
heling.

Lemma 3. Let G be a graph of order n and size n —1, n > 3. If G
admits an a-labeling, and m is odd. m > 1, then mG admits an (a,1)-EAV
labeling.

Proof. Suppose that G is an c-graph. It is known (see [11] or [2]) that if
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graph G of order n and size n — 1 admits an o-labeling, then G also admits
an (a,1)-EAV labeling. Hence, for m =1 we have the desired result.

Figueroa-Centeno et al. [6] showed that a (p,g) graph H is super edge-
magic if and only if there exists a bijective function f : V(H) — {1,2,...,p}
such that the set {f(x) + f(v) : uv € E(H)} consists of g consecutive inte-
gers. In our terminology it means that a (p, g) graph H is super (b, 0)-EAT
if and only if there exists its (b — p — g,1)-EAV labeling. With respect to
the previous result it follows that if a graph G of order n and size n — 1
admits an a-labeling then G also admits a super edge-magic labeling.

It was proved by Figueroa-Centeno et al. (see [7], Theorem 2.1) that if H
is a super edge-magic bipartite or tripartite graph, and m is odd, then mH
is super edge-magic. Evidently, if G admits an a-labeling, and m is odd,
then mG admits an (a,1)-EAV labeling. a

Lemma 4. Let G be a graph of order n and size n —1, n > 3. If G
admits an a-labeling, and m is odd, m > 1, then mG admits a super
(a + 2mn — m,0)-EAT and a super (a +mn +1, 2)-EAT labeling.

Proof. In light of Lemma 3 we propose that f is an (a, 1)-EAV labeling
of mG, where the set of the edge-weights gives the sequence {a,a+1,a+
2,...,a+mn—-m-—1}.

Case 1. The difference isd = 0.

We extend the vertex labeling f into a labeling g such that

g(u) = f(u) for every vertex u € V(mG)

g(uv) = 2mn —m+ a — (g(u) + g(v)) for every edge uv € E(mG).

Since a < g() + g(v) < a + mn —m — 1, we have that mn +1 < g(uv) £
9mn — m and thus g is a total labeling. Every edge wv € E(mG) has
edge-weight g(u) + g(uv) + g(v) = a + 2mn — m. This implies that mG is
super (a + 2mn — m, 0)-EAT.

Case 2. The difference is d = 2.

We consider a labeling i defined in the following way

h(u) = f(u) for every vertex u € V(mG)

h(uww) = mn +1 —a+ (h(u) + h(v)) for every edge uv € E(mG).

Evidently, h is a total labeling and as @ < h(u)+h(v) < e+mn—m—1 and
mn+1 < h(uv) < 2mn —m the set of the edge-weights is {a+mn+1,a+
mn+3,...,a+3mn—2m—1}. Thus, mG is super (e+mn+1,2)-EAT. O
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Lemma 5. Let G be a graph of order n and sizen—1, n > 4 even. If G
admits an a-labeling, then mG admits a super (b,1)-EAT labeling for every
m 2> 1.

Proof. Let us distinguish two cases:
Cuse 1. m is odd

As G is an «-graph of order n and size n — 1, according to Lemma 3 there
exists an (a,1)-EAV labeling f of mG. Thus the set of the edge-weights
gives the sequence M = {e+(i—1) : 1 <i < k+1}, where k = m(n—1)—1.
As n is even and if m odd then k is even. With respect to Lemma 1, for
d = 1, there exists a permutation P(M) of the elements of M such that
M + [P(M) — a + mn + 1] is an arithmetic sequence with the first term

a+ M and the common difference d = 1.

If [P(M) — a + mn + 1] is an edge labeling of mG with the labels mn +
L.mn+2,...,2mn—m, then M+ [P(M) —a+ mn+ 1] determines the set
of the edge-weights under the resulting total labeling. Hence, mG is super

(b,1)-EAT for b = q + 2325051
Case 2. m is even

Assume that f is an a-labeling of a graph G with n vertices and n — 1
edges, and V7, V5 are its hipartite sets. Without loss of generality, we may
assume that the vertex labeled hy the boundary value A belongs to V3. So,
flu) < f(v) for any u € V] and v € Va.

We denote by V(mG) = U;-';,{uj. vj :u; € V{.v; € VJ} the vertex set of

a disjoint union of m copies of G. i.e. U;’;l{l/l’ uVy} = V(mG).
Consider the vertex labeling ¢ of mG such that for every u; € V/,1<5<
m, we put

gluj) =m[f(u) =1]+5 ifueW

and for every v; € V{ , 1 <4< m, weput

o(v;) = min 4+ A - f(v)] + .".‘*,;_ ifveVy, and jis odd

A= mn+A+1— fv)] + 2—;4’- ifveV, and jis even.

Since 1 < f(u) < A and A +1 < f(v) < n, thus the function g assigns the
labels 1,2.3,....mX — 1,mA to all vertices u; € V{, 1 < j < m, and the
labels mA +1,mA +2,...,mn — 1,mn to all vertices v; € VJ, 1 < j < m.

Therefore g is an injective function from UjZ, {(ViuV{}into {1,2,...,mn}.
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If uv is an edge in G, u € Vj, v € V3, then u;v; is the edge in mG, where
uj €V, v € V4, for 1 < j < m. For the edge-weight of u;v; we have

. L[ mnt A= (f(v) - )] + == if jis odd
olug) +9(03) = { mln + A = (f(v) = f(w))] + -2—;12 if j is even.

We can see that, for each edge uv € E(G), the edge-weights of the corre-
sponding edges in mG produce a sequence N = {c+d(i—1):1<i<
By U fc+di: k3 <i<k+1} forc=mn+A—%—(f(v) - f(w)]+1,
d=1and k=m—1. For f(v) — f(u) = I, we have n — 1 sequences M},
1<i<n-1

Now, we define an arithmetic sequence S; = {ri+di-1):1<i< k+1}
ford=1,k=m—1and

o ZRn-1+1+1 if 1 is odd
T 2Bn-2+0+1 ifliseven

We can see that U;:ll S = {mn+1,mn+2,...,2mn—m—1,2mn—m}.
From Lemma 2, it follows that for each sequence N, 1 <1< n—1, there
exists a permutation of the elements of the arithmetic sequence S; such
that M +P(S), 1<l <n-1,isan arithmetic sequence with a first term

%[4n+2/\—-l—1]+2 if { is odd
Z{5n 42X -1 2] +2 if I is even,

and a common difference d = 1. It is a matter for routine checking to see
that UP" {Ni + P(S)} = {2[3n+2X]+2, F[3n+2)]+3,..., F[5n+22—
2] + 1}

If the arithmetic sequence )} S is a set of edge labels of mG then

=

,=,l {N; 4+ P(S1)} describes the set of the corresponding edge-weights of
mG. It implies that mG has a super (3[3n + 2\ +2,1)-EAT labeling. 0O
Using three previous lemmas the following theorem can be proved.

Theorem 1. Let G be an a-graph of order n and sizen —1, n 2 3. The
graph mG is super (a.d)-EAT if either

(i) d € {0,2} and m is odd, m 21, or

(i) d =1 and n is even, m 2 1.

The next result gives a connection between the a-labelings and the (a,2)-
EAV labelings.

Lemma 6. Let G be an a-graph of order n and size n —1 and {1, Va} be

328



the bipartition of its vertex set. If ||V1| — |Vo|| £ 1, then mG is (m + 2,2)-
EAV. for every m > 1.

Proof. Tt is proved in [2] that if G is an a-graph of order n and size n — 1
and ||Vi] — |Vl €1 then G is (3,2)-EAV. Hence the desired result holds
for m = 1.

Let f be an a-labeling of graph G of order n and size n — 1 and V3, V3 be
the bipartite sets of G. We may assume that 0 < |V3| — |V2| £ 1 and the
vertex labeled by the boundary value A belongs to V;. In the case that the
vertex labeled by the boundary value A does not belong to Vi under the
a-labeling f then a new labeling

ff@)y=n+1-f(x), forxzeV(G)

is an a-labeling as well and its boundary value n— X is appeared on a vertex
of Vl .

Now, we consider the vertex labeling g of mG such that for every u; € Vlj ,
1 < j < m, we define

g(uj) =m2f(u) -2|+j ifueW

and for every v; € Vi1< Jj < m, we define

glvj) =m2n+1-2f(w)|+j5 ifvel.

Since 1 < f(u) < A and A +1 < f(v) < n, thus the function g assigns the
labels {1,2,...,m}U{2m+1.2m+2,...,3m}U---U{m(2A—4)+1,m(2A -
4)+2,...,m2A=-3)}u{m(2A-2)+1,m(2A-2)+2,...,m(2A —1)} to all
vertices u; € V{, 1 < j < m, and the labels {m+1,m+2,...,2m}U{3m+
1.3m+2,...,4m}U---U{m(2n—-21-3)+1,m(2n-21-3)+2,...,m(2n—
22 =2)}u{m(2n =22 = 1)+ 1, m(2n — 2X — 1) + 2,...,m(2n — 2))} to
all vertices v; € V4,1 < j <m. If0 <[V —|Vo| <1 then A = [%] and
evidently g is an injective function with the labels 1,2,3,...,mn — 1,mn.

Moreover, if vv is an edge in G, u € Vi, v € Vs, then u;jv; is the edge in
mG, where u; € V{. v; € V. for 1 £ j < m. For the edge-weight of u;v;,
1< j<m, we have

o(u3) + g(v;) = m(2n — 1) + 2 — 2m{f(v) ~ F(w)]-

Since f is an a-labeling. thus 1 < f(v)— f(u) < n—1 for uwv € E(G) and the
edge-weights of mG form an arithmetic sequence {m+2,m+4,...,2mn —
m —2,2mn — m}. Thus, g is an {m + 2, 2)-EAV labeling of mG. O

Theorem 2. Let G be an a-graph of order n and size n — 1 and {V},Va}
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be the bipartition of its vertez set. If ||Vi| — |V2|| < 1, then mG is super
(a,d)-EAT. for d € {1,3} and everym 2 1.

Proof. Tt follows from Lemma 6 that if a graph G satisfies the assumptions
of the theorem then mG is (m + 2,2)-EAV for every m > 1. Let g be an
(m + 2,2)-EAV labeling of mG with the set of edge-weights {g(u) + g(v) :
ww € E(mG)} ={m+2,m+4,....2mn—-—m -~ 2,2mn — m}.

We extend the vertex labeling g into a total labeling h; and a total labeling
ho by adding the edge labels from a set {mn+1,mn+2,...,2mn—m—
1,2mn — m} where

hy(u) = ha(u) = g(u) for every vertex u € V(mG),

hy(uv) = 2mn—m+1+ == '“(“2)"'"‘(") and hg(uv) = mn+ E""—(“—)i’—;ﬂﬂn-——m
for every edge uv € E(mG).

It easily follows that if {h1(u) + hi(v) : wv € E(mG)} = {m+2,m+
4,...,2mn—m—2,2mn—m} then the set of edge-weights is {h1(u)+ha(v)+
hy(w) : uv € E(mG)} = {2mn +2,2mn+3,...,3mn—m, 3mn-m+1}.
The reader can also easily verify that {ha(u) + ho(v) + ho(uwv) : wv €
EmG)} = {mn+m+3,mn+m+6,...,4mn—2m —3,4mn — 2m}. This
implies the desired result. a

4 Disjoint union of caterpillars

In this section we study a super edge-antimagicness of forests in which every
component is a caterpillar. The caterpillar is a graph derived from a path
by hanging any number of leaves from the vertices of the path. Sugeng et
al. in [17) described some constructions of the super (a, d)-EAT labelings
of the caterpillars for d € {0,1.2,3}.

Let T be a caterpillar of order n and mT be a disjoint union of 7 copies of
T. Rosa [12] showed that all caterpillars have an a-labeling. Therefore all
results from previous section hold for T and mT. Moreover we complete
one case when d = 1 and n odd.

Lemma 7. There is a super (a,1)-EAT labeling for a caterpillar of order
n.n >3 odd

Proof. We consider a caterpillar T of order n, n 2 3 odd. Any caterpillar
is bipartite. We denote by {Wi, V2} the bipartition of the vertex set of
the caterpillar T, i.e. V(T) = Vi(T) U Vo(T). We can draw the vertices
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of T in two rows, such that each row is containing only the vertices from
one partite set. Clearly, it is possible to make the drawing of T such that
there are no edge crossings. Let e}, e3,...,e}_, be the edges of T ordered
from left to right. If one of the endpoints of the edge e%,; is of degree
1 then we denote it by v;. If both endpoints of e}, haire the degrees
greater then 1, we denote by v; the vertex which is common vertex of
the edges e, and e%,,. The next vertices ordered from v; to right in
the same par"tition we élenote by vg,v3,...,v;. We continue in the same
partition at the beginning and we denote the vertices ordered from left to
U1 DY Vi1, Vep2s - ooy Vtgse SO, Upg1, Veg2, - - -, Vtgs, U1, Va, . - . , Uy are ordered
vertices in the first partition, say Vi(T'). Let u),us,...,un—t—s be the
vertices in the second partition, say Va(T), ordered from left to right.

Consider the labeling f: V(T) — {1,2,...,n} defined by

(¢1) = 1 ifi1<i<t
fle) = n—t—s+1 ift+1<I<t+s

flu)=t+l f1<i<n—-t-s.
Now, we rename the edges of T such that

et _,,, fl<igusd

e‘={ e if"-"”—1<i<2n—1

i1t 2 ="= :

We can see that the set of the edge-weights gives a sequence N = {w(e;) :
we)) =c+(i—1).1<i < Elyu{wle) wle)=c+i, 2 <i<k+1}
for K = n — 2, where ¢ is an edge-weight of the edge e%,, = e;. With
respect to Lemma 2, for d = 1, there exists a permut;ationaof the elements
of an arithmetic sequence S = {r +d(i —1): 1 <i < k+1} ford =1,
k=n—2,1r=mn+1,such that N + P(S) is an arithmetic sequence with
the first term c+ “”Lzl and a common difference d = 1. If S is a set of edge
labels of T then A +P(S) describes a set of the corresponding edge-weights
of T'. Thus, T adwmits a super (¢ + %, 1)-EAT labeling. O

Let us remark that the previous lemma was proved in [17] by different
construction. We described only one convenient vertex labeling f which
will be useful in the next theorem.

Theorem 3. Let T be a caterpillar of order n, n > 3 odd. If T admits a
super (a,1)-EAT labeling, then mT also admits a super (b,1)-EAT labeling
for every m > 2.

Proof. Assume that a caterpillar T of order n, n > 3 odd, with vertices
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and edges denoted as in Lemma 7 admits a super (a, 1)-EAT labeling. We
denote by V(mT) = Ujo {Vi(T) U VZ(T)} the vertex set of a disjoint
union of m copies of the caterpillar T where Vi(T) = (v :1<1<t+3s),
ViT)={u :1<l<n—t—s} 1<j<m Let E(mT) =U;"=1{ef :
1 < i < n— 1} be the edge set of mT. Evidently every edge ef has one
endpoint in V{(T) and other one in Vi(T).

Let us distinguish two cases:
Case 1. m is odd

We extend the vertex labeling f from Lemma 7 onto a labeling g such
that for every 1 <1 <t 4 s we put

() = mif(u) -1+ 242 -5 if1<j< e
Gl =\ mffw) -1+ 2B -5 2R < j<m

and for every 1 <! < n—1t—s we put

() = m(f(w) -1 +2j ~1 if1<j<my
() =\ ff(u) -1+ 2-m—-1 =B <j<m

It is a routine procedure to verify that as f(u) € {1,2,... Jgu{n—s+
l,n—s+2,....,n} and f(w) € {t+1,t+2,....n— s} then the vertex
labeling g, is a bijective function from V(mT') onto the set {1,2,...,mn}.
Moreover for the edge-weights we have

wy, (€)) = muws(e) + 2152 +j for1<i<n-1 and1<j<m.

It follows from Lemma 7 that

wy(es) = c+(i—1) if1<igez
wied =\ oy if el <i<n-—1

thus the edge-weights of the corresponding edges in each copy of mT pro-
duce a sequence N = {wy,(el) : wy(e]) = ¢ +m@Ei—1),1 <@ <
LYy, (¢f) : wy, (€]) = ¢j+mi, &2 < i < k+1} for ¢ = met- 15524,
k=n—-2and 1< j<m. According to Lemma 2, it follows that for each
sequence Nj, 1 < j < m, there exists a permutation of the elements of the
arithmetic sequence S; = {rj +m(i—1):1<i<k+1}fork=n—2 and

o m.@y_}!):!_ +1 if jisodd
J mn+m+ 3254 if j is even

such that Nj + P(S;), 1 <j < m, is an arithmetic sequence with the first
term
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a 1'1(26-}--3"2—3)-{--3"-_] if j iS Odd
2eIne2tBti  ip s
T RIS if s even

and common difference m.

IFUL, S = {mn+1,mn+2,...,2mn — m} is the set of the edge labels
of mT then J7_, {NV; +'P(S,)} =Uji{e;+m(Ei-1):1<i<n-1}=
{me+253) + 2,m(c+ 253) + 3,... ,m(c+ 258) m(c+ 2278) + 1} is
the set of t:he edge-weights and we arrive at the desired result.

Case 2. m is even
We extend the vertex labeling f onto a labeling go in the following way,
where for every 1 <!/ <t+s

N m[ful)—1]+"'+2 joifl<; <%
92(‘){)_{ln[f(vl)—l]+‘5"‘+2 -j ifB+1<j<m

and forevery 1 <l <n—t—s

p(uly = { M) =142 -1 if1<j<y
“ m{f(uy)-1+2j-m fF+1<;<m
Again it is not difficult to verify that as f(v) € {1,2,...,t}u{n—s+1,n—-
s+2,.... n} and f(u) € {t + 1.t +2,...,n — s} then the vertex labeling
g2 V(mT) — {1.2,...,mn} is a bijective function. For the edge-weights
we have
() = mwgp(e;) — 32 4 j fl1<j<%
T ey (e;) ~ ”"+J+1 fRE+1<j<m.

Now, we define the arithmetic sequences S; = {r;+m(i—1):1 <1 < k+1}
for k=n—-2,1<j < m, where

for K =m—-1=5 (mod 06), E>5

for K=m—-1=1(mod6). Kk'>21 prj=mn+1-7r+h;.

for k'=m—1=3 (mod 6). k>3
We are using the labeling h from the proof of Lemma 2 for d = 1 and for
every k' =m — 1.
We will use a similar argument applied in Case I that the edge-weights
of the 0011e:>pon(lmg edges in each copy of mT produce a sequence N; =
{wy. (e) : “'u:("') =cj+m(i—1),1<i< _L} U {wgz(ej) wyz(e)) =
¢+ mi, 52 <i<k+1} for k=n-2and
o = (2~ .3)+J if1<j<3
YT BFQ@e-3)+i+1 ifE+1<5<m,
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where c is an edge-weight of the edge e, under the labeling f.

With respect to Lemma 2, for each sequence NV;, 1 < j < m, there exists
a permutation of the elements of the arithmetic sequence S; = {rj+m(i—
D:1<i<k+1},1<j<m, such that NV; + P(S;), 1 £ j < m,
is an arithmetic sequence with first term ¢; +7; + L‘i}m and a common
difference m. If U;.":l S; = {mn+1,mn+2,...,2mn— m} is a set of edge
labels of mT, then U;';l{J\/, +P(S;)} = {m(c+ 32) +2,m(c+ -3y 4+
3....,m{c+ B2), m(c+ 51=5) 1 1} determines the set of the edge-weights

3 2
of mT and the resulting total labeling is super (b, 1)-EAT.

5 Open questions

We have not yet found a construction that will produce a super (a,d)-EAT
labeling of m@G, for d € {0,2} and m even. So, we propose the following
open problem.

Open Problem 1. Let G be a graph of order n and size n — 1. For the
gruph mG determine if there is a super (a,d)-EAT labeling, for d € {0,2}
and m even.

In Theorem 2 we proved that if G is an a-graph of order n and size n — 1
and ||V3|— V|| < 1, where {V3, V2} is the bipartition of the vertex set of G,
then m@ is super (a, 3)-EAT, for every m > 1. In 2] it is exhibited a super
(13,3)-EAT labeling of a caterpillar which does not satisfy the restriction
for the cardinalities of bipartite sets V; and V3 because in this case =2
and |Va| = 2n — 1. What we can say on a super (a,3)-EAT labeling of mG
in the case when a graph G of order n and size n — 1 does not satisfy the
restriction for the cardinalities of the bipartite sets ¥} and Vo? At this time
we have no answer. Therefore for the further investigation we propose:

Open Problem 2. Let T be a caterpillar of order n and ||V1| — |Vo|| >
1, where {Vi,V} is the bipartition of its vertez set. For the graph mT
determine if there is a super (a,3)-EAT labeling.
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