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Abstract

The zeroth-order general Randié index of a graph G is de-

fined as °R, = Y d(v)®, where d(v) is the degree of the
veV(G)
vertex v in G and « is an arbitrary real number. In the pa-

per, we give sharp lower and upper bounds on the zeroth-order
general Randié¢ index of cacti.
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1. Introduction

Let G = (V, E) be a graph. The Randié (or connectivity) index
of G was introduced by Randié¢ in 1975 and is defined as [21]

R@G)= Y (dw)d())3,

uveE(G)
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where d(u) and d(v) are the degrees of u and v. This index had
been showed closely correlated with many chemical properties [11]
and found to parallel the boiling point, Kovats constants, and a cal-
culated surface. So it has become one of the most popular molecular
descriptors, the interesting reader is referred to [1)-[8], [16]-[19] and
[22]. The zeroth-order Randi¢ index of G, conceived by Kier and
Hall [12], is R%(G) = Xyev(c) d(v)_% and Pavlovié¢ determined the
graphs with maximum value of RY(G) [20]. Liet al. [13] investigated
the same problem for the topological index M;(G), also known as
Zagreb indices, that is defined as M1(G) = Lyev(c) d(v)2. In 2005,
Li and Zheng [15] defined the zeroth-order general Randi¢ index of
a graph G as "Rqa(G) = Lyev(c) d(v)*, where o is a real number.
Then Li and Zhao [14] characterized trees with the first three small-
est and largest zeroth-order general Randi¢ index, with the exponent
« being equal to k, —k, 1/k and —1/k, where k > 2 is an integer.
In [10], Hua and Deng characterized the unicycle graphs with the
maximum and minimum zeroth-order general Randié index. In [9),
Hu et al. investigated the molecular graphs having the smallest and

largest zeroth-order general Randi¢ index.

Let G = (V, E) be a graph. We call G a cacti if all of blocks of
G are either edges or cycles. Denote G(n,) the set of cacti of order
n and with 7 cycles. Obviously, G(n,0) are trees and G(n,1) are
unicyclic graphs. The degree and the neighborhood of a vertex u € V
will be denoted by d(u) and N(u), respectively. Let P = vjvz--- v
be a path. We call P an internal path, if d(v), d(vg) > 3 and
d(vg) = -+ = d(vk—1) = 2 (if k > 3). The graph that arises from G
by deleting the edge uv € E will be denoted by G — uv. Similarly,
the graph G + wv arises from G by adding an edge uv between two
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non-adjacent vertices u and v of G. In [18], Lu et al. gave sharp
lower bound on the Randié¢ index of cacti. [17], Liu et al presented
a unified approach to the cacti for some indices. In this paper, we
will give sharp lower and upper bounds on the zeroth-order general
Randié index of cacti.

Let G € G(n,r). Then |[E(G)l =m =n+r-1. Ifa =0,
then Ry(G) = Yev(c) dw)? = n. If @ = 1, then °Ry(G) =
Yvev(c)d(v) = 2m = 2(n +r — 1). Thus we always assume that
a # 0,1 in the following sections.

2. Some Lemmas

Let G € G(n,r). Firstly, we will give some lemmas which will be
used in Section 3.

Lemma 2.1. Let G € G(n,r) and C; a cycle of G. If°R,(G) is
as small as possible for 0 < a < 1 or "Ry(G) is as large as possible
for o > 1 or a < 0, then |Ac,| = 1, where Ac, = {v : v €
V(Ci), d(v) 2 3}.

Proof.  Suppose |Ac,| = 2. Then there exist u, v € Ac;.
Assume, without loss of generality, that d(v) > d(u) > 3. Set N(u)\
V(C;) = {w1, --,ux}, then k > 1. Since u, v € V(C;) and G €
G(n,r), N(v) N {uy,---,ur} = 0. Denote

G =G —uuy — - —uug +vu; + - + vug.
Then G' € G(n,r) and
°Ra(G') " Ra(G) = [(d(u) — k)™ + (d(v) + k)] = [d(w)® + d(v)?]
= [(d(v) + k)* = d(v)?] - [d(u)* - (d(u) - k)*]

= ak(sa—l - ﬂa—l),
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where d(v) < € < d(v) + k and d(u) — k < 7 < d(u). Since d(u) <
d(v), we have d(u) — k < 7 < d(u) < d(v) < § < d(v) + k. Thus we
have OR4(G') <®R4(G) for 0 < @ < 1, and "Ro(G') >°R4(G) for

a > 1 or a <0, a contradiction. ]

Lemma 2.2. Let G € G(n,r) and uv be an edge which is not in
any cycle of G. If °Ry(G) is as small as possible for 0 < a <1 or
OR.(G) is as large as possible for o > 1 or e <0, then d(u) =1 or
d(v) =1.

Proof. Suppose there exists an edge uv which is not in any
cycle of G and d(v) > d(u) > 2. Set N(u)\ {v} = {u1, -+, ur}, then
k > 1. Since uv does not contain in any cycle of G and G € G(n,),
N(v) N {u1,---,ur} = 0. Denote

G =G —uuy — - —uug +vuy + - + VU

Then G' € G(n,r) and by the same argument as that of Lemma 2.1,
we have ORo(G’) < °R,(G) for 0 < @ < 1 and °R4(G’) >°Ry(G) for

a > 1 or a <0, a contradiction. [

Let G € G(n,r) and Ci,Cs,:+,C; the cycles of G. Denote
V(C) =UL, V(Cy).

Lemma 2.3. Let G € G(n,r) with r > 1. If°R4(G) is as large
as possible for 0 < a < 1 or "R, (G) is as small as possible for o > 1
or a < 0, then d(u) > 2 for any u € V(G).

Proof. Suppose there exists u € V(G) such that d(u) = 1.
Since G € G(n,r) and r > 1, there exists a cycle C; and a vertex
v € V(C;) such that there is a path P connected u and v in G and
V(P)nV(C) = {v}. Obviously, d(v) > 3. Let w € V(C;) with
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wv € E(G). Denote G' = G — vw + wu. Then &' € G(n,) and
"Ra(G) —° Ra(G) = [(d(v) - 1)* +2°] — [d(v)* + 1]
= (2% -1) - [dv)* - (d(v) - 1)°]
= o —grY),

where 1 < £ < 2 and d(v) — 1 < n < d(v). Since d(v) > 3, we
have 1 < £ < 2 < d(v) —1 < 1 < d(v). Thus we have °R,(G') >
OR4(G) for 0 < @ < 1 and R, (G') < ®Ro(G) fora >lora <0, a

contradiction. - a

Lemma 2.4. Let G € G(n,r) withr > 1. If °R,(G) is as large
as possible for 0 < a < 1 or "R, (G) is as small as possible for o > 1
ora <0, then d(u) < 4 for any u € V(C).

Proof.  Suppose there exists a cycle C; and u € V(C;) such
that d(u) > 5. Assume N(u)\V(C;) = {v1,va,+++,v¢}. Then k > 3.
Let H; be the components contained v; in G —u, 1 <1 < k. We will

complete the proof by considering the following two cases.

Case 1. There exists i, say ¢ = 1, such that H; # H; for any
2<j<k

By G € G(n,r) and Lemma 2.3, there exists v € V(H;) such
that d(v) = 2. Denote G’ = G — wv; + vv;. Then G’ € G(n,r) and

°Ra(G) =" Ra(G) = [(d(w) = 1)* +3%] — [d(u)* + 2°]
= (3% —2%) - [d(u)* - (d(u) - 1)%]
= a(Ea—l _ ncx—l)’

where 2 < £ < 3 and d(u) — 1 < 7 < d(u). Since d(u) > 5, we have
2<€<3<d(u) -1<n<d(u). Thus we have °R,(G") >OR,(G)
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for 0 < @ < 1 and "Ro(G’) <°Rqa(G) for @ > 1 or & < 0, a contra-
diction.

Case 2. For any i (1 <4 < k), there exists j such that H; = H;,
where 1 < j < k and © # j.

In the case, we have d(u) > 6. Assume, without loss of generality,
that H; = Ha. Then v;, v contain in a common cycle and H3z # H;
by the definition of cacti. By Lemma 2.3, there exists v € V(H3)
such that d(v) = 2. Denote G’ = G — uv1 — wvz + vy + vve. Then
G' € G(n,r) and

Ra(C) - Ra(@) = [(d(u) —2)* +47] - [d(u)" +2°]
= (4°-2%) - [d(w)* - (du) - 2)%]
- 2a(§a—1 _ na-l),

where 2 < £ < 4 and d(u) — 2 < 1 < d(u). Since d(u) 2 6, we
have 2 < £ < 4 < d(u) -1 < 7 < d(u). Thus when 0 < a <1,
we have °Ro(G') >°Ro(G) and when a > 1 or o < 0, we have
OR4(G") <°R(G), a contradiction. .

Lemma 2.5. Let G € G(n,r) with r > 1. If°R(G) is as large
as possible for 0 < & < 1 or °Ro(G) is as small as possible for a > 1
or a < 0, then d(u) < 3 for any vertez u & V(C).

Proof. Suppose there exists a vertex u ¢ V(C) such that
d(u) > 4. Assume N(u) = {v1,v2,+-,v}. Then k > 4. Let H; be
the components contained v; in G —u, 1 <4 < k. Then H; # H; for
i # j. By G € G(n,r) and Lemma 2.3, there exists v € V(Ha) such
that d(v) = 2. Denote G’ = G — uv; +vv;. Then G’ € G(n,7) and

Ra(G') " Ra(G) = [(d(w) —1)* +3%] - [d(w)* +2]
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= (3% —2%) — [d(u)* - (d(u) — 1)%]
= o> —poYy,

where 2 < £ < 3 and d(u) — 1 < 17 < d(u). Since d(u) > 4, we have
2 < ¢ <3< d(u) —1<n<d(u). Thus we have "'R,(G’) >°R,(G)
for 0 < @ < 1 and °R,(G’) <°R4(G) for @ > 1 or a < 0, a contra-

diction. ]

Denote Ay = {v € V(G) : d(v) = 4}. Then we have the
following result.

Lemma 2.6. Let G € G(n,7) (r > 1) and n = 2r + k, where
k > 1. If%Ro(G) is as large as possible for 0 < a < 1 or °R,(G)
is as small as possible for a > 1 or a < 0, then |A4| = 7 — k when
1<k<r—1and|Ay =0 when k> r.

Proof. If r = 1, then G is a cycle by Lemma 2.3 and the
result holds immediately. So we can assume that » > 2. Denote
A3(G) = {u : d(u) =3, u ¢ V(C)}. Choose G € G(n,r) (r > 2)
and n = 2r +k such that °R,(G) is as large as possible for 0 < a < 1
or °R,(G) is as small as possible for @ > 1 or @ < 0 and |A3(G)| is
as small as possible. We first show that |[A3(G)| = 0.

Suppose there exists © € A3(G). Let N(u) = {uj,u2,u3}. Then
there exists v with d(v) = 2 such that v and u; do not contain in the
same component in G —u by Lemma 2.3. Denote G' = G —uu; +vy;.
Then G’ € G(n,r) and °Ro(G’) =°R4(G), but |A3(G")| < |43(G)],
a contradiction. Hence |A3(G)| = 0.

Now we complete the proof.

If k = 1, then |[A4] = r — 1 by the definition of cacti. Suppose
2 <k <r—1. Then |A4] > r — k by the definition of cacti. Assume
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|Ag| > r —k+1 > 1. Then there exists a cycle of length at least
4 or an internal path of length at least 2 by Lemmas 2.3, 2.4 and
|A3(G)] = 0. Choose u € A4 such that there is a cycle, say Cj,
contained u and (V(C1)\{u})NA4 = 0. By the definition of °R(G),
we can assume, without loss of generality, that length of C; at least 4.
Let Cp = uj(= w)ug - - - usuy (s > 4). Denote G’ = G — ujug + usup.
Then G’ € G(n,r) and

Ro(G') =° Ra(G) = [(d(w) - 1)% +3%] — [d(w)* +27]
= (3% =2%) - [d(u)* - (d(u) - 1)7]
= a(éa_l - ﬂa—l),

where 2 < £ < 3 and d(u) — 1 < 7 < d(u). Since d(u) = 4, we
have 2 < £ <3< d(u)—1 < n < d(u). Thus when 0 < a < 1,
we have °R,(G’) >°R4(G) and when o > 1 or a < 0, we have
OR4(G") <°R,(G), a contradiction.

If kK > r, then we can show that |[A4| = 0 by the same argument.

3. Main Results

In the section, we use G(n,) to denote the set of cacti of order
n and with r cycles and G%(n,r) to denote the cacti obtained from r
triangles and n — 2r — 1 edges by taking one vertex of each triangle
and each edge, and combining them as one vertex. Fig.1 and Fig.2
illustrate the graphs G%(n,r) withn =13, r=3 and n =5, r =2,

respectively.
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Fig. 1. G°(13,3) Fig. 2. GY(5,2)

Now we have our main results.

Theorem 3.1. Let G € G(n,r). Then

OR.(G) > 2°tr + (n—1)*+ (n—2r — 1) for 0<ax<l1
and
'R, (G) £ 2°*lr4(n—1)*+(n—2r-1) for a>1 or a<0.

The equalities hold if and only if G = G%(n,r).

Proof. Let G € G(n,r) such that °R,(G) is as small as pos-
sible for 0 < @ < 1 or °R,(G) is as large as possible for a > 1 or
a < 0. By Lemmas 2.1 and 2.2, all cycles and pendent edges of G
with a common vertex, say u. So we just need to show that the

length of each cycle of G is 3.
Suppose there exists a cycle C; such that the length of C; is at

least 4. Let C; = vyvg - - - vy, without loss of generality, let v; be
the vertex such that d(v;) > d(v;), for 2 < ¢ < k. Then k > 4 and
d(vq1) > 2. Denote G’ = G — vou3 + vjvs. Then G’ € G(n,r) and

°Ra(G") —°Ra(G) = [(d(v1) +1)* + 1] — [d(v1)* +2°]
= [(d(v) + )% - d(v)*] - (2% - 1)

= a(ga_l - Wa_l),
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where d(v;) < € < d(v1)+1 and 1 < 7 < 2. Since d(v1) 2 2, we have
1<n<2<d(v) < £ <d(v)+1. Thus we have °R,(G") <%R,(G)
when 0 < & < 1 and °Ro(G') >°Ro(G) whena > lor @ < 0, a
contradiction.

Hence the length of each cycle of G is 3 which implies G =
G(n,r). Note that °Ro(G?) = 2°*!r+(n—1)*+(n—2r—1). Thus

the conclusions of our theorem hold. =

Let G € G(n,7). Denote 4;(G) = {u : d{u) =i, ue V(G)}. If
r =1, then °Ry(G) < n2® when 0 <a < 1lor OR4(G) = n2* when
a>1or a <0 by Lemma 2.3. So we will assume r > 2 in the next

two theorems.

Theorem 3.2. Let G € G(n,r) (r > 2) and n = 2r + k, where
1<k<r—-1. Then

ORa(G) < (r+2)2%* + (r —k)4* + (26— 2)3%, for 0<a<l1

OR,(G) > (r+2)2°H +(r—k)4°+(2k—2)3%, for a>1 or a<O0.

The equalities hold if and only if |A4(G)| = — k, |A3(G)| = 2k - 2
and |A2(G)| =7 +2.

Proof. Choose G’ € G(n,r) such that °R,(G’) is as large as
possible for 0 < @ < 1 or °Ro(G') is as small as possible for : > 1 or
a < 0. By Lemmas 2.3, 2.4 and 2.5, 2 < d(u) < 4 for any u € V(G')
and then |4;(G)| = 0 for j > 5. By Lemma 2.6, |44(G")| = — k.
From the definition of cacti, we have |A3(G’)| = 2k—2 and |42(G’)| =
r +2. Note that °R,(G') = (r + 2)2%*! + (r — k)4* + (2k — 2)3*.
Thus the conclusions of our theorem hold. .

Theorem 3.3. Let G € G(n,r) (r > 2) and n = 2r + k, where
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k>r. Then

OR.(G) < (2r — 2)3%+! 4 (k + 2)29, for 0<acx<l1

ORA(G) > (2r —2)3%H! + (k+2)29, for a>1 or a<O.

The egualities hold if and only if |A3(G)| = 2r + 2 and |43(G)| =
k+2.

Proof. Choose G’ € G(n,r) (r > 2) such that °R,(G") is as
large as possible for 0 < o < 1 or "R,(G’) is as small as possible for
a>1lora<0 ByLemmas 2.3 and 2.6, we have |[4;(G)| = 0 for
J 24 and 2 < d(u) < 3 for each u € V(G'). So |A43(G’)| = 2r + 2 by
the definition of cacti and then |A2(G’)| = k + 2. Since °R,(G’) =
(2r — 2)32+1 + (k 4 2)2%, our conclusion holds. =
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