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Abstract Multisender authentication codes allow a group of senders to construct an au-
thenticated message for a receiver such that the receiver can verify authenticity of the re-
ceived message. In this paper, we give the model of multisender authentication codes
and the calculation formulas on probability of success in attacks by malicious groups of
senders. A construction of multisender authentication codes from symplectic geometry
over finite fields is given, and the parameters and the probabilities of deceptions are also
calculated.

1. Introduction

Information security consists of confidentiality and authentication. Confiden-
tiality is to prevent the confidential information from decrypting by adversary.
The purpose of authentication is to ensure the sender is real and to verify the
information is integrated. Digital signature and authentication codes are two im-
portant means of authenticating the information, and provide good service in the
network. Digital signature is computationally secure, in practical, assume that
the computing power of adversary is limited and a mathematical problem is in-
tractable and complex. However, authentication codes are generally safe (uncon-
ditionally secure), relatively simple. In 1940s, C. E .Shannon first put forward the
concept of perfect secrecy authentication system using the information theory. In
1980s, information theory method has been applied to the problem of authentica-
tion by G. J. Simmons, authentication codes became the foundation for construct-
ing unconditionally secure authentication system. In 1974, Gilbert, MacWilliams
and Sloane constructed the first authentication code!!), it is a landmark in the
development of authentication theory. During the same period, Simmons inde-
pendently studied the authentication theory and established three participants and
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four participants certification models!?l. The famous mathematician Wan Zhexian
constructed an authentication code without arbitration from the subspace of the
classical geometry P!, In the case of transmitter and receiver are not honestly,
Ma Wenping, Wang Xinmei, Gao You, Chen Shangdi, Li Ruihu constructed a se-
ries of authentication codes with arbitration ¥-7). Xing Chaoping!® and Ding
Cunsheng!®! constructed authentication codes using algebraic curve, nonlinear
functions. Safavi-Naini R gave some results on multireceiver authentication codes
[10] Ma Wenping, Y. Desmedt, Qi Yingchun, Du Qingling made great contribu-
tions on multisender authentication codes [''-14l. In this paper, we construct a
multisender authentication code from symplectic geometry over finite fields, the
parameters and the maximum probability of success in impersonation attack and
substitution attack by group of senders are also computed.

2. The: Model of Multisender Authentication Codes

Group cryptography is introduced by Boya and Desmedt, the basic idea is to
change the single person into multiple persons in the communication users and
has more practical value. Multiuser authentication codes are a generalization of
traditional two users authentication codes, it changes the traditional single sender
and single receiver into multiple senders and multiple receivers. Two cases of this
authentication codes are studied mostly: multisender authentication codes and
multireceiver authentication codes. In this paper, we only study the former. In
the actual computer network communications, multisender authentication codes
include sequential model and simultaneous model. Sequential model is that each
sender uses their own encoding rules to encode a source state orderly, and the
last sender sends the encoded message to the receiver, the receiver receives the
message and verifies whether the message is legal or not; Simultaneous model
is that all senders use their own encoding rules to encode a source state, then
the synthesizer forms an authenticated message and sends it to the receiver, the
receiver receives the message and verifies whether the message is legal or not.

In sequential model, there are three participants: a group of senders U =
(U, Ua, - -+, Uy} ; a Key Distribution Center (KDC), for the distribution keys to
senders and receiver; a receiver, he receives the authenticated message and veri-
fies the message truth or not. The code works as follows: each sender and receiver
has their own Cartesian authentication code, respectively. It used to generate part
of the message and verify authenticity of the received message. Sender’s authenti-
cation codes are called branch authentication codes, and receiver’s authentication
code is called channel authentication code. Let (S, E;, Ti; fi), i = 1,2,---,n be
the sender’s Cartesian authentication codes,and T;_; € S;,1 €i<n,(S,E,T; f)
be the receiver’s Cartesian authentication code,and S = 8,7 =T, 7; : E = E;
be a sub-key generation algorithm. For authenticating a message, the senders and
the receiver should comply with protocols: 1) KDC randomly selects a e € E
and secretly sends it to the receiver R, and sends e; = mj(e) to the i—th sender Ui,
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i=1,2,---,n;2) If the senders would like to send a source state s to the receiver
R, U; calculates t; = fi(s,e1), and then sends to U, through an open channel,
U receives #) and calculates 1, = fo(1), e2), and then sends z; to Us through an
open channel. In generally, U; receives ¢, and calculates t, = fi(t;,-),¢;), and
then sends f; to U, through an open channel, 1 < i < n .U, receives #,-, and
calculates ¢, = fy(;-1, e,), and then sends m = (s, #,) through an open channel to
the receiver R ; 3) When the receiver receives the message m = (s, t,,), he checks
the authenticity by verifying whether 7, = f(s,€) or not. If the equality holds,
the message is regarded as authentic and is accepted. Otherwise, the message is
rejected.

In simultaneous model, there are four participants: a group of senders U =
{U1, Ua,- -+, Uy} ; a Key Distribution Center (KDC), for the distribution keys to
senders and receiver; a synthesizer C, he only runs the trusted synthesis algo-
rithm; a receiver, he receives the authenticated message and verifies the message
truth or not. The code works as follows: each sender and receiver has their own
Cartesian authentication code, respectively. It used to generate part of the mes-
sage and verify the received message. Sender’s authentication codes are called
branch authentication codes, and receiver’s authentication code is called channel
authentication code. Let (S;, E;, Ti; f), i = 1,2,---, n be the sender’s Cartesian
authentication codes, (S, E, T; f) be the receiver’s Cartesian authentication code,
8 : T1XT2X---XT, — T be the synthesis algorithm, 7; : E — E; be a sub-key
generation algorithm. For authenticating a message, the senders and the receiver
should comply with protocols: 1) KDC randomly selects a encoding rule ¢ € E
and secretly sends it to the receiver R , and sends e; = m;(e) to the i—th sender U,
i=1,2,.--,n;2) If the senders would like to send a source state s to the receiver
R, U;computes t; = fi(s,e;), i =1,2,---,nand sends m; = (5,2,),i=1,2,---,n
to the synthesizer C through an open channel; 3) The synthesizer C receives the
messages m; = (s,4),{ = 1,2,---,n, and calculates ¢ = g(t;,82,- -, #,) using the
synthesis algorithm g , then sends message m = (s, ) to the receiver R; 4) When
the receiver receives the message m = (s, 1), he checks the authenticity by verify-
ing whether 1 = f(s,e) or not. If the equality holds, the message is regarded as
authentic and is accepted. Otherwise, the message is rejected.

3. The calculation formulas

We assume that the arbitrator (KDC) and the synthesizer (C) are credible,
though they know the senders’ and receiver’s encoding rules, they aren’t partici-
pate in any communication activities. When transmitter and receiver are disput-
ing, the arbitrator settles it. At the same time, assume that the system follows
the Kerckhoff’s principle which except the actual used keys, the other informa-
tion of the whole system is public. Assume that the source state space S and the
receiver’s decoding rules space Ex are according to a uniform probability distri-
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bution, then the probability distribution of message space M and tag space T are
determined by the probability distribution of S and Eg .

In a multisender authentication system, assume that the whole senders are co-
operation to form a valid message, that is, all senders as a whole and receiver
are reliable. But there are some malicious senders which they together cheat the
receiver, the part of senders and receiver are not credible, they can take imperson-
ation attack and substitution attack.

Assume that Uy, Ua, -+, Uy, are senders, R is a receiver, Ey, is the encod-
ing rules of U;, Eg is the decoding rules of receiver R. L = (12,1} C
1,2,---,nh, L < n, Ur = (Ui, Uiy s Ub EL = lEU‘,:EU,z,"':EU,,}- Next
we consider the attacks from malicious groups of senders.

Impersonation attack: U,, after receiving their secret keys, send a message
m to receiver. Uy is successful if the receiver accepts it as legitimate message.
Denote P;{L] is the maximum probability of success of the impersonation attack.
It can be expressed as

P;[L) = max max P(m is accepted by Rler).
e €E;, meM

Substitution attack: Uy, after observing a legitimate message m, substitutes
it with another message m’. Uy is successful if m’ is accepted by receiver as
authentic. Denote Ps[L] is the maximum probability of success of the substitution
attack. It can be expressed as

Ps[L) = f?fé max max P(m'is accepted by Rlm, eL).

4. Geometry of Symplectic Groups over Finite Fields

In this section, we give some definitions and properties on geometry of sym-
plectic groups over finite fields, which can be extracted from [15].

Let F, be a finite field with g elements, n = 2v and define the 2v x 2v alternate
matrix -

K=\ _» o
The symplectic group of degree 2v over F4, denote by S p2,(F, ), is defined to be
the set of matrices
S pa(Fy) = {TITK'T = K},
with matrix multiplication as its group operation. Let F @ be the 2v-dimensional
row vector space over Fy. S p2,(Fy) has an action on F§” defined as follows
F@) x S pay(Fg) = F”
(X1, %24+ -, X20), T) = (X1, %2, . ... , X2,)T.

The vector space Fff"’ together with this action of S pa(Fg) is called the symplec-
tic space over Fg.
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Let P be an m—dimensional subspace of F,(,z"). We use the same latter P to
denote a matrix representation of P, that is, P is an m x 2v matrix of rank m such
that its rows form a basis of P. The PK'P is alternate. Assume that it is of rank
2s, then P is called a subspace of type (m, 5). It is known that subspaces of type
(m, s) exist in Fff”’ if and only if

2s<m<y-s
It is also known that subspaces of the same type form an orbit under S po(Fy).
Denote by N(m, s; 2v) the number of subspaces of type (m, s) in F’ff"’ .

Denote by P+ the set of vectors which are orthogonal to every vector of P,
that is,

Pt ={ye FPyK'x = 0for all x € P).
Obviously, P* is a (2v — m)-dimensional subspace of F3”.

5. Construction

Let F, be a finite field with g elements. Assume that 1 <n<n’ <r<v. U=
(e1,€2,---,en), then Ut = (), -, €y, €vane1, -, €2)). Let Wi = (ey, - -, €01, €041
-+, ep), then Wit = (e1,---, ey, €usi, €yins1, - 2 €2y), | < i < n. The set of source
states S={s|s is a subspace of type (2r —n,r —n)and U c s ¢ U*}; the set of
i—th transmitter’s encoding rules Ey,={ey,ley, is a subspace of type (n + 1,1) and
U c ey, ey, L Wy} the set of receiver’s decoding rules Eg={eg]er is a subspace of
type (2n’,n’) and U C eg}; the set of i—th transmitter’s tags T;={#|; is a subspace
oftype r—n+1,r—n+1)and U c t; ¢ Wi*, 1; ¢ U*}; the set of receiver’s tags
T={1]t is a subspace of type (2(r + n’ —n),r +n’ —n)and U C 1}.

Define the encoding map

fitSXEy — T, fis,ey)=s+ey, 1<ign.

The decoding map
f:SXER—T, f(s,eg) =5 +eg.

The synthesizing map
g§:TiXT X XT,—T,glti,t2, "ty =t +t24+ -+ 1, + w,

where w is a subspace and #| + 2 + -+ - + 1, + w is a subspace of type (2(r + n’ —
n),r+n —n).

This code works as follows:

1DKDC randomly chooses a eg € Eg and selects a (2n, n) subspace e such that
U ce,andselects ey, € Ey, sothatey, +ey, +---+ey, =e. wisa subspace and
satisfying eg = (e, w). KDC secretly sends eg, ey, 1o the receiver and the senders,
respectively, and sends w to the synthesizer C.

2)If the senders want to send a source state s € S, U; calculates 7; = Ji(s,ey,) =
s + ey,, and then sends ¢; to the synthesizer C, 1 < i < .
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3)The synthesizer receives 11,1, -,#,, he calculates ¢t = g(t,f2," -, tn) =

f +# + -+ Iy + w, and then sends (s, 7) to the receiver R.
4)The receiver R receives (s, 1), he calculates ¥’ = f(s,eg) = s+eg. Ift =17,

he accepts ¢, otherwise, he rejects it.

Assume that the sender’s encoding rules and the receiver’s decoding rules
follow the uniform probability distribution. Let
“Y 0 0 0 0 0 0 0) i
v= o0 1 0 0 0 0 O O 1
0 0 I*? 0 0 0 0 O) ni

14

i-1 1 n-i v-n i-1 1 a=i v-n
then ,
<Y 0 0 o 0 00 O
0 1 O 0 0 00 O
ut=| 0 0 I 0 0 0 O0 O
0O 0 0 ™ 0 00 O
\ 0 0 O 0 0 0 0 ™
i-1 I n-i v-n -1 1 n-i v-n
Y 0 0 0 0 00 O
0o 1 O 0 0 00 O
Wit = 0 0 "% 0 0 00 O
1 o 0 O I*® 0 00 O
0o 0 O 0 0 10 O
.\ 0 0 O 0 0 0 0 [
i-1 1 n-i v-n -1 1 n-i v-n

Next, we will show that the above construction is a well defined multisender
authentication code.

Lemma5.1 Let C; = (S, Ey, Ti; f;), then C; is a Cartesian authentication
code,l <i<n.

Proof. For any ey, € Ey,, s € S, we assume that

v 0 0 0 0 0 0 0\ it
10 1 0 00 00 0}
€= 0 0D 0 0 0 0 O |ni
0 0 0 R4 0 R5 0 Rs 1

i-1 1 n-i v-n i-1 1 n-i v-n

For ey, is a subspace of type (n + 1, 1), therefore, R = 1, Ra, Rg arbitrarily.
Obviously, ey, N U* = U. Let s € S, and

Y 0 0 o0 0 0 O O i-1
| 01 0 0 0000 1
=l o 0™ 0 0 0 0 O [ ni

0 0 0 H4 0 0 O Hg 2(r-n)

i-1 1 n—i v-n i-1 1 n-i v-n
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Because s is a subspace of type (2r — n,r — n), (Ha, Hg) is a subspace of type
(2(r — n), r - n) in the symplectic space Fg(""". Lett; = s + ey, then

9D o0 0 0 0 00 O i-1
0 1 0 0 0 00 O 1
L= 0 0 J&-D 0 0 0 0 O n-i
0 0 0 R4 0 1 0 Rg 1
0 0 0 H, 0 00 Hg 2(r-n)
i-1 1 n-i v-n i-1 1 n-i v-n
and
0O 0 0 0 0 0
0 0 0 1 0 0
: 0 0 0 O 0 0
WKi~fo 100 o o
0 0 0 O 0 e-n
0 0 0 0 —yum 0

Obviously, #; ¢ U*. So, 1; is a subspace of type (2r —n+ 1, r —n+ 1) and satisfying
U ct c Wit thatis1; € T;. Atthe same time, we know ;N UL = (s+ey,)NU* =
s+eyNnU)=s+U=s.

Conversely, forany ; € T;, let s = ;N U, L C 4, satisfying t; = s@® L. Obviously,
UcscU*. ForUcc Wi, let

<" 0 0 0 0 0 0 O i1
. 0 1 0 0 0 0 0 O I
" o o0 /M@ 0 0 0 0 O n-i
0 0 0 R; 0 Ré 0 Ré 2r-n)+1
i-1 1 n-i v-n i~1 1 n-i  v-n

Because #; ¢ U*, then Ry # 0, therefore, one component of Ry is not zero,
through appropriate row transformation. Let

Y 0 0 0O 0 00 O i-1
0 1 0 0 0 00 O 1
L= 0 0 J=-d 0 0 00 O n—i
0 0 0 R4 0 1 0 Rg 1
0 0 0 H4 0 00 Hg 2(r-n)
i-1 1 n-i v-n i-1 | n-i v-n
Obviously,
v 0 0 0 0 00 O i-1
..l o 1 0 0o 000 0] .
BOUT=1 0 0/ 0 0 00 0|
0 0 0 H4 0 00 Hs 2(r-n)
i-1 1 n-i v=n  i-1 1 n-i v-n

For 1; is a subspace of type (2r —n+1,r—n+ 1), then #; " U* is a subspace of
type (2r —n,r—n), thatis, s € S. Choose L =(000R; 010 Rg),letey, = U +L,

359



then ey, € Ey,, and t; = s ® L = s + ey,. Therefore, f; is a surjection. For any
t; € Ti, ey, € Ey,, if there exist s € S sothat ; = s + ey,, then s C ; N U~
However, dims=2r — n=dim(t; N U*), so, s = t; N U+, that is, s is determined by
t; and ey,.

Lemma5.2 Let C = (S, Eg, T, /), then C is a Cartesian authentication code.

Proof. Forany s € S, eg € Eg, from the definition of s and eg, we assume that

' o™ 0 0
(8 (32T 5 )
Q 2r-n) Qo Q 0 - 0

{UY " aq (U k(U)o O
REAV ) 2wen 14 v )T\ - o0 |-
Obviously, forany v € Vand v # 0, v ¢ 5. Therefore,

(n')
- * *
t=s+ep=| V |,and | V [K]| V [= rn
0 * 0o I
Q Q Q 0 * _I(r—n) 0
So, ¢ is a subspace of type (2(r +n’' —n),r+n’ —n)and U C 1, thatis, t € T.

On the other hand, For any ¢ € T, t is a subspace of type (2(r+n’—n),r+n’—n)
containing U, then there exist a subspace V C ¢, satisfying

(V)e(V)-( 5 757)
=

] , and satisfying

o <c

, 0o M 0 0
UY (YY |- 0 o o
VIK| V |=
o 0o o0 [
e) \¢ 0 0 -IM 0

Let s = u ), then s is a subspace of type (2r —n,r —n) and U € s ¢ U*,

Qo
thatis, s € S. Foranyv € Vandv # 0, then v ¢ s, thatis, V. n U* = {0}. So,
tnU‘-:( g )=s.LeteR=( 3 ),theneReER,andsalisfyingt=s+eR.

If s’ is another source state contained in ¢, then s' c t N U+ = s, while
dims’=dims, so, s’=s. Therefore, s is the uniquely source state contained in 1.

From the above two lemmas, we know this construction is well defined. Next,
we compute the parameters and the maximum probability of success in imperson-
ation attack and substitution attack by group of senders.

Lemma 5.3 The number of the source states is [S| = N(2(r—n), r—n; 2(v-n)).
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Proof. For any s € S, since U ¢ s ¢ U* and s is a subspace of type (2r —

n,r — n), assume that
5= ™ 0 0 0 n
N0 2 0 Q4 f 2w
n n

v=n

’
v=n

where (Q2, Q4) is a subspace of type (2(r—n), r~n) in the symplectic space Fg(‘"").
Therefore, |S| = NQ2(r — n),r — n;2(v - n)).

Lemma 5.4 The number of the i—th transmitter’s encoding rules is |Ey,| =
@Y M 1<i<n.

Proof. Letey, € Ey,, then
(I 0 000 0)n=x
e”"(o R2010R4)1’
n  v-n i-l 1 n~-i v-n

where Ry, R, arbitrarily. Therefore, |Ey,| = 2,1 <i < n.

Lemma 5.5 For any #; € T;, the number of #; which containing ey, is a;, then
ai=q¢ M 1<i<n

Proof. Since the transitivity properties of the same type subspaces under the
symplectic groups, we choose

9D 0 0 0 0 000 0 O0) i
0 1 0 0 0 000 O O 1
[ = 0 0 =D 0 0 000 O OFf ni
e 0 0 o 0 0 010 0 O 1
0 0 0 “» 0 000 0 0 r-n
0O 0 o 0 0 000 IM Q) rn

i-1 1 n-i r-n v-r i-l 1 n-i r-n v-r

If ey, C #;, then we assume that

“Y 0 0 0 0 0 0 0 0 0 it
2| © L 0 0 00000 0]
“Zl o 01 0 0 0 0 0 0 O ni
0 0 0 R4 0 0 R7 0 R9 0 1

i-1 L} n-i r-n v-r i~l 1 n-i r-n v-r

For ey, is a subspace of type (n+ 1, 1), 50, R7 = 1, while R4, Ry arbitrarily. There-
fore,a; =q*™™, 1 <i<n.

Lemma 5.6 The number of the i—th transmitter’s tags is |7i| = N(2(r — n), r -
n2(v-n)g? N 1<i<n

Proof. Since f; is a surjection, then |T}| < |S x Ey,|. For every ¢; containing a
unique source state £;NU+, and from lemma 5.5, the number of ; which containing
ey, is g%, then |S x Ey,| = |T; x a;]. Therefore,

S X Eyl NQ@r-n),r-n;2(v- 2v-n)
= X2l MO z(':,_Z(V T NQ@r-n), - 2(v-n))g**".
a; q n)

(]
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Lemma 5.7 The number of the receiver’s decoding rules is |Eg] = g2* "),

Proof. For eg € Eg, then
e_(l(”') 0 o0 O)n’

R=\ 0 R, I™ Ry ) w
n v-n' v-n

where Ry, R, arbitrarily. So, |[Eg| = ¢2" ).

Lemma 5.8 For any ¢ € T, the number of eg which contained in ¢ is a, then
= o' (r-n)
a=gq .

’

Proof. Since the transitivity properties of the same type subspace under the
symplectic groups, we choose
“ 0 0 0 0
0o 0 0 I 0
0 Im 0 0 0 0| rn
0 0 O 0 " 0) ra
”

ren v-r-n'4n " r-n v-r-n'+n

I'd

0
0 w

If eg C ¢, then
(™ o 0 0 0 O\
®=\ 0 R, 0 I Rs 0w
’ r-n  v-r-n’+n W r-n  v-r-n'+n

where R, Rs arbitrarily. Therefore, a = g2 ¢,

Lemma 5.9 The number of the receiver’s tags is |T| = N(2(r —n),r = n;2(v -

n

n))qbl’(v—r—n’\tn)'
Proof. Similarly to Lemma 5.6,
S X E
m = SxE
a
NQ(r = n),r = n;2(v — n))g>* =)

q2n’(r—n)
NQ(r = n),r — n;2(v = n))g?"=r-m+n,

Theorem 5.1 The parameters of this code are: | S |= N(2(r—n), r—n; 2(v—n));
Egl = g3 ITi = NQ(r = n),r — m;2(v — ))g**™"; |Eg| = g*"*™"; |T| =
NQ(r = n),r — n;2(v — n))g?*¢-r-n+n,

Without loss of generality, we assume that Uy = {U),Uz,---, Ui}, EL =
{Ey, X Ey, X +++ X Ey,}, where ! < n. Next we consider the attacks from Uy
onR.

Lemma 5.10 For any e; = (ey,, ev,,"**»€u,) € EL, the number of eg contain-
ing ey is g2~ =D,
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Proof. Forany e, = (ey,,ev,, - -, ev,) € Ei, we assume ¢, as follows;

v 0 0O 0 0 0 0 O
ee=| 0 % 0 0 0 0 0 O
0 0 Ry Ry v 0 R7 Rg
) n-| n-n v-n' | n-l n'-n v-n'
If eL C eg, then ez assumed as
9 0 0 0 0 0 0 0 ]
0 b 0 0 O 0 0 0 n-1
_l o 0 ™ 0 0 0 0 0 n'-n
®= 0 0 Ry Ry I 0 R, Rs| 1
0 o0 0 H, 0 D) 0  Hg| nt
0 0 0 Qs O 0 -m Os n'-n
{ n-i n-n v-n' ! n-{ n-n v-n'

where H,, Hg, Q4, Qg arbitrarily. Therefore, the number of eg containing e, is

qZ(v—n' Wn'=0) .

Lemma 5.11 Forany t € T, 1 = (ey,,ev,,"**»ev,) € EL, the nu
which contained in 7 and containing ey is g2~ -D+#'-min-h,

Proof. Forany r € T, we assume ¢ as follows;

“ 0 0 0 0 0 0 0 0
0 =D 0 0 0 0 0 0 0
0 0 [@-n 0 0 0 0 0 0
o o o rmm» o o 1 0 0
“lo o o 0 0 I 0o 0 0
0 0 0 0 0 0 /=D 0 0
0 0 0 0 0 0 0 N 9
\ 0 0 0 0 0 0 0 0 -
] n-l n'-n r-n vina-r-n' | n-{ n'-n r-n
If e, C ¢, then
“ 0 0O 0 0 0 0 0 0 O
ee=| 0 5 0 0 0 0 0 0 0 O],
0 0 Ry Ry 0 1Y 0 Rg Ry O
Since e, C eg C ¢, then eg assumed as
"m0 0 0 0 0 0 0 0
0 J=-b 0 0 0 0 0 0 0
o o mm o o 0 0 0 0
*®*=1'o0 0 0 R 0 I 0 R R
0 0 0 H, 0 0 [ Hg Ho
0 0 0 Na (] 0 0 Jor-m No
! n-l r'-n r-n vin=r-n’ 1 n-1 n-n r-n

mber of eg

0 !
0 n-1
0 n'-n
0 r-n
0 !
0 n-{
0 n'-n
0 /) rn
ven-r-n'
0 !
0 n-1
0 n-n
0 !
0 n-{
0 n'-n
vn-r-n’

where Hy, Hg, Hy, N4, Ng arbitrarily, then the number of ez contained in ¢ and

containing ey is g2~ -+ -n)n=b
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Lemma 5.12 Assume that #; and f, are two distinct tags which decoded by
receiver’s key eg, 51 and s, contained in #; and #, respectively. Let so = 51 N 52,
dimso = k, then n < k < 2r — n— 1, the number of eg which contained in 1, N 1
and containing ey is g ~H+27=3n),

Proof. Since t; = 5| + €p, 2 = 52 + eg, and 1) # f, then s, # s2. For any
s€S,U Cs,50,n < k < 2r-n—1. Assume that s/ is the complementary subspace
of sp in the s;, then s; = so+5] (i = 1,2). Because of t; = si+ep = so+S5; +egand
si=4NUL, weknow so = (1N UHnknNUY) =nnun Ut =51nty = 2Ny,
andfy Nt =(s1+ep)Nr =(so+ 5] +eR) N2 = ((so + eg) + 57) N 1. Since
So+er Ct,thenty Nty = (so +er) + (Si N t;), while S'l Nt € 51 N = 50, SO
1 Nt = so + eg. From the definition of ¢, we assume #;(i = 1,2) as follows:
™ 0 0 O n

0 Piz 0 0 r+n'-2n
0 0 I o n
0 0 0 Pi,, r+n'=2n

n v-n n v=-n

ti=

Let
™ o0 0 0 n

0 Py 0 0 r+n’-2n
0 0 ™ o n
0 0 0 P4 ren'=2n

hNt=

n v=-n n v-n
From t; Nty = sp + eg, we know dim (1) N12) =k +2n’ —n. So,

0 P, 0 O

dlm(o 0 0 P4)=k+2n -3n.

For any e, = (ev,,euv,, " *»eu,) € EL, we assume e, as follows:
M 90 0 o 0 0 0 O !
e1_=[ o /™ o 0 0 0 0 O ] nl
0 0 R; R4 [(l) 0 R7 Rs 1

1 n-t w-n v-n | n-l nw-n v-n'
If eg € t; N1 and e, C eg, then

M o0 0 0o 0 0 0 0 !
0 I™b 0 0o 0 o0 0 0 | nu
o o ©“» o 0 0 0 0 | w-n
€ =| o 0 R R I 0 R Rg| !
0o o0 0 By 0 b 0 Bg | nu
0 0 0 B, 0 0 [“" By) rn

! n-1 n-n v-n' { n-1{ n'-n v-n'
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0 By 0 Bg). . -~
So, evgry row of ( ° B, 0 B ) is the linear combination of
0 P,, 0O O
0 0 0 P )"

Therefore, the number of ez which contained in 7; N ¢, and containing e, is
qu-Dike2n=3m)

Theorem 5.2 The maximum probability of success in impersonation attack

and substitution attack from U; on R are:
1 1
Py = GAn ~Dlvn=n'=r)=(w’-n)n=-0)* Psy = g =D2n-20 +Da(r ~n)n-1) *

Proof. (1) Impersonation attack: Uy, after receiving keys, encodes a message
and sends it to the receiver, Uy is successful if the receiver accepts it as legitimate
message. Denote P(L) is the maximum probability of success of the imperson-
ation attack, it can be expressed as

Pi(L)

| {er € EgleL Ceg, er C 1} |
max max
e eE, meM | {er € Egrler C er} |
q2(r-n)(n' =D+(n'-n)(n-0)
qZ(v-n’ Y=l
1
qZ(n' =D(v+n-n'-r)—(n'-n}(n-1l) *

(2) Substitution attack: Uy, after observing a legitimate message m, substi-
tutes it with another message m’. Uy is successful if the receiver accepts it as
legitimate message. Denote Pg(L) is the maximum probability of success of the
substitution attack, it can be expressed as

Ps(L) = maxmax max {l {er € Epley C er,eg C t,er C t'} I}
e €Er, meM mem'eM | {er € Egler, C eg,egr C 1} |
(n —}(k+2n’ -3n)

n<kgo . g D+ —nY=D

1
q(n’—l)(2u—2n'+l)+(n'-n)(n-l) "
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