On the zeroth-order general Randić index of cacti

Liang LIN1* Mei LU2†

¹Department of maths and physics, Guilin University of Technology,
Guilin, Guangxi, 541004, China

²Department of Mathematical Sciences,
Tsinghua University, Beijing 100084, China.

Abstract

The zeroth-order general Randić index of a graph G is defined as ${}^0R_{\alpha} = \sum_{v \in V(G)} d(v)^{\alpha}$, where d(v) is the degree of the vertex v in G and α is an arbitrary real number. In the paper, we give sharp lower and upper bounds on the zeroth-order general Randić index of cacti.

Keywords: zeroth-order general Randić index, cacti, cycle

1. Introduction

Let G = (V, E) be a graph. The Randić (or connectivity) index of G was introduced by Randić in 1975 and is defined as [21]

$$R(G) = \sum_{uv \in E(G)} (d(u)d(v))^{-\frac{1}{2}},$$

^{*}email: linliang6666@126.com;

[†]email: mlu@math.tsinghua.edu.cn; Partially supported by NNSFC (No. 10571105).

where d(u) and d(v) are the degrees of u and v. This index had been showed closely correlated with many chemical properties [11] and found to parallel the boiling point, Kovats constants, and a calculated surface. So it has become one of the most popular molecular descriptors, the interesting reader is referred to [1]-[8], [16]-[19] and [22]. The zeroth-order Randić index of G, conceived by Kier and Hall [12], is $R^0(G) = \sum_{v \in V(G)} d(v)^{-\frac{1}{2}}$ and Pavlović determined the graphs with maximum value of $\mathbb{R}^0(G)$ [20]. Li et al. [13] investigated the same problem for the topological index $M_1(G)$, also known as Zagreb indices, that is defined as $M_1(G) = \sum_{v \in V(G)} d(v)^2$. In 2005, Li and Zheng [15] defined the zeroth-order general Randić index of a graph G as ${}^0R_{\alpha}(G) = \sum_{v \in V(G)} d(v)^{\alpha}$, where α is a real number. Then Li and Zhao [14] characterized trees with the first three smallest and largest zeroth-order general Randić index, with the exponent α being equal to k, -k, 1/k and -1/k, where $k \geq 2$ is an integer. In [10], Hua and Deng characterized the unicycle graphs with the maximum and minimum zeroth-order general Randić index. In [9], Hu et al. investigated the molecular graphs having the smallest and largest zeroth-order general Randić index.

Let G=(V,E) be a graph. We call G a cacti if all of blocks of G are either edges or cycles. Denote G(n,r) the set of cacti of order n and with r cycles. Obviously, G(n,0) are trees and G(n,1) are unicyclic graphs. The degree and the neighborhood of a vertex $u \in V$ will be denoted by d(u) and N(u), respectively. Let $P=v_1v_2\cdots v_k$ be a path. We call P an internal path, if $d(v_1)$, $d(v_k) \geq 3$ and $d(v_2) = \cdots = d(v_{k-1}) = 2$ (if $k \geq 3$). The graph that arises from G by deleting the edge $uv \in E$ will be denoted by G - uv. Similarly, the graph G + uv arises from G by adding an edge uv between two

non-adjacent vertices u and v of G. In [18], Lu et al. gave sharp lower bound on the Randić index of cacti. [17], Liu et al presented a unified approach to the cacti for some indices. In this paper, we will give sharp lower and upper bounds on the zeroth-order general Randić index of cacti.

Let $G \in G(n,r)$. Then |E(G)| = m = n + r - 1. If $\alpha = 0$, then ${}^0R_0(G) = \sum_{v \in V(G)} d(v)^0 = n$. If $\alpha = 1$, then ${}^0R_1(G) = \sum_{v \in V(G)} d(v) = 2m = 2(n + r - 1)$. Thus we always assume that $\alpha \neq 0, 1$ in the following sections.

2. Some Lemmas

Let $G \in G(n,r)$. Firstly, we will give some lemmas which will be used in Section 3.

Lemma 2.1. Let $G \in G(n,r)$ and C_i a cycle of G. If ${}^0R_{\alpha}(G)$ is as small as possible for $0 < \alpha < 1$ or ${}^0R_{\alpha}(G)$ is as large as possible for $\alpha > 1$ or $\alpha < 0$, then $|A_{C_i}| = 1$, where $A_{C_i} = \{v : v \in V(C_i), d(v) \geq 3\}$.

Proof. Suppose $|A_{C_i}| \geq 2$. Then there exist $u, v \in A_{C_i}$. Assume, without loss of generality, that $d(v) \geq d(u) \geq 3$. Set $N(u) \setminus V(C_i) = \{u_1, \dots, u_k\}$, then $k \geq 1$. Since $u, v \in V(C_i)$ and $G \in G(n,r), N(v) \cap \{u_1, \dots, u_k\} = \emptyset$. Denote

$$G' = G - uu_1 - \dots - uu_k + vu_1 + \dots + vu_k.$$

Then $G' \in G(n,r)$ and

$${}^{0}R_{\alpha}(G') - {}^{0}R_{\alpha}(G) = [(d(u) - k)^{\alpha} + (d(v) + k)^{\alpha}] - [d(u)^{\alpha} + d(v)^{\alpha}]$$

$$= [(d(v) + k)^{\alpha} - d(v)^{\alpha}] - [d(u)^{\alpha} - (d(u) - k)^{\alpha}]$$

$$= \alpha k (\xi^{\alpha - 1} - \eta^{\alpha - 1}),$$

where $d(v) < \xi < d(v) + k$ and $d(u) - k < \eta < d(u)$. Since $d(u) \le d(v)$, we have $d(u) - k < \eta < d(u) \le d(v) < \xi < d(v) + k$. Thus we have ${}^{0}R_{\alpha}(G') < {}^{0}R_{\alpha}(G)$ for $0 < \alpha < 1$, and ${}^{0}R_{\alpha}(G') > {}^{0}R_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0$, a contradiction.

Lemma 2.2. Let $G \in G(n,r)$ and uv be an edge which is not in any cycle of G. If ${}^{0}R_{\alpha}(G)$ is as small as possible for $0 < \alpha < 1$ or ${}^{0}R_{\alpha}(G)$ is as large as possible for $\alpha > 1$ or $\alpha < 0$, then d(u) = 1 or d(v) = 1.

Proof. Suppose there exists an edge uv which is not in any cycle of G and $d(v) \ge d(u) \ge 2$. Set $N(u) \setminus \{v\} = \{u_1, \dots, u_k\}$, then $k \ge 1$. Since uv does not contain in any cycle of G and $G \in G(n, r)$, $N(v) \cap \{u_1, \dots, u_k\} = \emptyset$. Denote

$$G' = G - uu_1 - \dots - uu_k + vu_1 + \dots + vu_k.$$

Then $G' \in G(n,r)$ and by the same argument as that of Lemma 2.1, we have ${}^{0}R_{\alpha}(G') < {}^{0}R_{\alpha}(G)$ for $0 < \alpha < 1$ and ${}^{0}R_{\alpha}(G') > {}^{0}R_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0$, a contradiction.

Let $G \in G(n,r)$ and C_1, C_2, \dots, C_r the cycles of G. Denote $V(C) = \bigcup_{i=1}^r V(C_i)$.

Lemma 2.3. Let $G \in G(n,r)$ with $r \geq 1$. If ${}^0R_{\alpha}(G)$ is as large as possible for $0 < \alpha < 1$ or ${}^0R_{\alpha}(G)$ is as small as possible for $\alpha > 1$ or $\alpha < 0$, then $d(u) \geq 2$ for any $u \in V(G)$.

Proof. Suppose there exists $u \in V(G)$ such that d(u) = 1. Since $G \in G(n,r)$ and $r \geq 1$, there exists a cycle C_i and a vertex $v \in V(C_i)$ such that there is a path P connected u and v in G and $V(P) \cap V(C) = \{v\}$. Obviously, $d(v) \geq 3$. Let $w \in V(C_i)$ with $wv \in E(G)$. Denote G' = G - vw + wu. Then $G' \in G(n,r)$ and

$${}^{0}R_{\alpha}(G') - {}^{0}R_{\alpha}(G) = [(d(v) - 1)^{\alpha} + 2^{\alpha}] - [d(v)^{\alpha} + 1]$$

$$= (2^{\alpha} - 1) - [d(v)^{\alpha} - (d(v) - 1)^{\alpha}]$$

$$= \alpha(\xi^{\alpha - 1} - \eta^{\alpha - 1}),$$

where $1 < \xi < 2$ and $d(v) - 1 < \eta < d(v)$. Since $d(v) \ge 3$, we have $1 < \xi < 2 \le d(v) - 1 < \eta < d(v)$. Thus we have ${}^0R_{\alpha}(G') > {}^0R_{\alpha}(G)$ for $0 < \alpha < 1$ and ${}^0R_{\alpha}(G') < {}^0R_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0$, a contradiction.

Lemma 2.4. Let $G \in G(n,r)$ with $r \ge 1$. If ${}^0R_{\alpha}(G)$ is as large as possible for $0 < \alpha < 1$ or ${}^0R_{\alpha}(G)$ is as small as possible for $\alpha > 1$ or $\alpha < 0$, then $d(u) \le 4$ for any $u \in V(C)$.

Proof. Suppose there exists a cycle C_i and $u \in V(C_i)$ such that $d(u) \geq 5$. Assume $N(u) \setminus V(C_i) = \{v_1, v_2, \dots, v_k\}$. Then $k \geq 3$. Let H_i be the components contained v_i in G - u, $1 \leq i \leq k$. We will complete the proof by considering the following two cases.

Case 1. There exists i, say i=1, such that $H_1 \neq H_j$ for any $2 \leq j \leq k$.

By $G \in G(n,r)$ and Lemma 2.3, there exists $v \in V(H_2)$ such that d(v) = 2. Denote $G' = G - uv_1 + vv_1$. Then $G' \in G(n,r)$ and

$${}^{0}R_{\alpha}(G') - {}^{0}R_{\alpha}(G) = [(d(u) - 1)^{\alpha} + 3^{\alpha}] - [d(u)^{\alpha} + 2^{\alpha}]$$
$$= (3^{\alpha} - 2^{\alpha}) - [d(u)^{\alpha} - (d(u) - 1)^{\alpha}]$$
$$= \alpha(\xi^{\alpha - 1} - \eta^{\alpha - 1}),$$

where $2 < \xi < 3$ and $d(u) - 1 < \eta < d(u)$. Since $d(u) \ge 5$, we have $2 < \xi < 3 < d(u) - 1 < \eta < d(u)$. Thus we have ${}^{0}R_{\alpha}(G') > {}^{0}R_{\alpha}(G)$

for $0 < \alpha < 1$ and ${}^0R_{\alpha}(G') < {}^0R_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0$, a contradiction.

Case 2. For any i $(1 \le i \le k)$, there exists j such that $H_i = H_j$, where $1 \le j \le k$ and $i \ne j$.

In the case, we have $d(u) \geq 6$. Assume, without loss of generality, that $H_1 = H_2$. Then v_1 , v_2 contain in a common cycle and $H_3 \neq H_1$ by the definition of cacti. By Lemma 2.3, there exists $v \in V(H_3)$ such that d(v) = 2. Denote $G' = G - uv_1 - uv_2 + vv_1 + vv_2$. Then $G' \in G(n,r)$ and

$${}^{0}R_{\alpha}(G') - {}^{0}R_{\alpha}(G) = [(d(u) - 2)^{\alpha} + 4^{\alpha}] - [d(u)^{\alpha} + 2^{\alpha}]$$
$$= (4^{\alpha} - 2^{\alpha}) - [d(u)^{\alpha} - (d(u) - 2)^{\alpha}]$$
$$= 2\alpha(\xi^{\alpha - 1} - \eta^{\alpha - 1}),$$

where $2 < \xi < 4$ and $d(u) - 2 < \eta < d(u)$. Since $d(u) \ge 6$, we have $2 < \xi < 4 \le d(u) - 1 < \eta < d(u)$. Thus when $0 < \alpha < 1$, we have ${}^{0}R_{\alpha}(G') > {}^{0}R_{\alpha}(G)$ and when $\alpha > 1$ or $\alpha < 0$, we have ${}^{0}R_{\alpha}(G') < {}^{0}R_{\alpha}(G)$, a contradiction.

Lemma 2.5. Let $G \in G(n,r)$ with $r \ge 1$. If ${}^0R_{\alpha}(G)$ is as large as possible for $0 < \alpha < 1$ or ${}^0R_{\alpha}(G)$ is as small as possible for $\alpha > 1$ or $\alpha < 0$, then $d(u) \le 3$ for any vertex $u \notin V(C)$.

Proof. Suppose there exists a vertex $u \notin V(C)$ such that $d(u) \geq 4$. Assume $N(u) = \{v_1, v_2, \cdots, v_k\}$. Then $k \geq 4$. Let H_i be the components contained v_i in G - u, $1 \leq i \leq k$. Then $H_i \neq H_j$ for $i \neq j$. By $G \in G(n,r)$ and Lemma 2.3, there exists $v \in V(H_2)$ such that d(v) = 2. Denote $G' = G - uv_1 + vv_1$. Then $G' \in G(n,r)$ and

$${}^{0}R_{\alpha}(G') - {}^{0}R_{\alpha}(G) = [(d(u) - 1)^{\alpha} + 3^{\alpha}] - [d(u)^{\alpha} + 2^{\alpha}]$$

=
$$(3^{\alpha} - 2^{\alpha}) - [d(u)^{\alpha} - (d(u) - 1)^{\alpha}]$$

= $\alpha(\xi^{\alpha - 1} - \eta^{\alpha - 1}),$

where $2 < \xi < 3$ and $d(u) - 1 < \eta < d(u)$. Since $d(u) \ge 4$, we have $2 < \xi < 3 \le d(u) - 1 < \eta < d(u)$. Thus we have ${}^0R_{\alpha}(G') > {}^0R_{\alpha}(G)$ for $0 < \alpha < 1$ and ${}^0R_{\alpha}(G') < {}^0R_{\alpha}(G)$ for $\alpha > 1$ or $\alpha < 0$, a contradiction.

Denote $A_4 = \{v \in V(G) : d(v) = 4\}$. Then we have the following result.

Lemma 2.6. Let $G \in G(n,r)$ $(r \ge 1)$ and n = 2r + k, where $k \ge 1$. If ${}^0R_{\alpha}(G)$ is as large as possible for $0 < \alpha < 1$ or ${}^0R_{\alpha}(G)$ is as small as possible for $\alpha > 1$ or $\alpha < 0$, then $|A_4| = r - k$ when $1 \le k \le r - 1$ and $|A_4| = 0$ when $k \ge r$.

Proof. If r=1, then G is a cycle by Lemma 2.3 and the result holds immediately. So we can assume that $r\geq 2$. Denote $A_3(G)=\{u:d(u)=3,\ u\not\in V(C)\}$. Choose $G\in G(n,r)\ (r\geq 2)$ and n=2r+k such that ${}^0R_\alpha(G)$ is as large as possible for $0<\alpha<1$ or ${}^0R_\alpha(G)$ is as small as possible for $\alpha>1$ or $\alpha<0$ and $|A_3(G)|$ is as small as possible. We first show that $|A_3(G)|=0$.

Suppose there exists $u \in A_3(G)$. Let $N(u) = \{u_1, u_2, u_3\}$. Then there exists v with d(v) = 2 such that v and u_1 do not contain in the same component in G-u by Lemma 2.3. Denote $G' = G-uu_1+vu_1$. Then $G' \in G(n,r)$ and ${}^0R_{\alpha}(G') = {}^0R_{\alpha}(G)$, but $|A_3(G')| < |A_3(G)|$, a contradiction. Hence $|A_3(G)| = 0$.

Now we complete the proof.

If k=1, then $|A_4|=r-1$ by the definition of cacti. Suppose $2 \le k \le r-1$. Then $|A_4| \ge r-k$ by the definition of cacti. Assume

 $|A_4| \geq r - k + 1 \geq 1$. Then there exists a cycle of length at least 4 or an internal path of length at least 2 by Lemmas 2.3, 2.4 and $|A_3(G)| = 0$. Choose $u \in A_4$ such that there is a cycle, say C_1 , contained u and $(V(C_1) \setminus \{u\}) \cap A_4 = \emptyset$. By the definition of ${}^0R_{\alpha}(G)$, we can assume, without loss of generality, that length of C_1 at least 4. Let $C_1 = u_1(=u)u_2 \cdots u_s u_1$ $(s \geq 4)$. Denote $G' = G - u_1 u_2 + u_s u_2$. Then $G' \in G(n, r)$ and

$${}^{0}R_{\alpha}(G') - {}^{0}R_{\alpha}(G) = [(d(u) - 1)^{\alpha} + 3^{\alpha}] - [d(u)^{\alpha} + 2^{\alpha}]$$

$$= (3^{\alpha} - 2^{\alpha}) - [d(u)^{\alpha} - (d(u) - 1)^{\alpha}]$$

$$= \alpha(\xi^{\alpha - 1} - \eta^{\alpha - 1}),$$

where $2 < \xi < 3$ and $d(u) - 1 < \eta < d(u)$. Since d(u) = 4, we have $2 < \xi < 3 \le d(u) - 1 < \eta < d(u)$. Thus when $0 < \alpha < 1$, we have ${}^{0}R_{\alpha}(G') > {}^{0}R_{\alpha}(G)$ and when $\alpha > 1$ or $\alpha < 0$, we have ${}^{0}R_{\alpha}(G') < {}^{0}R_{\alpha}(G)$, a contradiction.

If $k \geq r$, then we can show that $|A_4| = 0$ by the same argument.

3. Main Results

In the section, we use G(n,r) to denote the set of cacti of order n and with r cycles and $G^0(n,r)$ to denote the cacti obtained from r triangles and n-2r-1 edges by taking one vertex of each triangle and each edge, and combining them as one vertex. Fig.1 and Fig.2 illustrate the graphs $G^0(n,r)$ with n=13, r=3 and n=5, r=2, respectively.

Fig. 1. $G^0(13,3)$

Fig. 2. $G^0(5,2)$

Now we have our main results.

Theorem 3.1. Let $G \in G(n,r)$. Then

$${}^{0}R_{\alpha}(G) \ge 2^{\alpha+1}r + (n-1)^{\alpha} + (n-2r-1)$$
 for $0 < \alpha < 1$

and

$${}^{0}R_{\alpha}(G) \le 2^{\alpha+1}r + (n-1)^{\alpha} + (n-2r-1)$$
 for $\alpha > 1$ or $\alpha < 0$.

The equalities hold if and only if $G \cong G^0(n,r)$.

Proof. Let $G \in G(n,r)$ such that ${}^{0}R_{\alpha}(G)$ is as small as possible for $0 < \alpha < 1$ or ${}^{0}R_{\alpha}(G)$ is as large as possible for $\alpha > 1$ or $\alpha < 0$. By Lemmas 2.1 and 2.2, all cycles and pendent edges of G with a common vertex, say u. So we just need to show that the length of each cycle of G is 3.

Suppose there exists a cycle C_i such that the length of C_i is at least 4. Let $C_i = v_1 v_2 \cdots v_k v_1$, without loss of generality, let v_1 be the vertex such that $d(v_1) \geq d(v_i)$, for $2 \leq i \leq k$. Then $k \geq 4$ and $d(v_1) \geq 2$. Denote $G' = G - v_2 v_3 + v_1 v_3$. Then $G' \in G(n,r)$ and

$${}^{0}R_{\alpha}(G') - {}^{0}R_{\alpha}(G) = [(d(v_{1}) + 1)^{\alpha} + 1] - [d(v_{1})^{\alpha} + 2^{\alpha}]$$

$$= [(d(v_{1}) + 1)^{\alpha} - d(v_{1})^{\alpha}] - (2^{\alpha} - 1)$$

$$= \alpha(\xi^{\alpha - 1} - \eta^{\alpha - 1}),$$

where $d(v_1) < \xi < d(v_1) + 1$ and $1 < \eta < 2$. Since $d(v_1) \ge 2$, we have $1 < \eta < 2 \le d(v_1) < \xi < d(v_1) + 1$. Thus we have ${}^0R_{\alpha}(G') < {}^0R_{\alpha}(G)$ when $0 < \alpha < 1$ and ${}^0R_{\alpha}(G') > {}^0R_{\alpha}(G)$ when $\alpha > 1$ or $\alpha < 0$, a contradiction.

Hence the length of each cycle of G is 3 which implies $G \cong G^0(n,r)$. Note that ${}^0R_{\alpha}(G^0) = 2^{\alpha+1}r + (n-1)^{\alpha} + (n-2r-1)$. Thus the conclusions of our theorem hold.

Let $G \in G(n,r)$. Denote $A_i(G) = \{u : d(u) = i, u \in V(G)\}$. If r = 1, then ${}^0R_{\alpha}(G) \leq n2^{\alpha}$ when $0 < \alpha < 1$ or ${}^0R_{\alpha}(G) \geq n2^{\alpha}$ when $\alpha > 1$ or $\alpha < 0$ by Lemma 2.3. So we will assume $r \geq 2$ in the next two theorems.

Theorem 3.2. Let $G \in G(n,r)$ $(r \ge 2)$ and n = 2r + k, where $1 \le k \le r - 1$. Then

$${}^{0}R_{\alpha}(G) \le (r+2)2^{\alpha+1} + (r-k)4^{\alpha} + (2k-2)3^{\alpha}, \quad for \quad 0 < \alpha < 1$$

$${}^{0}R_{\alpha}(G) \ge (r+2)2^{\alpha+1} + (r-k)4^{\alpha} + (2k-2)3^{\alpha}, \quad \text{ for } \quad \alpha > 1 \quad \text{or } \quad \alpha < 0.$$

The equalities hold if and only if $|A_4(G)| = r - k$, $|A_3(G)| = 2k - 2$ and $|A_2(G)| = r + 2$.

Proof. Choose $G' \in G(n,r)$ such that ${}^0R_{\alpha}(G')$ is as large as possible for $0 < \alpha < 1$ or ${}^0R_{\alpha}(G')$ is as small as possible for $\alpha > 1$ or $\alpha < 0$. By Lemmas 2.3, 2.4 and 2.5, $2 \le d(u) \le 4$ for any $u \in V(G')$ and then $|A_j(G)| = 0$ for $j \ge 5$. By Lemma 2.6, $|A_4(G')| = r - k$. From the definition of cacti, we have $|A_3(G')| = 2k-2$ and $|A_2(G')| = r + 2$. Note that ${}^0R_{\alpha}(G') = (r+2)2^{\alpha+1} + (r-k)4^{\alpha} + (2k-2)3^{\alpha}$. Thus the conclusions of our theorem hold.

Theorem 3.3. Let $G \in G(n,r)$ $(r \ge 2)$ and n = 2r + k, where

 $k \geq r$. Then

$${}^{0}R_{\alpha}(G) \le (2r-2)3^{\alpha+1} + (k+2)2^{\alpha},$$
 for $0 < \alpha < 1$

$${}^{0}R_{\alpha}(G) \ge (2r-2)3^{\alpha+1} + (k+2)2^{\alpha},$$
 for $\alpha > 1$ or $\alpha < 0$.

The equalities hold if and only if $|A_3(G)| = 2r + 2$ and $|A_2(G)| = k + 2$.

Proof. Choose $G' \in G(n,r)$ $(r \geq 2)$ such that ${}^0R_{\alpha}(G')$ is as large as possible for $0 < \alpha < 1$ or ${}^0R_{\alpha}(G')$ is as small as possible for $\alpha > 1$ or $\alpha < 0$. By Lemmas 2.3 and 2.6, we have $|A_j(G)| = 0$ for $j \geq 4$ and $2 \leq d(u) \leq 3$ for each $u \in V(G')$. So $|A_3(G')| = 2r + 2$ by the definition of cacti and then $|A_2(G')| = k + 2$. Since ${}^0R_{\alpha}(G') = (2r - 2)3^{\alpha+1} + (k+2)2^{\alpha}$, our conclusion holds.

References

- B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin., 50(1998), 225-233.
- [2] G. Caporossi, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs 4. Chemical trees with extremal connectivity index, Comput. Chem., 23(1999), 469-477.
- [3] J. Gao and M. Lu, On the Randić Index of Unicyclic Graphs, MATCH Commun. Math. Comput. Chem., 53(2005), 377-384.
- [4] I. Gutman, D. Vidović, A. Nedić, Ordering of alkane isomers by means of connectivity indices, J. Serb. Chem. Soc., 67(2002), 87-97.

- [5] I. Gutman, M. Lepović, Choosing the exponent in the denition of the connectivity index, J. Serb. Chem. Soc., 66(2001), 605-611.
- [6] I. Gutman, O. Araujo, D. A. Morales, Estimating the connectivity index of a saturated hydrocarbon, Indian J. Chem., 39A(2000), 381-385.
- [7] I. Gutman, O. Miljković, Molecules with smallest connectivity indices, MATCH Commun. Math. Comput. Chem., 41(2000) 57-70.
- [8] P. Hansen and H. Mélot, Variable neighborhood search for extremal graphs. 6. Analyzing bounds for the connectivity index, J. Chem, Inf. Comput. Sci., 40(2003), 1-14.
- [9] Y. Hu, X. Li, Y. Shi, T. Xu and I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randic index MATCH Commun. Math. Comput. Chem., 54(2005), 425-434.
- [10] H. Hua and H. Deng, On unicycle graphs with maximumand minimum zeroth-order general Randić index, J. Math. Chem., 41(2007), 173-181.
- [11] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
- [12] L.B. Kier and L.H. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, 1986.
- [13] R. Lang, X. Li, S. Zhang, Inverse problem for Zagreb index of molecular graphs, Appl. Math. J. Chinese Univ., A18(2003), 487-493 (in Chinese).

- [14] X. Li, H. Zhao, Trees with the first three smallest and largest generalized toplogical indeices, MATCH Commun. Math. Comput. Chem., 50(2004), 57-62.
- [15] X. Li and J. Zheng, A unified approach to the extremal trees for different indices MATCH Commun. Math. Comput. Chem., 54(2005), No.1, 195–208
- [16] H. Liu, M. Lu and F. Tian, On the Randic index, J. Math. Chem., 38(2005), 345-354.
- [17] H. Liu and M. Lu, A Unified Approach to Cacti for Different Indices, Accepted by MATCH Commun. Math. Comput. Chem..
- [18] M. Lu, L. Zhang and F.Tian, On the Randic index of cacti, MATCH Commun. Math. Comput. Chem., 56(2006), 551-556.
- [19] M. Lu, H. Liu and F. Tian, The connectivity index, MATCH Commun. Math. Comput. Chem., 51(2004), 149-154.
- [20] L. Pavlović, Maximal value of the zeroth-order Randić index, Discr. Appl. Math., 127(2003), 615-626.
- [21] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc., 97(1975), 6609-6615.
- [22] M. Randić, The connectivity index 25 years after, J. Mol. Graphics Modell., 20 (2001), 19-35.