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Abstract

Let G be a connected k-colourable graph of order n > k. A
subgraph H of G is k-colourfully panconnected in G if there is a
k-colouring of G such that the colours are close together in H, in
two different senses (called veriegated and panconnected) to be made
precise. Let sx(G) denote the smallest number of edges in a spanning
k-colourfully panconnected subgraph H of G. It is conjectured that
sk(G) =n—1if k > 4 and G is not a circuit (a connected 2-regular
graph) with length = 1 (mod k). It is proved that s,(G) =n-1if G
contains no circuit with length = 1 (mod k), and sx(G) € 2n -k -1
whenever k 2 4.

Keywords: Distance-k-connected; Variegated colouring; Pancon-
nected colouring; Spanning tree.

1 Introduction

Throughout this paper, all graphs are finite, and all colourings are assumed
to be proper vertex-colourings. We write dg(v) for the degree of vertex v
in graph G, and dg(u,v) is the distance between vertices u and v in G. If
P is a path, then its length I(P) is the number of edges in P.

A set X of vertices in a graph G is distance-k-connected if, for each two
vertices u,v of X, there is a sequence u = zy,x;,...,2; = v of vertices of
X such that dg(zi_1,z:) < k for each i (1 < i < l). This is the same as
saying that G¥[X] is connected, where G* [X] is the subgraph induced by
X in G*, the graph with the same vertex-set as G in which two verticos
are adjacent if and only if they are distance at most & apart in G. (One
can imagine that there is an animal that lives on the graph G and feeds at
vertices in X. It cannot travel more than k edges without stopping at a
vertex in X to feed. Then it can travel from any vertex in X to any other
vertex in X if and only if X is distance-k-connected.)
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The following theorem was proved by Ouyang [3, 4] with help from
J. Griggs and E. Czabarka.

Theorem 1.1. [3, 4] Let G be a connected k-chromatic graph. Then G
has a k-colouring such that each colour class is distance-k-connected in G.

This result was conjectured by Chen, Schelp and Shreve [2], who noted
that ‘distance-k-connected’ is best possible (consider two copies of Kj
connected by a long path).

If v € V(G), then a k-colouring of G is variegated at v if the k colours
can be ordered as cg,c1,...,ck—1 in such a way that, for each 4, colour ¢;
occurs on a vertex within distance ¢ of v (so, in particular, v has colour
co). This says that, for each i (1 < ¢ < k — 1), at least ¢ + 1 different
colours occur on vertices within distance ¢ of v (including v itself). A
k-colouring of G is variegated if it is variegated at every vertex of G. Note
that this requires all k colours to occur on vertices of G, so that although
a variegated k-colouring of G is an I-colouring for each [ > k, it is not a
variegated l-colouring for any ! # k.

A k-colouring of G is panconnected if, for each i (1 < ¢ < k), the union of
each i colour classes is distance-(k+1—i)-connected in G. If G is connected
then this condition holds automatically when i =k or k — 1.

Borodin and Woodall [1] modified Ouyang’s proof of Theorem 1.1 to
prove the following slightly stronger result.

Theorem 1.2. [1] Let G be a connected k-colourable graph with at least k
vertices. Then G has a variegated panconnected k-colouring.

As in [1), we define a subgraph H of G to be k-colourfully panconnected
(k-cp) in G if G has a k-colouring that induces a variegated panconnected
k-colouring of H. Clearly this implies that H is connected and has at least
k vertices. If G is a connected k-colourable graph with at least k vertices,
let

sx(G) := min{|E(H)| : H is a spanning k-cp subgraph of G}.

This makes sense because, by Theorem 1.2, G is a spanning k-cp subgraph
of itself.

If G is a connected bipartite graph of order n then it is easy to see that
52(G) = n — 1, and that any spanning tree will do for H. The following
results are proved in (1].

Theorem 1.3. [1] Let G be a k-colourable connected graph with order
n 2> k and minimum degree §.
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(a) IfG=C, then

_fn ifn=1 (mod k),
sk(G) = { n—1 otherwise.

(b) If G= K, , so that n =71+ s and § = min{r, s}, then

_fn+é6-2 k=3,
S"(G)‘{ n—1 ifk>4.

(c) Ifk € {3,4} then sx(G) < n+4d-2.

(d) Ifk € {3,4} and G has an edge that is contained in no circuit with
length = 1 (mod k), then s(G) =n - 1.

(e) If G is k-chromatic and contains a vertex that is adjacent to vertices
of all other colours in every k-colouring of G, then sk(G) € n.

In (1) it is conjectured that if G is a connected k-colourable graph with
order n > k > 4, then sx(G) < n. In fact, one can make the following
stronger conjecture.

Conjecture 1. If G is a connected k-colourable graph of ordern 2 k > 4,
and G is not a circuit with length = 1 (mod k), then s,(G) = n — 1; that
is, G has a k-colourfully panconnected spanning tree.

In this paper we will prove the following two new results. Theorem 1.4
seems very specialized, but it does, for example, show that Conjecture 1
holds if G is bipartite and & is even. Theorem 1.5 gives an upper bound on
sk(G) for each k > 4; Theorem 1.3(c), together with a previous observation
about the case k = 2, gives an upper bound for each k < 4, and so we now
have two different upper bounds when k = 4.

Theorem 1.4. Let G be a connected k-colourable graph of ordern 2 k > 2,
and suppose that G contains no circuit with length = 1 (mod k). Then
sp(G)=n—-1.

Theorem 1.5. Let G be a connected k-colourable graph of ordern > k > 4.
Then s (G) < 2n—k ~ 1.
2 Proof of Theorem 1.4

The following result is taken from [1], where it is used in the proofs of parts
(c)-(e) of Theorem 1.3. We will use it in proving Theorem 1.4, and we
include a brief proof of it for completeness.
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Lemma 2.1. Let v be a vertez in a connected k-colourable graph G. Then
there is a k-colouring yo : V(G) — {0,1,...,k—1}, and a spenning tree T
of G, such that yo(v) = dr(vo,v) (mod k) for each vertez v of G.

Proof. Choose a k-colouring v of G and permute colours if necessary so
that y(vg) = 0. Set T := {vo}.

While V(T) # V(G), proceed as follows. If there is an edge uw € E(G)
such that u € V(T), w € V(G) \ V(T), and y(w) = ¥(u) + 1 (mod k),
then choose such an edge and add uw and w to T If there is no such edge
uw, then reduce the colour of every vertex in V(G) \ V(T) by 1 (mod k).
Let T and 7o denote the final tree T and colouring <y constructed by this
procedure, with V(T') = V(G); it is clear that T and 7o have the required
property. O

We now prove Theorem 1.4. Let G satisfy the hypotheses of the theorem.

If T is a spanning tree of G with the property in Lemma 2.1, and v is any
vertex of T, consider the set P(v) of paths in T having v as one endvertex
and otherwise containing only vertices that are further from the root v
than v is. Let Pi(v) be a longest path in P(v), let Px(v) be a longest path
in P(v) having no edges in common with Pi(v), and let l(v) = I(Pc(v))
(e = 1,2). (Recall that I(P) denotes the length of path P. If v # v and
dr(v) < ¢, then P(v) = {v}, a 1-vertex path, and l(v) =0 (¢ = 1,2); and
12('00) =0if dT(vo) = 1.)

Choose a vertex vp, a spanning tree T' and a k-colouring yo of G, with
the property in Lemma 2.1, in such a way that l2(vo) is as large as possible.

Claim 2.1. For each vertez v of T, 1;(v) < Li(vo) and l2(v) < l2(vo).

Proof. It is clear from the definition of I; that l;(v) < li(vo). (Indeed,
dr(vo,v) + 11(v) < li(w0).) So suppose that lo(v, T) > l2(vo, T'), where we
temporarily specify the tree T' by writing l(v,T) and P.(v,T) in place of
l(v) and P.(v) (€ = 1,2). Subtract yo(v) (mod k) from the colour of every
vertex in G, and let T, be the union of all paths in P(v), so that T, is a
subtree of T' containing P, (v,T) and P;(v,T). Now use the procedure in
the proof of Lemma 2.1 to extend T}, to a new spanning tree T’ of G with
v as its root, with an associated colouring 7 of G, satisfying the property
in Lemma 2.1. But then l(v,T") = lo(v,T) > l2(vo, T), contrary to the
choice of T'. This contradiction completes the proof of Claim 2.1. O

Let Py := Pl(’vo) U Pg(vo) and let | := l(Po) = 11(1)0) + la(vg). For
€ = 1,2, let v denote the final vertex of Pc(vp), so that vy,v are the
endvertices of Pp. If P is any path in T, let v be the (unique) vertex of P
that is closest to vg. Then

I(P) < li(v) + l2(v) < li(vo) + l2(w0) =1, (1)
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using Claim 2.1. In particular, T has diameter (exactly) {.

If ly(v) = 0 for all v then T is a path, and it is easy to see that T'
is k-colourfully panconnected in G; thus we may assume that ly(v) > 0
for some vertex v. It now follows from Claim 2.1 that ly(vp) > 0. Let
T" be the component of T — vy containing vo, and let T} := T — 7" and
T :=TV(T")U{w}]. Then HUT =T, TiNTp = {vo}, and P.(v) C T
(e=1,2).

For each i (1 < i < k— 1), no vertex of T, with colour i is adjacent in G
to any vertex of T} with colour k-3, since by the hypothesis of the theorem
G contains no circuit with length = 1 (mod k). So for all i (1 < i < k)
simultaneously, interchange the colours ¢ and k—1 on all vertices in 5. The
result is a proper k-colouring of G, in which every colour that is used at all
is used on a vertex of Fy. If only r < k colours are used, then choose &k — r
vertices not in Py and recolour them with the k — r unused colours, so that
every colour is used on at least one vertex. Let the resulting colouring be
denoted by 7. We will prove that « is variegated and panconnected when
regarded as a k-colouring of T, so that T is a k-colourfully panconnected
spanning tree of G.

A path P in T will be called monotonic if, for each pair of vertices
u,w in P at the same distance from vp, one of u,w is in T} and the
other is in T5. We note the following facts about a monotonic path P:
if s < min{|V(P)|, k}, then any s consecutive vertices of P have s different
colours; and if there are vertices u,w € P that have the same colour, then
dr(u,w) is a multiple of k.

Claim 2.2. The colouring + is a variegated k-colouring of T.

Proof. Let u be a vertex of T, let v denote the closest point of Py to u, and
let the paths from v to v, v2 and u be Py, P, and Pj, respectively, where
P;j has length l; (j = 1,2,3). Let { := min{l;,l2} and [ := max{l;,l5}.
Let u € T, where ¢ = 1 or 2; clearly then v € T, also. If ¢ = 1 then
ls < h =U4(v) and I3 < la(v) < l2(vo) < l2 (using Claim 2.1). If e = 2
then I3 < I2 = L1(v) < l2(vo) < li(vo) < Uy Either way, Is < L. Let ci(u)
denote the number of colours that occur on vertices within distance i of u
in T, including u itsclf. We must prove that for each i (1 < i < k — 1),
ci(u) 2i+1.

Let T* denote the subtree Py UP,U P; of T. By considering the vertices
within distance ¢ of u in T*, one can see that if 0 < 7 < I3 + [ then
ci(u) 2 min{k, f(¢)}, where f(0) := 1 and

1 if1<i<2,

J@)-fli-1)=4 2 if2<i<l+] (2)
1 iflg+l<i<iz+L.
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This is because the first I3 vertices after v along the path P := P3UP, (when
traced from u to v¢) may have the same colours as the first l3 vertices of P,
but otherwise, as i increases, there is no repetition of colours in T'* unless
i gets so large that all colours have already occurred. It follows from (2)
that ¢;(u) > i+ 1 if i < min{k, f(la + 1)} — 1. Now, since I3 <1,

Fls+D=fO)+la+l+l—ls=1+1+l=14+hL+l=1+1

Thus ¢;(u) > i+ 1if i < min{k — 1,1}, But ¢i(u) =k 2i+1ifl <i g
k — 1, since T has diameter ! and every colour occurs in T. This proves
Claim 2.2. 0O

Claim 2.3. The colouring vy is a panconnected k-colouring of T'.

Proof. Let1 < i< k and let X be a union of k+ 1 — colour classes of ~.
We must prove that X is distance-i-connected in T'. Let a path be called
good if it does not contain i consecutive vertices that are not in X. Clearly
every monotonic path is good. If u,w € V(T), let P(u,w) denote the path
fromu towin T.

Let u,w € X. It suffices to prove that either P(u,w) is good, or there is
a vertex z € X such that P(u,z) and P(z,w) are both good. The former
holds if P(u,w) is monotonic; so let us assume that it is not. Then either
u,w € Ty or u,w € Ty; say u,w € T, where ¢ = 1 or 2, and let € := 3—e. Let
v be the closest point of P(u, w) to vy, and let a := dr(vo,v), b := dr(v,u)
and ¢ := dp(v,w). We may assume w.lo.g. that v and w are the only
vertices of X in P(u,v) U P(v,w), and that b < c. If there is any vertex =
of X on P(ve,v), then the paths P(u,z) and P(z,w) are both monotonic
and hence good; so assume there is no such vertex z. Then the monotonic
path P(vg, w) has lz(vg) + a + ¢ consecutive vertices (all but its last vertex,
in fact) that arc not in X, and it follows that

la(wo) +a+c<le(vo)+a+c<i-1.

But !(P(u, w)) = b+cand b < I2(v) < l2(v), and so I(P(u, w)) < l2(vo) +¢
< i—1. Thus P(u,w) is a good path, and Claim 2.3 is proved. O

Claims 2.2 and 2.3 together prove Theorem 1.4.

3 Proof of Theorem 1.5

In this section we prove Theorem 1.5, that if G is a connected k-colourable
graph with order n > k > 4, then sp(G) <2n—k-1=2(n—k) +k— 1.
We know already that if G is a path or a circuit then sx(G) < n, with strict
inequality unless n = 1 (mod k), so that s(G) =n-1=2n—-k—1if
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n=k;sincen {2n—-k—1ifn > k+ 1, we may assume henceforth that
G is not a path or a circuit and so has maximum degree A(G) > 3.

We are indebted to the referee of [1] for suggesting the following simple
lemma, which is included in [1] and used there several times.

Lemma 3.1. Suppose v is a k-colouring of a graph G that is variegated
at some vertez v whose colour class is distance-k-connected in G. Suppose
X is the union of i colour classes (1 < i < k) and X \ {v} is distance-
(k + 1 —9)-connected in G —v. Then X is distance-(k 4+ 1 — i)-connected
inG.

Proof. If X is the colour class of v, then this holds by hypothesis. Other-
wise, since -y is variegated at v, v is within distance k + 1 — ¢ of some vertex
in X\{v}. DO

If H C G, let 3(H) be the set of all vertices of H that have neighbours
in G — V(H), and let O(H) be the set of all vertices of G — V(H) that
have neighbours in H: 8(H) := V(H) N Ng(V(G) \ V(H)) and 8(H) :=
Ne(V(H)\ V(H).

We say that a k-colouring of a graph G is strongly variegated at a vertex
v if, for each i (2 < i < k - 2), at least i + 2 different colours occur on
vertices within distance ¢ of v (including v itself); note that there may be
only two different colours within distance 1 of v.

For a natural number j, define I := {0,1,...,5 — 1}.

Lemma 3.2. Let G be a connected k-colourable graph with ordern > k > 4
and mazimum degree A(G) > 3. Then G has a k-colouring 7y, and a subtree
T} of order k, such that all vertices of Ty have different colours, and the
colouring vi|Ty of Ty induced by ~y is variegated at every verter of Ty, and
strongly variegated at every vertez of 8(T:) with at most one ezception.

Proof. Let G have chromatic number x = x(G) > 2, and let ! :=
max{4, x}.

Claim 3.1. G has an l-colouring v, and a substar T} of order I, such that
all vertices of T; have different colours.

Proof. Let v:V(G) — I} be a x-colouring of G. Let u be a vertex with
degree at least 3 and suppose w.l.o.g. y(z) = 0. Let 7} be a substar of G

with u as its centre and leaves u;,...,u_;.
If x = 2 then recolour u; with colour i (i = 2, 3) to obtain the colouring
M =74

If x = 3 we can choose u to have neighbours with both other colours.
For, suppose that this is impossible. Choose « and u as above so that every
neighbour of « has colour 1 and u is as close as possible to a vertex with
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colour 2. Let u = vg, 1, . .,vq be a shortest path from u to a vertex vq with
colour 2. By assumption, d > 2, and vy, ..., v4-1 are coloured alternately 0
and 1, and v,...,v4—1 have degree 2 since otherwise we could reduce d by
taking one of these vertices to be u. Moreover, all neighbours of va other
than v4_; have the same colour c, since there is only one such neighbour if
vg has degree 2, and we are assuming that no vertex with degree 3 or more
has neighbours with two different colours. So if d = 2 then we can recolour
v, with colour 2 and recolour vy with a colour different from both 2 and ¢,
and if d > 2 we can recolour v; with colour 2 and make no other changes.
Then u has neighbours with both other colours, as required. Choose T} = T4
so that u; has colour i (i = 1,2), and recolour ug with colour 3 to form the
colouring v = 74.

Finally, if [ = x > 4 then 4, = 7. Choose u to be any vertex of colour 0
that has every other colour among its neighbours, and choose u; to be a
neighbour with colour i (i =1,..., ! — 1). Note that such a vertex » must
exist, since otherwise every vertex with colour 0 could be recoloured with
a different colour, which is impossible since G is x-chromatic.

In all cases, Claim 3.1 is proved. O

We complete the proof of Lemma 3.2 as follows. Fori =1,l+1,...,k—1
in turn, we choose adjacent vertices u; € 8(T;) and w; € 8(T;), recolour
w; with colour 4 (which is previously unused in G) to form a new colouring
qis1, and set Tiyp := T3 U {wjwi, wi}. If i > | and w;_y € 8(T;) then we
choose u; := w;_;; otherwise there is no restriction on the choice of u;
and w;. Note that T} has diameter 2, and the restriction 7|7} of 7 to T
is strongly variegated (as an l-colouring) at every vertex of T;. Thus, for
i > 1, T; has diameter at most 2 + i — ! < ¢ — 2, and if the i-colouring
7:|T;: is variegated at u; and strongly variegated at every other vertex of
8(T;), then the (i + 1)-colouring 7i4+1|Ti+1 is variegated at w; and strongly
variegated at u; and at every vertex of 8(T;41) except possibly at w;. It
follows inductively that the final colouring 7 and tree Tj have all the
required properties, and so Lemma 3.2 is proved. O

Let 40 and Hp denote the colouring 7x and subtree T whose existence
was proved in Lemma 3.2. In the following lemma, we will form a sequence
of colourings and subgraphs of G, which (ignoring a slight clash of termi-
nology) we will call v; and H;, in such a way that Hy C H, C..., until we
reach a subgraph H; with order n. Unfortunately, we have not been able
to do this in such a way that every union of k — 2 colour classes is distance-
3-connected in H;, and so we may need to add further edges afterwards in
order to join the distance-3-connected components (defined in an obvious
way, see below) together. To keep track of how many further edges need
to be added, let w(cy, c2,7i, H;) denote the number of distance-3-connected
components in H; of the set X := {v € V(H;) : 1(v) ¢ {c1,c2}} (that
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is, w(ey, €2,7:, Hi) is the number of components of the graph H3[X]); and
let Q(7y;, H;) be the sum of w(ey, ¢2,7i, H;) — 1 over all unordered pairs of
distinct colours ¢, ¢y € T.

Let us say that a k-colouring of a graph H is weakly panconnected if, for
each 7 (1 < i < k) except possibly for i = k — 2, the union of each 7 colour
classes is distance-(k — i + 1)-connected in H.

The following lemma is a strengthening of Theorem 1.2, and it is proved
by modifying the proof of that theorem in [1], which is in turn a modification
of the proof of Theorem 1.1 used by Ouyang in [3].

Lemma 3.3. Let G be a connected k-colourable graph with ordern > k > 4
and mazimum degree A(G) 2 3. Then G has a variegated panconnected
k-colouring v, and a spanning subgraph H, such that the colouring v|H of
H induced by -y is variegated and weakly panconnected, and H has at most
2(n—~ k) + (k—1)(1 - Q(v, H)) edges.

Proof. Let v and Hy denote the colouring <, and subtree T} whose
existence was proved in Lemma 3.2. We will form a sequence of k-colourings
7 and subgraphs H; of G with the following propertics.
Pl. |V(H;)| 2 k+1i and |E(H;)| < 2(|V(H:)| - k) + (k- 1)(1 = Q(v;, H;)).
P2. ~; is a k-colouring of G that induces a variegated weakly panconnected
k-colouring ~;|H; of H;.
P3. ~;|H; is strongly variegated at all but at most one of the vertices in
O(H;).
P4. For each k-colouring « of G such that v|H; = v;|H;, and for each set
X C V(G) that is the union of k — 2 colour classes of v, all vertices
of V(H;) N X are contained in the same component of G3[X].

These properties all hold when ¢ = 0, since it is easy to see from Lemma 3.2
that o|Ho is panconnected and not just weakly panconnected, so that
Q(0, Ho) = 0, and for every set X in P4, V(Hp)NX is distance-3-connected
in Ho and so is contained in a component of H3[X] and hence in a com-
ponent of G3(X). Since |V (Ho)| = k and |E(Hy)| = k — 1, this proves P1
and P4 and part of P2; and P3 and the rest of P2 follow directly from
Lemma 3.2.

Suppose now that we have defined +v; and H; so that properties P1-P4
hold, for some 7 > 0. Suppose first that 8(H;) = @; then |V(H;)| = n.
Define « := ; and H := H;. At this point P3 is irrelevant — it is needed
only in the construction of H. P2 implies that v is a varicgated weakly
panconnected k-colouring of G (as well as inducing such a colouring of H),
and P4 implies that v is actually panconnected (as a colouring of G) and
not just weakly panconnected. The required upper bound on | E(H)| follows
from P1, and so Lemma 3.3 is proved in this case.
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So suppose 8(H;) # 0. We must show how to define ;41 and Hiy, so
that properties P1-P4 all hold for (i1, Hi+1). Let u be the unique vertex
of &(H;) at which ;| H; is not strongly variegated, if there is one; otherwise
let u be any vertex of (H;). Let w € N(u)\ V(H;). Let ¢, denote a colour
whose closest occurrence to u in H; is as far from u as possible (but within
distance k — 1 of u, since «;|H; is variegated at u).

Suppose first that v;(w) = cy. Let ¥i41 := v and Hiyy = H;U{uw,w}.
We must verify that properties P1-P4 hold for (y;41, Hi+1). It is easy to see
that ;41| Hi41 is strongly variegated at u (so that P3 holds) and variegated
at w. By Lemma 3.1, this implies that vi41|Hi41 is weakly panconnected
since y;|H; is, which completes the proof of P2. By the same reasoning
as in the proof of Lemma 3.1, if X is a union of k — 2 colour classes of
4i, then w is within distance 3 in Hi;, of some vertex of X NnV(H,);
this shows that Q(vit+1, Hi+1) < Q(v, H;), and it implies that P4 holds,
since we are assuming that P4 holds for (i, H;). Finally, P1 holds since
|V(His1)| = |V(H:)| + 1 and |E(Hiy1)| = |E(H;)| + 1. Thus properties
P1-P4 all hold for (Y41, Hi+1), with w being the exceptional vertex in P3
if there is one.

So we may assume that v;(w) # c,. Suppose next that w has a
neighbour v € V(H;) which has colour ¢,. Let %41 = v and Hiyy =
H; U{uw,w, wv}. By the same reasoning as in the previous paragraph, one
can verify that properties P1-P4 hold for (vi4+1, Hi41), with w again being
the exceptional vertex in P3 if there is one. (It was wrongly stated in (1]
that there is no exceptional vertex in this case. However, it is possible that
Yi+1|His1 is not strongly variegated at w, if every neighbour of {u,v} in
H; has colour ~;(w).)

So we may assume that 7;(w) # ¢, and that w has no neighbour
v € V(H;) with colour ¢,. Consider in turn each vertex of colour ¢, or
vi(w) in V(G)\ (V(H;) U {w}), and change its colour to be different from
both ¢, and y;(w) if possible. Now let C be the component (‘Kempe chain’)
containing w in the subgraph of G induced by all vertices of colour c,
and yi(w). If CN H; = 0 then we can interchange colours ¢, and 7i(w)
throughout C so that w has colour c,; if we call this new colouring v,
we can then proceed exactly as when ;(w) = cu, except that instead of
defining 7i41 := v we define i1 := v}. (Note that P1-P4 hold for «; since
v!|H; = v|H;.) So we may suppose that C N H; # ®. Thus there exist
adjacent vertices z € V(H;) and y € V(G) \ V(H;) such that 7i(z) = cu
and 7i(y) = vi(w) or vice versa. Note that y is adjacent in G to vertices
of all other colours, since otherwise its colour would have been changed by
the colour modifications at the start of this paragraph.

At this point, abusing terminology somewhat, we forget the original
vertices u and w and relabel z,y as u,w, and we relabel the new colouring
as v;. So u,w are adjacent vertices such that u € 9(H;), w € 8(H;), vi|H:
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is strongly variegated at u, and w has G-neighbours with all colours other
than its own. Since v; has not changed on any vertex of Hj, properties
P1-P4 still hold. We may assume that if w has any neighbours outside H;,
then not all such neighbours have colour +;(u); for, if they do, then w has
neighbours in H; with at least two colours different from vi(u), and ;| H;
is strongly variegated at all but at most one of these neighbours by P3, and
so we can change u to be a neighbour of w with a colour different from that
of the neighbours of w outside H;.

Let ¢, now denote a colour in I} \ {7:(u),vi(w)} whose closest occur-
rence to u in H; is as far from u as possible, but within distance k — 2
of u, since y;|H; is strongly variegated at u; let ¢, denote a colour in
L \ {7:(u), 7:(w), ¢, } whose closest occurrence to u in H; is as far from u
as possible, and if k 2> 5 let ¢, denote a colour in T \ {7i(x), 1:(w), CusCh}
whose closest occurrence to u in H; is as far from u as possible. Let w,, w!,
be neighbours of w with colour c,, ¢/, respectively, chosen if possible to be
not in H;.

Suppose first that w has no neighbours outside H;. Let ;4 :=+; and
Hiyy == H; U {uvw,w,ww,}. By the same argument as before, it is easy
to see that properties P1-P4 hold for (vi41, Hit1). Note that vi41|Hiy; is
not necessarily strongly variegated at w, but this does not matter since it
is variegated at w and w ¢ 8(H,y1).

So we may assume that w has at least one neighbour outside H;. Recall
that in this case not all such ncighbours have colour ~;(u). Provisionally,
define 7,41 := <, and form H;y, from H; by adding vertex w and all
G-neighbours of w outside H;, all edges joining w to its neighbours outside
H;, and the edges uw, ww, and ww; if exactly one of wy,, w!, is in H;, and
k 2> 5, and all G-neighbours of w with colour ¢/ are in H;, then add also an
edge joining w to a neighbour with colour ¢f/; if neither w, nor w/, is in Hj;,
then if possible add a further edge joining w to a vertex z € Ng(w)NV(H;)
whose colour is in Ty \ {7i(u), vi(w), cu, ., }. There are four cases.

Case 1: w, and w], are both in H;. Then in forming H;,, from H; we have
added s vertices and s + 2 edges, for some s > 2.

Case 2: exactly one of w, and w/, is in H;. Then we have added s vertices
and either s+ 1 or s + 2 edges, for some s > 2.

Case 3: neither w, nor w/, is in H;, and the vertex z exists. Then we have
added s vertices and s + 1 edges, for some s > 3.

Case 4: neither w, nor w/, is in H;, and there is no vertex z. Then we have
added s vertices and s edges, for some s > k — 1.

We will prove the following facts.

F1. The colouring «y;y1|H;41 is strongly variegated at all vertices in
V(Hip1) \ V(H;).
F2. The colouring v;41|H;4, is weakly panconnected.
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F3. Q(vit1, Hiy1) < Q(vi, Hi), and P4 holds for (741, Hi1), except pos-
sibly in Case 4, in which case it is possible to redefine 7;4, if necessary
so that Q(7i+1: Hi4) € Q(i, H;) +1 and P4 holds for (’7{+1,H5+1).

Together with the information about the numbers of vertices and edges
given with the definitions of Cases 1-4 above, these facts imply that prop-
erties P1-P4 all hold for (vi4+1,Hit+1), and this will finally complete the
proof of Lemma 3.3.

To verify fact F1, let v be w or a neighbour of w outside H;. Let j be
an integer such that 2 < j < k — 2. Suppose first that j > 4. Since ;|H;
is strongly variegated at u, there are at least j colours from I} \ {cu,c,}
that occur on vertices of H; within distance j — 2 of u, and so there are
at least j + 2 colours (including ¢, and c,) that occur on vertices of H;
within distance j of v. The same conclusion holds if j = 2, since w and
its neighbours have at least the four different colours «;(u),vi(w), cu, c,.
And it holds too if j = 3 and k > 5, since then w and its neighbours have
at least five different colours; to see this in Case 1, note that in this case
no neighbour of w outside H; has colour ¢, or ¢}, and recall that not all
neighbours of w outside H; have colour v;(u). This proves F1.

To prove F2, we note that if j = k£ — 1 or k then the union of any
j colour classes is distance-(k — j + 1)-connected, for any k-colouring of
any connected graph. So suppose that 1 < j < k — 3, which implies that
2<k—-j—1<k—2, and let X be the union of any j colour classes of
Yi+1|His1. Since ;|H; is strongly variegated at u, at least k —j + 1 colours
occur within distance k — j — 1 of u in H;, which means that there is a
vertex of X within distance k — j — 1 of u in H; and hence within distance
k — j + 1 of each vertex of V(H;41) \ V(H;) in Hiy1. This proves F2.

Now consider F3. If the union of every k — 2 colour classes of v;+1|Hi41
has no more distance-3-connected components in H;,), than in H;, then it
will follow that Q(vi41, Hi+1) < Q(vi, H;), and hence that P4 holds, since
we are assuming that P4 holds for (v;, H;). So suppose that X is a union
of j = k — 2 colour classes of v;+1|H;4+1 that has more distance-3-connected
components in H;1 than in H;. It is easy to see that this cannot happen
if there is vertex of X within distance 1 of u in H;, or if w € X (since there
is necessarily a vertex of X within distance 2 of u in H;), or if w is adjacent
in Hiy to a vertex v € X NV (H;). If all of these fail, then X comprises all
vertices with colours in T \ {7i(u), v:(w)}, so that w, and w}, € X in Cases
1 and 2 and z € X in Case 3. Thus we must be in Case 4. All vertices in
Ng(w)\ V(H;) are within distance 3 (indeed, distance 2) of each other, and
$0 Q(Yi+1, Hit1) < Q(7vi, H:i) + 1, and the only problem arises if P4 fails
for (Yit+1, Hi+1). Note that P4 can only fail for the set X just described,
since it is only when {c1,c2} = {7i(u),vi(w)} that w(e, c2,vit+1, Hiv1) >
w(cy,c2,7i, Hi). So suppose there is a k-colouring v of G that induces
Yi+1|Hi+1 on Hyyy, such that not all vertices of V/(H;4.1) N X are contained
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in the same component of G3[X]. Then, since P4 holds for (-y;, H;), the ver-
tices of V(H;;+1) N X are contained in precisely two different components
C1,C; of G3[X], where w.l.o.g. Ne(w)N X C V(C)) and V(H;)N X C
V(C2). Note that this requires that V(Cy) N V(H;) = @ and that all
H;-neighbours of u have colour 7;41(w).

Choose a colour ¢y € {7vi(u),vi(w)}, let Xp and X, be the sets of vertices
of G with colours ¢y and ~;(w) respectively, and let C be the component
(Kempe chain) containing w in G{XoUX,,]. Then Xo € X, Ng(w)NXo # 0
(since w has neighbours of all other colours), and G2[V(C) N Xo] is con-
nected, so that V(C) N Xo € V(C}). Hence V(C)N XoNV(H;) = § and
V(C)NnV(H;) C X,,. Suppose there exists a vertex v € V(C) NV (H;). By
the connectedness of C, and since +;|H; is variegated by property P2, there
are vertices v, € V(C) N Xo C V(C1) and v € V(H;) N X C V(Cy,) such
that de(v,v1) =1 and dg, (v,v2) < 2. Thus dg(v;,v2) < 3, which implies
that G3[C,UC,) is connected. This contradiction shows that no such vertex
v exists, and V(C) N V(H;) = 0. Thus we can interchange colours ¢y and
7i(w) throughout C without affecting any colours in H;. Redefine v;;; to
be the colouring so obtained. In this new ~;,; it is still true that w has
neighbours of all other colours, but it is no longer true that all neighbours
of u in H; have colour v;;1(w) = ¢o, and so there can exist no colouring
such that P4 fails for (7,41, Hi4+1). This proves fact F3, and so completes
the proof of Lemma 3.3. O

We can now complete the proof of Theorem 1.5. Let v and H be the
k-colouring and spanning subgraph of G whose existence was proved in
Lemma 3.3, and note that |E(H)| < 2(n—k)+k—1-3Q(y, H) since k > 4. If
Q(v, H) = 0, then every union of k—2 colour classes is distance-3-connected
in H, and so H is the required k-colourfully panconnected subgraph of G.
So suppose that Q(y,H) > 0, and choose colours ¢; and ¢y such that
w(er, 2,7, H) > 1; that is, the set X := {v € V(G) : v(v) ¢ {c1,¢2}} is not
distance-3-connected in H. For brevity, let w := w(e;, ¢z,, H). Since 7 is
a panconnected k-colouring of G, X is distance-3-connected in G. Thus by
adding w—1 subpaths of G to H, each with at most three edges, we can join
together the different distance-3-connected components of X in H. If the
resulting graph is called H’, then Q(y, H') < Q(v,H) = (w ~ 1) < Q(v, H)
and |E(H')| < |E(H)|+3(w—1) < 2(n—k)+k—1-3Q(7, H'). After a finite
number of repetitions we arrive at a subgraph H* for which Q(vy, H*) =0
and |E(H*)| € 2(n—k)+k—1=2n—k—1; H* is the required k-colourfully
panconnected subgraph of G. This completes the proof of Theorem 1.5.
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