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Abstract: The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological
index which reflects certain structural features of organic molecules. In this
paper we study PI index with respect to the extremal simple pericondensed
hexagonal systems and we solve it completely.
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1. Introduction

Wiener index (W) and Szeged index (Sz) are introduced to reflect certain
structural features of organic molecules [1-6]. [7, 8] introduced another index
called Padmaker-Ivan (PI) index. PI index is a very useful number in chemistry,
as demonstrated in literature [8-14). In [8] authors studied the applications of Pl
index to QSRP/QSAR. It turned out that the Pl index has a similar
discriminating function as Wiener index and Szeged index, sometimes it gave
better results. Hence, PI index as a topological index is worth studying. In [9]
authors pointed out that PI index is superior to °X, 2X and logP indices for
modeling Tadpole narcosis. In [10] the authors reported quantitative structure—
toxicity relationship (QSTR) study by using the PI index. They have used 41
monosubstituted nitrobenzene for this purpose. The results have shown that the
PI index alone is not an appropriate index for modeling toxicity of nitrobenzene
derivatives. Combining PI index with other distance-based topological indices
resulted in statistically significant models and excellent results were obtained in
pentaparametric models. For the previous results see [15, 16, 17, 21].

Let G be a simple connected graph. The PI index of graph G is defined as
follows:

PI(G) = X[neu(e|G) + nev(e|G)],

where for edge e = uv n(e|G) is the number of edges of G lying closer to u
than v, n.(e|G) is the number of edges of G lying closer to v than u and
summation goes over all edges of G. The edges which are equidistant from u
and v are not considered for the calculation of PI index [16]. In the following

we write n,, instead of n.,(e|G).
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2. Preliminaries
For further details, please see [18, 19].

Benzenoid hydrocarbons possess intriguing (and somewhat mysterious )
electronic properties and have been attracting the interest of theoretical chemists
over 150 years. In addition, they are important raw materials of the chemical
industry ( used, for instance, for the production of dyes and plastics ), but are
also dangerous pollutants. Around 1000 distinct benzenoid hydrocarbons are
known, some of which consist of more than 100 hexagons. Benzenoid
hydrocarbons are hexagonal systems [20].

A 6-cycle will be referred to as a hexagon. A hexagonal system H is a
connected plane graph without cut-vertices in which all inner faces are
hexagons ( and all hexagons are faces ), such that two hexagons are either
disjoint or have exactly one common edge, and no three hexagons share a
common edge. The sets of all hexagonal systems and of all hexagonal systems
with h hexagons are denoted by HS and HS;[20].

Hexagons sharing a common edge are said to be adjacent. Two hexagons of a
hexagonal system may have either two common vertices ( if they are adjacent )
or none ( if they are not adjacent ). A vertex of a hexagonal system belongs to,
at most, three hexagons. A vertex shared by three hexagons is called an internal
vertex of the respective hexagonal system. The number of internal vertices is
denoted by n; [20].

A hexagonal system is said to be catacondensed if it does not possess internal
vertices (n; = 0). The sets of all catacondensed hexagonal systems and of all
catacondensed hexagonal systems with h hexagons are denoted by CHS and
CHS,, respectively. A hexagonal system is said to be pericondensed if it
possesses at least one internal vertices (n; > 0) [20].

A hexagonal system is said to be simple if it can be embedded into the regular
lattice in the plane without overlapping of its vertices. Hexagonal systems that
are not simple are called jammed [20].

A hexagon r of a catacondensed hexagonal system has either one, two or
three neighboring hexagons. If r has one neighboring hexagon, it is said to be
terminal, and if it has three neighboring hexagons, to be branched. Hexagons
being adjacent to exactly two other hexagons are classified as angularly or
linearly connected ( mode A or L ). A hexagon r adjacent to exactly two other
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hexagons possesses two vertices of degree 2. If these two vertices are adjacent, r
is angularly connected, for short we say that r is of mode A. If these two vertices
are not adjacent, r is linearly connected, and we say that r is of mode L [20].

Each branched and angularly connected hexagon in a catacondensed
hexagonal system is said to be a kink, in contrast to the terminal and linearly
connected hexagons. In Figure 1 the kinks are marked by K [20].
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Figure 2. Figure 3.

The linear chain L, with h hexagons is the catacondensed system without
kinks. ( Thus, for 722, L, possesses two terminal and #—2 L-mode
hexagons ) [20].

A segment is a maximal linear chain in a catacondensed hexagonal system,
including the kinks and/or terminal hexagons at its end. A segment including a
terminal hexagon is a terminal segment. The number of hexagons in a segment
S is called its length and is denoted by h(S). For any segment S of H € CHS,,, 2
<h(S) < h. We say that H consists of the set of segments S,, S, ..., S; with
length h(S;) = h; for some s > 1 [20]. For example, in Figure 1 there are one
segment with length 3 and three segments with lengths 2, respectively.

In this paper we generalize the definition of segment to simple pericondensed
hexagonal system with n; = 2.

Let r be a hexagon of H. Deletion r from H means we delete the edges of r
which are not shared by other hexagons of H.

Let H be a simple pericondensed hexagonal system with n; = 2. We say a
hexagon r is a special hexagon of H if r is deleted from H, in the remaining
hexagonal systems there is no internal vertex or the number of internal vertices
is 1. Hence, we say hexagons r, and r, are special hexagons of H if r; and r, are
deleted from H, there is no internal vertex in the remaining hexagonal systems.
However, if any one of r) and r;, is deleted from H, there is one internal vertex in
the remaining hexagonal systems. Note that the special hexagon of H may not
be unique. However, in the following when we say spcial hexagon r of H we
mean r is a fixed special hexagon of H.
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A segment is a maximal linear chain in a pericondensed hexagonal system
with n; = 2. The number of hexagons in a segment $ is called its length and is
denoted by h(S). For any segment S of H, 2 <h(S) <h—2.

We say that H consists of the set of segments S1, S, ..., S with lengths h(S;)
=h,, h(Sz) = hy, ..., h(S;) = hs, respectively, s > 4.

We define GL;, as follows: GL4, consists of Ly., and two new hexagons ry, Iz.
Letr, be adjacent to both ith and (7 + /)th hexagons of Ly, let r, be adjacent
to jth and (j + 1)th hexagons of Ly, 1<iSj<h—2. At last, let r; and r, share the
same segment of GL,, whereh>5,i €{1,2, ..., h—4}. In GL, there are four
segments: one segment with length h - 2, two segments with lengths 2 and one
segment with length 3, respectively.

Define SF as follows: Let H be a simple pericondensed hexagonal system
with n; = 2 and h hexagons. If the length of one segment is 3 and the lengths of
remaining segments are 2, G is called SF, where h 2 5.

Graph G is called a strongly codistance graph (briefly, sco graph) if and only
if the edge relation “sco” is an equivalence relation for subset C = C(e) ofE=
E(G). In such a graph G if e# €C(e) we have C(e#) = C(e). The set C(e) is
called an orthogonal cut with respect to edge e of G. For an sco graph G the
edge set E = E(G) is the union of pairwise disjoint equivalence classes of
orthogonal cuts C;= C{(G), j= 1,2, ..., k, of graph G. Let m; = |C;, the number
of edges of orthogonal cut C; [16].

3. Main Results
Lemma 3.1{16]. PI(G)=m* - imf,

Jj=l
where m is the edge number of G, m is the edge number of orthogonal cut C;.
Lemma 3.2[20]. (1). Every hexagonal system with h hexagons and n; internal
vertices has m = 5h + 1 —n; edges.
(2). Let H be a catacondensed hexagonal system, h be the number of hexagons
inH, S, Sy, ..., Ssbe the segments of H, h; be the number of hexagons of S, i =
1,2,...,s,wehaveh=h; +h;+ ... +h, —s+1.
Theorem 3.1. Let H be a simple pericondensed hexagonal system with n; =2, h
hexagons and consist of s segments Sy, Sy, ..., Ss with lengths hy, hy, .., by,
respectively, h > 4. Then PI(H)=25h +5+3-20h- 2!:}.

i=l
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Proof. Let m; be the number of edges of orthogonal cut C; defined in Lemma 3.1
and h; be the length of segment S;, When h; > 2, we have m; = h; + 1. Thus, the
number of edges of H which are not contained by orthogonal cuts stemmed
from S,, ..., S, is (Sh—1)—(h, + ... + hy)—s. Thus, the number of orthogonal
cuts with m; = 2 is 0.5[(Sh—1)—(h, + ... + hy)—s]. By Lemma 3.1 and Lemma
3.2 we have
PI(H)=(5h-1)? —z‘:(hi +1)* =0.5x[(Sh-1)~(h + h, +...+ h +5)]x4.
i=]

The theorem follows.
Theorem 3.2. Let H be a simple pericondensed hexagonal system with n; = 2
and h hexagons. Then
(i). PI(H) > PI(GL,,) with equality if and only if H is GL;, where GL,, is defined
in section 2, h > 5.
(ii). PI(H) < PI(SF,,) with equality if and only if H is SF,,, where SF,, is defined
in section2,h> 5,
Proof. Claim 1: Let H be a simple pericondensed hexagonal system with n; = 2,
h hexagons and consist of s segments S,, ..., S; with lengths h,, ..., h,
respectively, s>4,h>4. Thenh=h, + ... +h,—s—1.

In fact, we can prove Claim 1 as follows.
Case 1. H contains one special hexagon r which is defined in section 2.
Subcase 1.1. When we delete r from H, we obtain one component H’ . See

Figure 2. Obviously, H' is a catacondensed hexagonal system. Let H' consist

of t segments S, ...,S,.
Subcase 1.1.1. t =s. By Lemma 3.2 we have

b, =h(S))+h(S;)+...+ h(S,) -t +1
=h(S,)+h(S,)+...+ h(S,)-3-s+1
=h+h+.+h—-s-2.

Since A, =h”. +1,wehaveh=h;+ ... +hy—s—1.

Similarly, we can discuss Subcase 1.1.2, Subcase 1.1.3 and Subcase 1.1.4.
Subcase 1.1.2. t=s— 1. Subcase 1.1.3.t=s—2. Subcase 1.14. t=s-3.
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Subcase 1.2. When we delete r from H, we obtain two components H' and H.
See Figure 3.
Hence, when we addrtoH' and H respectively, we obtain two hexagonal

systems H°and H".By the definition of special hexagon, one of H*

and H" is a pericondensed hexagonal system with n; = 2, one of H'and H" is
a catacondensed hexagonal system . Without loss of generality, let H bea
pericondensed hexagonal system with n; =2, let H" be a catacondensed
hexagonal system.

Let the segments of H® be S/,S; ,...,S; , let the segments of H"
beS;,S; ,....S; . By Case 1.1 we have
B, = HS] )+ IS )+t (ST ) =% 1.

By Lemma 3.2 we have &, = B(ST)+h(S) )+t B(S) )=y +1.

By the definition of special hexagon there exist i and j such that S; and S} “share

a common segment of H through special hexagonr. Leti=x, j=y;Bythe
definition of special hexagon 8!, S5 5., 85,5 8] »S; ».-» Sy, are the segments of

Hand A(S])+h(S] )-1is the length of one segment of H other than

B(ST ), h(SL Yo BSTL) , HS) ), H(S] )5 (S, ,) - Hence, we have s =x +y -1,

By=h . +h,-1
=h(S,")+h(S;')+...+h(S§'_,)+h(S,")+h(S,")+...+ h(S’,)
HASI )+ h(S) N -x—1-y+1-1
=h+h+..+h_+h—-s-1

Case 2. H contains two special hexagons r, and r, sharing no common segment.

38



Figure 4. Figure 5. Figure 6.
Subcase 2.1. When we delete r, and r, from H, we obtain one component H' .

See Figure 4.
Obviously, H' is a catacondensed hexagonal system. Let H' consist of t

segments S,',...,S; .

Subcase 2.1.1. t=s.
Hence, r, is adjacent to two segments of H' , so is r,. Similarly, we have

b =h(S))+h(S,)+...+ K(S,)-s+1
=h+h+..+h-s-3.

Since h, =h,.+2, wehaveh=h,+... +h—s—1.

Similarly, we can discuss Subcase 2.1.2—Subcase 2. 1. 5.

Subcase 2.1.2.t =5~ 1, Subcase 2.1.3. t =5 -2, Subcase 2.1.4. t =s -3,
Subcase 2.1.5.t=s-4.

Like the proof of Case 1 we can prove Claim 2 as follows:

Claim 2: Let H be a simple pericondensed hexagonal system with n; = 1, h
hexagons and consist of s segments S,, ..., S; with lengths h,, ..., h,,
respectively, s>3,h>3. Thenh=h; +... +h,—s.

Subcase 2.2. When we delete r) and r, from H, we obtain two components H’

and H' . See Figure 5.

Hence, when we add one of r; andr; toH' and H' respectively, H' and ~
H' are connected. Without loss of generality, let H, be obtained by adding r, to
connectH' and H . Let the segments of H, be S, S,...,S! . Obviously, H, is a

pericondensed hexagonal system with n; = 1.
Subcase 2.2.1.t=s5-2.
Hence, when we add r, to H, we obtain two new segments with lengths 2.
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Without loss of generality, let hy.; = 2, h; = 2. By Claim 2 we have

hy, = h(S))+h(S})+...+ h(S} ;) - (s=2)
=h+h+..+h-5s-2

Since b, =h, +1, wehaveh=h, +... +hs—s—1.

Similarly, we can discuss Subcase 2.2.2, Subcase 2.2.3.
Subcase 2.2.2. t=s—1, Subcase 2.2.3. t=s.
Subcase 2.3. When we delete r; and r, from H, we obtain three components H ,
H' and H . See Figure6.

Then, we add r, to H ‘" H and H ", Without loss of generality, let r,
connect H and H . We denote the new graph H,. Similarly, we add r; to

H~ and we obtain a new graph H,. When H, is a pericondensed hexagonal
system withn; = 1, Hyis a catacondensed hexagonal system. Let the segments of

H,be S!,5.,..,S!, and the segments of Hy be S7,S;,...,S; . When both H, and

H, are pericondensed hexagonal system with n; = 1, we can discuss similarly.
Subcase 2.3.1. H, contains exactly one segment which is adjacent to r,.

Without loss of generality, let the segment be S, which is adjacent to r,. Let
S, contain r,.

Subcase 2.3.1.1. S! and S? do not share a common segment in H.
We have s=x+y + 1. Hence, h =h(S}), h; =h(S;)+1, hy=2.
Without loss of generality, let ,_, = h(S}), h,_, =h(S;)+1, hy=2.By Claim

By, = h(S!)+H(S) +...+ h(S}) -,

2 we have
hy, = h(ST)+h(S;)+...+ h(S})-y+1.

hy =hy +hy
=h(Sl‘)+h(S;)+...+h(S:)—x+h(S,’)+h(Sz’)+...+h(Sj)—y+l
=h+h+..+h—-s-1



Subcase2.3.1.2. S} and S share a common segment in H.

In fact, this case can not occur. Otherwise, both H, and H, are pericondensed
hexagonal system with n; = 1.
Similarly, we can discuss Subcase 2.3.2.
Subcase 2.3.2. H, contains two segments which are adjacent to r,.
Case 3. H contains two special hexagons r, and r, which share a common

segment.

Figure 7. Figure 8. Figure 9.
Subcase 3.1. When we delete r; and r, from H, we obtain one component H' .

See Figue 7.
Obviously, H' is a catacondensed hexagonal system. Let H’ consist of t

segments S,,...,S, . Since n; =2 in H, r,and r, share a common segment, we

have t> s—3. Otherwise, n;> 3.
Subcase 3.1.1. t=s-3.
Hence, there must be some h; = 2, h; = 2, h, = 3. Without loss of generality, let
hy2 =2, h, =2, h,; =3, By Lemma 3.2 we have

h; = h(S)+hS,)+...+ h(S,) -t +1
=h(S))+h(S,) +...+ h(S, ;) + (h(S,_;) = 2)+ (h(S,,) -2+ (K(S,)-3)-s+4
=h+h+.+h -s-3.

Since hy =h,. +2, wehave h=h +h +..+h -s-1.

Similarly, we can discuss Subcase 3.1.2, Subcase 3.1.3.
Subcase 3.1.2. t=s -2, Subcase 3.1.3. t=s—1.
Subcase 3.2. When we delete r; and r, from H, we obtain two components H’
and H' . See Figure 8.

Then, we add one of ryandr, to ‘and H' respectively. Without loss of
generality, let H, be obtained by adding r, to connect H ‘and H . Let the
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segments of H, be S,...,S! . Obviously, H, is a pericondensed hexagonal system

withn;= 1.
Subcase 3.2.1. t=s—1.

Hence, when we add r, to H, we obtain a new segment with length 2. Without
loss of generality, let hy= 2. By Claim 2 we have

by, =h(S))+ (S} + ..t B(S, )= (s=1)
=h+h+.+h-s-2.

Since A, =h, +1, wehave h=h+h +..+h -5s-1

Similarly, we can discuss Subcase 3.2.2.
Subcase 3.2.2.t=s.
Subcase 3.3. When we delete r; and r, from H, we obtain three components

H',H and H' .See Figure9.

Then, we add r, to H '"H and H " . Without loss of generality, let r,

comect H and H . We denote the new graph H; obtained by connecting

H'and H' through ry. Similarly, we addr, to H " and we obtain a new graph
H,. Obviously, H, is a pericondensed hexagonal system with n; = 1, Hyis a

catacondensed hexagonal system. Let the segments of H, be S!,...,S;, and the

segments of H, be S7,...,S5.

Subcase 3.3.1. There exist S; and Sj sharing a common segment of H.
Without loss of generality, let the two segments be S, and S}, and

h,_, =h(S})+h(S2).

Subcase 3.3.1.1. S. containsr,.

Clearly, there is a new segment with length 2 in H through r,. Without loss of
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generality, let h; = 2. Then, we have s = x +y. By Claim 2 we have

by, = K(S)+h(S;) +..+ h(S}) - x,

hy, = h(S7)+h(S;)+.. + K(S}) -y +1.
by =hy +hy,
=h+h+..+h-s-1.

Subcase 3.3.1.2. S, does not contain ry.

We can discuss Subcase 3.3.1.2 similarly, Claim 1 follows.
By Theorem 3.1 Claim 3 is obvious:

Claim 3: PI(GL;) = 24h?—16h— 14.

Claim 4: When s > 5, we have PI(H) > PI(GL;).

s(s +3)

T In the following let
s -

Obviously, when s> 5 we have s +7s+22>

i#j,hi>2,h;>2. Since s> 5 we have
s(s+3)
s-1

(s-Dh;-(s+3)20.

sh—————=20,

Hence, we have [sh — sGs +3)
s—

1[(s—1A; ~(s+3)]20. Thus, we have

s(s=Dhh; +5* +T5+22> s(s +3)(h, + ).

0.5(s* +7s+22) .3
0.5s(s-1)

> B +0.5(s* +75+22) > (s +3)(h + b, +...+ b))

Isi<jss

(h + h;). Hence, we have

That is, hh, +

Since Zh’+2 > hh =(h+h+..+h), wehave

ISi<jss

(h+ht+..+h) =2s(h+h+..th)+s* +2s+1+5+17
>6(h +hy+..+h)=-4s-4+D I
i=l

Hence, we have
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(B +hy+.t b)Y =2s+ D) +hy +.th)+(s+ 1) +5+17
o4l +hy +t )~ ds—4+ DR,

isl

By Claim 1 we have h=h; + ... + h,—s—1.

Thus, we have A* +s+17>4h+Y K.

i=l

Hence, we have 25k +5+3-20h— )"k’ >24h" -16h-14.

i=]
By Theorem 3.1 and Claim 3 we have PI(H) > PI(GL,). Claim 4 follows.

Let Sy, ..., Ss be segments of H. Suppose s =4,h>5, and there are two
special hexagons in H. Because each special hexagon occupies at least two
segments. By the definition of segment, at most one segment above is occupied
by the two special hexagons of H at the same time. The remaining h—2
hexagons occupy at least one segment which is not occupied by one of the two
special hexagons of H. Since s = 4, H is GLi.

When s =4, n; =2, h> 5 and there is a unique special hexagon in H, H
contains subgraph H' which is defined in Figure 10.

S5 o

Figure 10. H' Figure 11. H
By the definition of segment H' has 5 segments. Hence, H
has at least 5 segments, which contradicts with s = 4. Hence, PI(H) = PI(GL,) if
and only if H = GL4. The first part of Theorem 3.2 follows.
In the following we want to prove the second part of Theorem 3.2: PI(H) <
PI(SF;) with equality if and only if H is SFp, where h> 5.
By Theorem 3.1 Claim 5 is obvious:
Claim 5: PI(SFy) = 25h2—20h—3s—2, where SF is defined in section2, h>5.
Claim 6: when h > 5, n; = 2, there exists h;> 3.
In fact, when there is a unique special hexagon r in H, H contains a subgraph
H’, which is defined in Figure 10. Hence, when h=>5, we have h;> 3.
Suppose H contains two special hexagons r, and r; in H. When r, and r; share
a common segment, the length of the common segment must be at least 3,
Claim 6 follows. Otherwise, suppose r; and r; do not share a common segment
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in H. We delete r, and r, from H and obtain H"", If the number of components in
H" is at least 2, there must be two components which are connected by r, or by
13, Claim 6 follows. Thus, suppose H" is connected. We add r, to H'* and obtain
H™. H"" must contain subgraph H**** which is defined in Figure 11. In H™***
one of the hexagons is r. Since h > 5, there must be at least one hexagon which
is adjacent to H'™"" and it is not a special hexagon. Claim 6 follows. By Claim 6

wehave 4s+5< th. By Theorem 3.1 and Claim 5 the second part of
i=]

Theorem 3.2 follows.
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